Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (217)

Search Parameters:
Keywords = carbon nanofluid

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 2663 KiB  
Article
How Nanofluids May Enhance Energy Efficiency and Carbon Footprint in Buildings?
by Sylwia Wciślik
Sustainability 2025, 17(15), 7035; https://doi.org/10.3390/su17157035 - 2 Aug 2025
Viewed by 257
Abstract
Nanofluids are an innovative working medium in solar hot water installations (DHWs), thanks to their increased thermal conductivity and heat transfer coefficient. The aim of this work was to assess the effect of Al2O3 nanofluids in a water–ethylene glycol base [...] Read more.
Nanofluids are an innovative working medium in solar hot water installations (DHWs), thanks to their increased thermal conductivity and heat transfer coefficient. The aim of this work was to assess the effect of Al2O3 nanofluids in a water–ethylene glycol base (40:60%) and with the addition of Tween 80 surfactant (0.2 wt%) on thermal efficiency (ε) and exergy (ηex) in a plate heat exchanger at DHW flows of 3 and 12 L/min. The numerical NTU–ε model was used with dynamic updating of thermophysical properties of nanofluids and the solution of the ODE system using the ode45 method, and the validation was carried out against the literature data. The results showed that the nanofluids achieved ε ≈ 0.85 (vs. ε ≈ 0.87 for the base fluid) and ηex ≈ 0.72 (vs. ηex ≈ 0.74), with higher entropy generation. The addition of Tween 80 reduced the viscosity by about 10–15%, resulting in a slight increase of Re and h-factor; however, the impact on ε and ηex was marginal. The environmental analysis with an annual demand of Q = 3000 kWh/year and an emission factor of 0.2 kg CO2/kWh showed that for ε < 0.87 the nanofluids increased the emissions by ≈16 kg CO2/year, while at ε ≈ 0.92, a reduction of ≈5% was possible. This paper highlights the need to optimize nanofluid viscosity and exchanger geometry to maximize energy and environmental benefits. Nowadays, due to the growing problems of global warming, the analysis of energy efficiency and carbon footprint related to the functioning of a building seems to be crucial. Full article
Show Figures

Figure 1

22 pages, 4469 KiB  
Article
Thermal and Exergetic Performance Analyses of a Heat Pipe Heat Exchanger Using CMC/Co3O4-Based Non-Newtonian Nanofluids
by Duygu Yilmaz Aydin
Appl. Sci. 2025, 15(14), 7831; https://doi.org/10.3390/app15147831 - 12 Jul 2025
Viewed by 321
Abstract
This study presents an experimental evaluation of the thermal and exergetic performance of an air-to-air heat pipe heat exchanger using a cobalt oxide (Co3O4)-based non-Newtonian nanofluid, with the additional incorporation of carbon black (CB). Nanofluids were synthesized via a [...] Read more.
This study presents an experimental evaluation of the thermal and exergetic performance of an air-to-air heat pipe heat exchanger using a cobalt oxide (Co3O4)-based non-Newtonian nanofluid, with the additional incorporation of carbon black (CB). Nanofluids were synthesized via a two-step method and tested under turbulent flow conditions across varying Reynolds numbers. The results demonstrated that increasing the Co3O4 nanoparticle concentration and adding CB substantially improved both the thermal and exergetic performance compared to deionized water. Specifically, maximum thermal efficiency improvements of 62.7% and 75.4% were recorded for nanofluids containing 1% and 2% Co3O4, respectively. The addition of CB further enhanced the thermal efficiency, achieving a maximum improvement of 79.2%. Furthermore, the maximum reduction in thermal resistance reached 61.4% with CB incorporation, while the 2% Co3O4 nanofluid achieved a maximum decrease of 50.2%. The use of nanofluids led to a significant reduction in exergy loss, with exergy-saving efficiencies reaching up to 33.6%. These findings highlight the considerable potential of Co3O4- and CB-based hybrid nanofluids in advancing waste heat recovery technologies and enhancing the thermodynamic performance of air-to-air heat pipe heat exchanger systems. Full article
Show Figures

