Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (903)

Search Parameters:
Keywords = carbon nanofibers

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 4226 KB  
Article
Dynamic Response of 3D Textiles Imbibed with Shear-Thinning Polyvinyl Alcohol Solutions
by Petrică Turtoi, Ionuț-Răzvan Nechita, Traian Cicone, Edina Rusen and Aurel Diacon
Appl. Sci. 2026, 16(1), 496; https://doi.org/10.3390/app16010496 - 4 Jan 2026
Viewed by 149
Abstract
The primary objective of this work is to provide new solutions to increase impact protection, using a three-dimensional textile imbibed with a shear-thinning fluid. An extensive analysis showed a scarcity of research papers related to the damping capacity of deformable porous materials imbibed [...] Read more.
The primary objective of this work is to provide new solutions to increase impact protection, using a three-dimensional textile imbibed with a shear-thinning fluid. An extensive analysis showed a scarcity of research papers related to the damping capacity of deformable porous materials imbibed with non-Newtonian fluid. No studies were found for shear-thinning fluid flow inside highly compressible foams or other soft, porous materials. The damping capacity of the imbibed material was evaluated using impact with a dropping weight. Polyvinyl alcohol solution mixed with water was used for imbibition of a three-dimensional textile. Hydrophilized carbon nanofibers were also added to the solution to augment the shear-thinning behavior. The measured impact force for imbibed samples showed an important reduction compared to the impact force for the dry material. This research does not focus on flow phenomena at the microstructural level but instead aims to highlight the macroscopic attenuation effect that occurs during the compression of the imbibed material. Full article
(This article belongs to the Section Mechanical Engineering)
Show Figures

Figure 1

17 pages, 4725 KB  
Article
A Green Binary Solvent System for the PLA Nanofiber Electrospinning Process: Optimization of Parameters
by Tommaso Pini, Gianluca Ciarleglio, Elisa Toto, Maria Gabriella Santonicola and Marco Valente
Fibers 2026, 14(1), 6; https://doi.org/10.3390/fib14010006 - 29 Dec 2025
Viewed by 292
Abstract
Electrospinning of poly(lactic acid) (PLA) commonly relies on toxic organic solvents, which limit its sustainability and biomedical applicability. In this work, a green electrospinning process was developed using dimethyl carbonate (DMC), a biodegradable and low-toxicity solvent, combined with acetone as a volatile co-solvent [...] Read more.
Electrospinning of poly(lactic acid) (PLA) commonly relies on toxic organic solvents, which limit its sustainability and biomedical applicability. In this work, a green electrospinning process was developed using dimethyl carbonate (DMC), a biodegradable and low-toxicity solvent, combined with acetone as a volatile co-solvent to promote efficient jet solidification. Three commercial PLA grades were evaluated for solubility and spinnability, and PLA 4043D was identified as the most suitable for DMC and acetone systems. The electrospinning parameters, including solvent ratio, flow rate, and applied voltage, were systematically optimized to achieve stable jet formation and uniform fiber morphology. Under optimized conditions, the process produced continuous, bead-free nanofibers with a mean diameter of ~1 µm and uniform nanoscale surface porosity resulting from differential solvent evaporation. The resulting fibers were characterized in terms of morphology, structure, thermal behavior, and mechanical performance, confirming increased amorphous content, high porosity (about 78%), and tensile strength of ~3 MPa for the selected electrospinning condition. This study demonstrates that DMC-based solvent systems enable a sustainable and potentially biocompatible route, considering the lower toxicity of the solvents employed, offering a green alternative to conventional toxic processes for the fabrication of medical scaffolds. Full article
Show Figures

Figure 1

12 pages, 5286 KB  
Article
Construction of Regular Hexagonal Double-Layer Hollow Nanocages by Defect Orientation and Composite Phase Change Materials with Carbon Nanotubes for Thermal Safety of Power Batteries
by Silong Wang, Wei Yan, Pan Sun and Jun Yuan
Nanomaterials 2026, 16(1), 26; https://doi.org/10.3390/nano16010026 - 24 Dec 2025
Viewed by 319
Abstract
At present, composite phase change materials are widely studied for battery thermal management. However, to ensure the battery’s thermal safety, it is necessary not only to control the temperature during regular operation, but also to prevent sudden thermal runaway. This basic function depends [...] Read more.
At present, composite phase change materials are widely studied for battery thermal management. However, to ensure the battery’s thermal safety, it is necessary not only to control the temperature during regular operation, but also to prevent sudden thermal runaway. This basic function depends on the flame-retardant properties of the composite phase change materials. In this study, a hexagonal double-layer hollow nanocage S2 with defect orientation was prepared and combined with carbon nanotubes (PNT) derived from polypyrrole (PPy) tubes to form a high adsorption mixture. Multifunctional composite phase change material PNT/S2@PEG/TEP was prepared by adsorbing and coating polyethylene glycol 8000 (PEG-8000) and triethyl phosphate (TEP) with microfibrillated cellulose nanofibers (CNF) as the skeleton. The characterization shows that its thermal conductivity is 0.65 W/m·K and its phase transition enthalpy is 146.1 J/g, demonstrating its excellent thermal regulation. Microcalorimetric testing (MCC) confirmed its flame-retardant ability, attributed to the strong adsorption of PNT/S2 on PEG-8