Figure 1

22 pages, 4363 KiB  
Article
Enhancing Cutting Oil Efficiency with Nanoparticle Additives: A Gaussian Process Regression Approach to Viscosity and Cost Optimization
by Beytullah Erdoğan, İrfan Kılıç, Abdulsamed Güneş, Orhan Yaman and Ayşegül Çakır Şencan
Nanomaterials 2025, 15(13), 1008; https://doi.org/10.3390/nano15131008 - 30 Jun 2025
Viewed by 335
Abstract
Nanoparticle additives are used to increase the cooling efficiency of cutting fluids in machining. In this study, changing dynamic viscosity values depending on the addition of nanoparticles to cutting oils was investigated. Mono nanofluids were prepared by adding hBN (hexagonal boron nitride), ZnO, [...] Read more.
Nanoparticle additives are used to increase the cooling efficiency of cutting fluids in machining. In this study, changing dynamic viscosity values depending on the addition of nanoparticles to cutting oils was investigated. Mono nanofluids were prepared by adding hBN (hexagonal boron nitride), ZnO, MWCNT (multi-walled carbon nanotube), TiO2, and Al2O3 as nanoparticles, hybrid nanofluids were prepared by using two types of nanoparticles (ZnO + MWCNT, hBN + MWCNT etc.), and ternary nanofluids were prepared by using three types of nanoparticles. GPR (Gaussian process regression) was used to estimate unmeasured dynamic viscosity values using the dynamic viscosity values measured for different temperatures. Dynamic viscosity results are a precise determination (R2 = 1). An augmented dataset was obtained by adding the dynamic viscosity values estimated with high accuracy. A fitness function based on dynamic viscosity and nanoparticle unit costs was proposed for the cost analysis. With the help of the proposed fitness function, it was observed that the best performing nanoparticles were the ZnO and ZnO hybrid mixtures according to different dynamic viscosity and cost effects. The study showed that the most suitable nanofluid selection focused on performance and cost could be made without performing experiments under various operating conditions by increasing the limited experimental measurements with strong GPR estimates and using the proposed fitness function. Full article
(This article belongs to the Section Environmental Nanoscience and Nanotechnology)
Show Figures

Figure 1

49 pages, 9659 KiB  
Article
Machine Learning Approach to Nonlinear Fluid-Induced Vibration of Pronged Nanotubes in a Thermal–Magnetic Environment
by Ahmed Yinusa, Ridwan Amokun, John Eke, Gbeminiyi Sobamowo, George Oguntala, Adegboyega Ehinmowo, Faruq Salami, Oluwatosin Osigwe, Adekunle Adelaja, Sunday Ojolo and Mohammed Usman
Vibration 2025, 8(3), 35; https://doi.org/10.3390/vibration8030035 - 27 Jun 2025
Viewed by 437
Abstract
Exploring the dynamics of nonlinear nanofluidic flow-induced vibrations, this work focuses on single-walled branched carbon nanotubes (SWCNTs) operating in a thermal–magnetic environment. Carbon nanotubes (CNTs), renowned for their exceptional strength, conductivity, and flexibility, are modeled using Euler–Bernoulli beam theory alongside Eringen’s nonlocal elasticity [...] Read more.
Exploring the dynamics of nonlinear nanofluidic flow-induced vibrations, this work focuses on single-walled branched carbon nanotubes (SWCNTs) operating in a thermal–magnetic environment. Carbon nanotubes (CNTs), renowned for their exceptional strength, conductivity, and flexibility, are modeled using Euler–Bernoulli beam theory alongside Eringen’s nonlocal elasticity to capture nanoscale effects for varying downstream angles. The intricate interactions between nanofluids and SWCNTs are analyzed using the Differential Transform Method (DTM) and validated through ANSYS simulations, where modal analysis reveals the vibrational characteristics of various geometries. To enhance predictive accuracy and system stability, machine learning algorithms, including XGBoost, CATBoost, Random Forest, and Artificial Neural Networks, are employed, offering a robust comparison for optimizing vibrational and thermo-magnetic performance. Key parameters such as nanotube geometry, magnetic flux density, and fluid flow dynamics are identified as critical to minimizing vibrational noise and improving structural stability. These insights advance applications in energy harvesting, biomedical devices like artificial muscles and nanosensors, and nanoscale fluid control systems. Overall, the study demonstrates the significant advantages of integrating machine learning with physics-based simulations for next-generation nanotechnology solutions. Full article
(This article belongs to the Special Issue Nonlinear Vibration of Mechanical Systems)
Show Figures

Figure 1

27 pages, 5180 KiB  
Article
Nano-Enhanced Cactus Oil as an MQL Cutting Fluid: Physicochemical, Rheological, Tribological, and Machinability Insights into Machining H13 Steel
by Nada K. ElBadawy, Mohamed G. A. Nassef, Ibrahem Maher, Belal G. Nassef, Mohamed A. Daha, Florian Pape and Galal A. Nassef
Lubricants 2025, 13(6), 267; https://doi.org/10.3390/lubricants13060267 - 15 Jun 2025
Viewed by 838
Abstract
The widespread use of mineral cutting fluids in metalworking poses challenges due to their poor wettability, toxicity, and non-biodegradability. This study explores cactus oil-based nanofluids as sustainable alternatives for metal cutting applications. Samples of cactus oil are prepared in plain form and with [...] Read more.
The widespread use of mineral cutting fluids in metalworking poses challenges due to their poor wettability, toxicity, and non-biodegradability. This study explores cactus oil-based nanofluids as sustainable alternatives for metal cutting applications. Samples of cactus oil are prepared in plain form and with 0.025 wt.%, 0.05 wt.%, and 0.1 wt.% activated carbon nanoparticles (ACNPs) from recycled plastic waste. Plain cactus oil exhibited a 34% improvement in wettability over commercial soluble oil, further enhanced by 60% with 0.05 wt.% ACNPs. Cactus oil displayed consistent Newtonian behavior with a high viscosity index (283), outperforming mineral-based cutting fluid in thermal stability. The addition of ACNPs enhanced the dynamic viscosity by 108–130% across the temperature range of 40–100 °C. The presence of nano-additives reduced the friction coefficient in the boundary lubrication zone by a maximum reduction of 32% for CO2 compared to plain cactus oil. The physical and rheological results translated directly to the observed improvements in surface finish and tool wear during machining operations on H13 steel. Cactus oil with 0.05 wt.% ACNP outperformed conventional fluids, reducing surface roughness by 35% and flank wear by 57% compared to dry. This work establishes cactus oil-based nanofluids as a sustainable alternative, combining recycled waste-derived additives and non-edible feedstock for greener manufacturing. Full article
(This article belongs to the Special Issue Tribology of 2D Nanomaterials and Active Control of Friction Behavior)
Show Figures

Figure 1

20 pages, 2336 KiB  
Article
Improvement in Heat Transfer in Hydrocarbon and Geothermal Energy Coproduction Systems Using Carbon Quantum Dots: An Experimental and Modeling Approach
by Yurany Villada, Lady J. Giraldo, Diana Estenoz, Masoud Riazi, Juan Ordoñez, Esteban A. Taborda, Marlon Bastidas, Camilo A. Franco and Farid B. Cortés
Nanomaterials 2025, 15(12), 879; https://doi.org/10.3390/nano15120879 - 7 Jun 2025
Viewed by 686
Abstract
The main objective of this study is to improve heat transfer in hydrocarbon- and geothermal-energy coproduction systems using carbon quantum dots (CQDs). Two types of 0D nanoparticles (synthesized and commercial CQDs) were used for the formulation of nanofluids to increase the heat transfer [...] Read more.
The main objective of this study is to improve heat transfer in hydrocarbon- and geothermal-energy coproduction systems using carbon quantum dots (CQDs). Two types of 0D nanoparticles (synthesized and commercial CQDs) were used for the formulation of nanofluids to increase the heat transfer from depleted wells for the coproduction of oil and electrical energy. The synthesized and commercial CQDs were characterized in terms of their morphology, zeta potential, density, size, and heat capacity. The nanofluids were prepared using brine from an oil well of interest and two types of CQDs. The effect of the CQDs on the thermophysical properties of the nanofluids was evaluated based on their thermal conductivity. In addition, a mathematical model based on heat transfer principles to predict the effect of nanofluids on the efficiency of the organic Rankine cycle (ORC) was implemented. The synthesized and commercial CQDs had particle sizes of 25 and 16 nm, respectively. Similarly, zeta potential values of 36 and 48 mV were obtained. Both CQDs have similar functional groups and UV absorption, and the fluorescence spectra show that the study CQDs have a maximum excitation–emission signal around 360–460 nm. The characterization of the nanofluids showed that the addition of 100, 300, and 500 mg/L of CQDs increased the thermal conductivity by 40, 50, and 60 %, respectively. However, the 1000 mg/L incorporated decreased the thermal conductivities of the nanofluids. The observed behavior can be attributed to the aggregate size of the nanoparticles. Furthermore, a new thermal conductivity model for CQD-based nanofluids was developed considering brine salinity, particle size distribution, and agglomeration effects. The model showed a remarkable fit with the experimental data and predicted the effect of the nanofluid concentration on the thermal conductivity and cycle efficiency. Coupled with an ORC cycle model, CQD concentrations of approximately 550 mg/L increased the cycle efficiency by approximately 13.8% and 18.6% for commercial and synthesized CQDs, respectively. Full article
(This article belongs to the Section Theory and Simulation of Nanostructures)
Show Figures

Graphical abstract

18 pages, 3065 KiB  
Article
An Experimental Investigation of the Stability and Thermophysical Properties of MWCNT Nanofluids in a Water–Ethylene Glycol Mixture
by Edwin Martin Cardenas Contreras, Enio Pedone Bandarra Filho and Gleyzer Martins
Processes 2025, 13(5), 1333; https://doi.org/10.3390/pr13051333 - 27 Apr 2025
Viewed by 591
Abstract
This study investigates the thermophysical properties of multi-walled carbon nanotube (MWCNT) nanofluids dispersed in a water–ethylene glycol (50:50%) mixture. The nanofluids were prepared using a two-step method involving ultrasonication and high-pressure homogenization. The stability of the nanofluids was assessed using UV-Vis spectrophotometry over [...] Read more.
This study investigates the thermophysical properties of multi-walled carbon nanotube (MWCNT) nanofluids dispersed in a water–ethylene glycol (50:50%) mixture. The nanofluids were prepared using a two-step method involving ultrasonication and high-pressure homogenization. The stability of the nanofluids was assessed using UV-Vis spectrophotometry over a period of 30 days. The results indicated a maximum decrease of 10% in the relative concentration, with no visible agglomeration or sedimentation. Thermal conductivity, viscosity, and density were experimentally measured at different temperatures and volumetric concentrations (0.025%, 0.05%, and 0.1%). The thermal conductivity of the nanofluids increased with both concentration and temperature, showing an enhancement of up to 10% at 50 °C for 0.1% vol. MWCNTs. The viscosity measurements revealed a maximum increase of 11% at 80 °C, while the density showed a slight increase with nanoparticle concentration and a decrease with temperature. The models proposed for estimating thermal conductivity (maximum deviation 1.5%) and viscosity (maximum deviation 3%) were found to be suitable, exhibiting good agreement with the experimental results. The results align with previous studies, reinforcing the role of Brownian motion and nanoparticle interactions in heat transfer enhancement. This study provides insights into the stability and thermophysical behavior of MWCNT nanofluids, contributing to their potential applications in thermal management systems. Full article
(This article belongs to the Special Issue New Trends and Processes in Nanofluids and Carbon-Based Nanoparticles)
Show Figures

Figure 1

25 pages, 6081 KiB  
Article
Predicting Thermal Conductivity of Nanoparticle-Doped Cutting Fluid Oils Using Feedforward Artificial Neural Networks (FFANN)
by Beytullah Erdoğan, Abdulsamed Güneş, İrfan Kılıç and Orhan Yaman
Micromachines 2025, 16(5), 504; https://doi.org/10.3390/mi16050504 - 26 Apr 2025
Viewed by 593
Abstract
Machining processes often face challenges such as elevated temperatures and wear, which traditional cutting fluids are insufficient to address. As a result, solutions involving nanoparticle additives are being explored to enhance cooling and lubrication performance. This study investigates the effect of thermal conductivity, [...] Read more.
Machining processes often face challenges such as elevated temperatures and wear, which traditional cutting fluids are insufficient to address. As a result, solutions involving nanoparticle additives are being explored to enhance cooling and lubrication performance. This study investigates the effect of thermal conductivity, an important property influenced by the densities of mono and hybrid nanofluids. To this end, various nanofluids were prepared by incorporating hexagonal boron nitride (hBN), zinc oxide (ZnO), multi-walled carbon nanotubes (MWCNTs), titanium dioxide (TiO2), and aluminum oxide (Al2O3) nanoparticles into sunflower oil as the base fluid. Hybrid nanofluids were created by combining two nanoparticles, including ZnO + MWCNT, hBN + MWCNT, hBN + ZnO, hBN + TiO2, hBN + Al2O3, and TiO2 + Al2O3. A dataset consisting of 180 data points was generated by measuring the thermal conductivity and density of the prepared nanofluids at various temperatures (30–70 °C) in a laboratory setting. Conducting thermal conductivity measurements across different temperature ranges presents significant challenges, requiring considerable time and resources, and often resulting in high costs and potential inaccuracies. To address these issues, a feedforward artificial neural network (FFANN) method was proposed to predict thermal conductivity. Our multilayer FFANN model takes as input the temperature of the experimental environment where the measurement is made, the measured thermal conductivity of the relevant nanoparticle, and the relative density of the nanoparticle. The FFANN model predicts the thermal conductivity value linearly as output. The model demonstrated high predictive accuracy, with a reliability of R = 0.99628 and a coefficient of determination (R2) of 0.9999. The average mean absolute error (MAE) for all hybrid nanofluids was 0.001, and the mean squared error (MSE) was 1.76 × 10−6. The proposed FFANN model provides a State-of-the-Art approach for predicting thermal conductivity, offering valuable insights into selecting optimal hybrid nanofluids based on thermal conductivity values and nanoparticle density. Full article
Show Figures

Graphical abstract

24 pages, 8925 KiB  
Article
Comprehensive Investigation into the Thermal Performance of Nanofluid-Enhanced Heat Pipes for Advanced Thermal Management Systems
by Mohan Govindasamy, Manikandan Ezhumalai, Ratchagaraja Dhairiyasamy, Deekshant Varshney, Subhav Singh and Deepika Gabiriel
Eng 2025, 6(3), 55; https://doi.org/10.3390/eng6030055 - 17 Mar 2025
Cited by 1 | Viewed by 1086
Abstract
This study investigates the thermal performance of heat pipes using nanofluids based on silver (Ag), aluminum oxide (Al2O3), and multi-walled carbon nanotubes (MWCNTs) at varying concentrations. Heat pipes, recognized for their efficiency in passive thermal management, face limitations with [...] Read more.
This study investigates the thermal performance of heat pipes using nanofluids based on silver (Ag), aluminum oxide (Al2O3), and multi-walled carbon nanotubes (MWCNTs) at varying concentrations. Heat pipes, recognized for their efficiency in passive thermal management, face limitations with traditional fluids. Nanofluids, engineered by dispersing nanoparticles in base fluids, were explored as alternatives due to their superior thermal conductivity and convective properties. Nanofluids were prepared using ultrasonication, and their thermal conductivity, viscosity, and stability were evaluated. Experimental tests were conducted under controlled conditions to assess the impact of nanoparticle type, concentration, inclination angle, and fluid filling ratio on performance metrics, including thermal resistance (TR) and heat transfer coefficients (HTCs). The results demonstrated that Ag-based nanofluids outperformed others, achieving a 150% increase in thermal conductivity and an 83% reduction in TR compared to deionized water. HTCs increased by 300% for Ag nanofluids at a 0.5% concentration. Inclination angles and filling ratios also significantly affected performance, with optimal conditions identified at a 70% filling ratio and a 30° inclination angle. The findings highlight the potential of nanofluids in optimizing heat transfer systems and provide a framework for selecting suitable parameters in industrial applications. Full article
Show Figures

Figure 1

25 pages, 1912 KiB  
Review
A Review of Materials for Carbon Dioxide Capture
by Ashish Rana and Jean M. Andino
Catalysts 2025, 15(3), 273; https://doi.org/10.3390/catal15030273 - 13 Mar 2025
Cited by 4 | Viewed by 3154
Abstract
The increasing concentration of carbon dioxide (CO2) in the atmosphere is a significant contributor to global warming and climate change. Effective CO2 capture and storage technologies are critical to mitigating these impacts. This review explores various materials used for CO [...] Read more.
The increasing concentration of carbon dioxide (CO2) in the atmosphere is a significant contributor to global warming and climate change. Effective CO2 capture and storage technologies are critical to mitigating these impacts. This review explores various materials used for CO2 capture, focusing on the latest advancements and their applications. The review categorizes these materials into chemical and physical absorbents, highlighting their unique properties, advantages, and limitations. Chemical absorbents, such as amine-based solutions and hydroxides, have been widely used due to their high CO2 absorption capacities and established technological frameworks. However, they often suffer from high energy requirements for regeneration and potential degradation over time. Recent developments in ionic liquids (ILs) and polymeric ionic liquids (PILs) offer promising alternatives, providing tunable properties and lower regeneration energy. Physical absorbents, including advanced solvents like nanofluids and ionic liquids as well as industrial processes like selexol, rectisol, and purisol, demonstrate enhanced CO2 capture efficiency under various conditions. Additionally, adsorbents like activated carbon, zeolites, metal-organic frameworks (MOFs), carbon nanotubes (CNTs), and layered double hydroxides (LDHs) play a crucial role by providing high surface areas and selective CO2 capture through physical or chemical interactions. This paper summarizes the state of research on different materials and discusses their advantages and limitations while being used in CO2 capture technologies. This review also discussed multiple studies examining the use of catalysts and absorption mechanisms in combination with different sorbents, focusing on how these approaches enhance the efficiency of absorption and desorption processes. Through a comprehensive analysis, this review aims to provide valuable insights into the type of materials that are most suitable for CO2 capture and also provides directions for future research in this area. Full article
(This article belongs to the Special Issue Feature Review Papers in Catalysis for Sustainable Energy)
Show Figures

Graphical abstract

18 pages, 5664 KiB  
Article
Magnetohydrodynamic Blood-Carbon Nanotube Flow and Heat Transfer Control via Carbon Nanotube Geometry and Nanofluid Properties for Hyperthermia Treatment
by Nickolas D. Polychronopoulos, Evangelos Karvelas, Lefteris Benos, Thanasis D. Papathanasiou and Ioannis Sarris
Computation 2025, 13(3), 62; https://doi.org/10.3390/computation13030062 - 3 Mar 2025
Viewed by 835
Abstract
Hyperthermia is a promising medical treatment that uses controlled heat to target and destroy cancer cells while minimizing damage to the surrounding healthy tissue. Unlike conventional methods, it offers reduced risks of infection and shorter recovery periods. This study focuses on the integration [...] Read more.
Hyperthermia is a promising medical treatment that uses controlled heat to target and destroy cancer cells while minimizing damage to the surrounding healthy tissue. Unlike conventional methods, it offers reduced risks of infection and shorter recovery periods. This study focuses on the integration of carbon nanotubes (CNTs) within the blood to enable precise heat transfer to tumors. The central idea is that by adjusting the concentration, shape, and size of CNTs, as well as the strength of an external magnetic field, heat transfer can be controlled for targeted treatment. A theoretical model is developed to analyze laminar natural convection within a simplified rectangular porous enclosure resembling a tumor, considering the composition of blood, and the geometric characteristics of CNTs, including the interfacial nanolayer thickness. Using an asymptotic expansion method, ordinary differential equations for mass, momentum, and energy balances are derived and solved. Results show that increasing CNT concentration decelerates fluid flow and reduces heat transfer efficiency, while elongated CNTs and thicker nanolayers enhance conduction over convection, to the detriment of heat transfer. Finally, increased tissue permeability—characteristic of cancerous tumors—significantly impacts heat transfer. In conclusion, although the model simplifies real tumor geometries and treatment conditions, it provides valuable theoretical insights into hyperthermia and nanofluid applications for cancer therapy. Full article
(This article belongs to the Special Issue Post-Modern Computational Fluid Dynamics)
Show Figures

Figure 1

35 pages, 5019 KiB  
Review
Beyond Thermal Conductivity: A Review of Nanofluids for Enhanced Energy Storage and Heat Transfer
by Ali Mirahmad, Ravi Shankar Kumar, Breogán Pato Doldán, Cristina Prieto Rios and Javier Díez-Sierra
Nanomaterials 2025, 15(4), 302; https://doi.org/10.3390/nano15040302 - 16 Feb 2025
Cited by 2 | Viewed by 2450
Abstract
The development of nanofluids (NFs) has significantly advanced the thermal performance of heat transfer fluids (HTFs) in heating and cooling applications. This review examines the synergistic effects of different nanoparticles (NPs)—including metallic, metallic oxide, and carbonaceous types—on the thermal conductivity (TC) and specific [...] Read more.
The development of nanofluids (NFs) has significantly advanced the thermal performance of heat transfer fluids (HTFs) in heating and cooling applications. This review examines the synergistic effects of different nanoparticles (NPs)—including metallic, metallic oxide, and carbonaceous types—on the thermal conductivity (TC) and specific heat capacity (SHC) of base fluids like molecular, molten salts and ionic liquids. While adding NPs typically enhances TC and heat transfer, it can reduce SHC, posing challenges for energy storage and sustainable thermal management. Key factors such as NP composition, shape, size, concentration, and base fluid selection are analyzed to understand the mechanisms driving these improvements. The review also emphasizes the importance of interfacial interactions and proper NP dispersion for fluid stability. Strategies like optimizing NP formulations and utilizing solid–solid phase transitions are proposed to enhance both TC and SHC without significantly increasing viscosity, a common drawback in NFs. By balancing these properties, NFs hold great potential for renewable energy systems, particularly in improving energy storage efficiency. The review also outlines future research directions to overcome current challenges and expand the application of NFs in sustainable energy solutions, contributing to reduced carbon emissions. Full article
(This article belongs to the Topic Thermal Energy Transfer and Storage)
Show Figures

Graphical abstract

53 pages, 4256 KiB  
Review
Nanofluids in Thermal Energy Storage Systems: A Comprehensive Review
by Mohamed Shameer Peer, Mario Cascetta, Luca Migliari and Mario Petrollese
Energies 2025, 18(3), 707; https://doi.org/10.3390/en18030707 - 4 Feb 2025
Cited by 5 | Viewed by 1854
Abstract
Nanofluids, which consist of nanosized particles dispersed in a base fluid, represent a promising solution to improve the performance of thermal energy storage systems. This review offers a comprehensive overview of nanofluids and their applications in thermal energy storage systems, discussing their thermal [...] Read more.
Nanofluids, which consist of nanosized particles dispersed in a base fluid, represent a promising solution to improve the performance of thermal energy storage systems. This review offers a comprehensive overview of nanofluids and their applications in thermal energy storage systems, discussing their thermal properties, heat transfer mechanisms, synthesis techniques, and application in latent heat storage systems. Various types of nanofluids are examined, including metal oxide, carbon-based, and metallic nanofluids, highlighting their effects on thermal conductivity, latent heat and the phase change temperature. A review of experimental and numerical studies showcases the performance of thermal energy storage systems incorporating nanofluids and the factors influencing their thermophysical characteristics and energy storage capacity. Finally, the key findings of current research are summarized, as well as the challenges and the potential future directions in nanofluid-based thermal energy storage systems research, emphasizing the need to optimize nanoparticle concentration and long-term durability. Full article
(This article belongs to the Special Issue Advanced Solar Technologies and Thermal Energy Storage)
Show Figures

Figure 1

16 pages, 32255 KiB  
Article
Research on the Wear Suppression of Diamond Grain Enabled by Hexagonal Boron Nitride in Grinding Cast Steel
by Hongrui Zhao, Qun Sun, Chong Wang, Xiuhua Yuan and Xia Li
Molecules 2024, 29(24), 5925; https://doi.org/10.3390/molecules29245925 - 16 Dec 2024
Viewed by 1212
Abstract
Diamond grinding wheels have been widely used to remove the residual features of cast parts, such as parting lines and pouring risers. However, diamond grains are prone to chemical wear as a result of their strong interaction with ferrous metals. To mitigate this [...] Read more.
Diamond grinding wheels have been widely used to remove the residual features of cast parts, such as parting lines and pouring risers. However, diamond grains are prone to chemical wear as a result of their strong interaction with ferrous metals. To mitigate this wear, this study proposes the use of a novel water-based hexagonal boron nitride (hBN) as a minimum quantity lubrication (MQL) during the grinding of cast steel and conducted the grinding experiment and molecular dynamics simulation. The experiment demonstrated that compared to dry grinding, the water-based hBN nanofluid can effectively reduce the maximum temperature of a workpiece at contact zone from 408 K to 335 K and change the serious abrasion wear of diamond grain to slightly micro-broken. The molecular dynamics simulation indicates that the flake of hBN can weaken the catalytic effect of iron on the diamond, prevent the diffusion of carbon atom to cast steel, and suppress the graphitization of diamond grain. Additionally, the flake of hBN improves the contact state between the diamond grain and cast steel and reduces the cutting heat and friction coefficient from about 0.5 to 0.25. Thus, the water-based hBN nanofluid as a new MQL was proven to be suitable for the wear inhibition of diamond grain when grinding cast steel. Full article
(This article belongs to the Topic Advances in Computational Materials Sciences)
Show Figures

Figure 1

32 pages, 11083 KiB  
Article
Enhancing Heat Transfer Efficiency Through Controlled Magnetic Flux in a Partially Heated Circular Cavity Using Multi-Walled Carbon Nanotube Nanofluid and an Internal Square Body
by Eid S. Alatawi
Sustainability 2024, 16(23), 10632; https://doi.org/10.3390/su162310632 - 4 Dec 2024
Cited by 2 | Viewed by 1042
Abstract
Applications including aircraft systems and electronics cooling depend on effective heat transfer. This study investigates magnetohydrodynamic (MHD) free convection and thermal radiation for heat transfer in a circular cavity filled with multi-walled carbon nanotube (MWCNT) nanofluid and containing a square obstruction. This study [...] Read more.
Applications including aircraft systems and electronics cooling depend on effective heat transfer. This study investigates magnetohydrodynamic (MHD) free convection and thermal radiation for heat transfer in a circular cavity filled with multi-walled carbon nanotube (MWCNT) nanofluid and containing a square obstruction. This study examines the impact of the internal geometry on heat transfer and fluid flow dynamics under three distinct boundary conditions, and it presents a comprehensive analysis based on a wide range of Hartmann (Ha) and Rayleigh (Ra) numbers. MWCNT nanofluid with high thermal conductivity was employed to enhance heat transfer efficiency, using a solid volume fraction (SVF) of 4% for MWCNTs and assuming Newtonian behavior for computational simplification. Magnetic properties were imparted to the nanofluid by assuming the dispersion of carbon nanotubes in a base fluid containing magnetic nanoparticles. Other walls were insulated, the bottom wall was heated, and a magnetic field (MF) with Ha ranging from 0 to 100 was applied. It was observed that raising Ra from 103 to 106 improved the Nusselt number (Nu) from 0.08 to 7.1 using the Galerkin finite element method. Ha increased from 0 to 100 and reduced Nu by 35%. Three boundary conditions for the square body showed that the heated conditions provided the largest Nu. By means of an increase in SVF from 0 to 0.04, the MWCNT nanofluid improved heat conductivity by 18%. Radiation effects with the radiation parameter Rd = 0.5 increased heat transmission by 22%. These results underline the importance of considering MHD and nanofluid characteristics in maximizing heat transfer for commercial purposes, and the approaches employed in this study contribute to a deeper understanding of the behavior of thermal systems under the influence of MHD and internal geometry. Full article
(This article belongs to the Special Issue Computational Fluid Dynamics Simulation: Application in Industries)
Show Figures

Figure 1

Back to TopTop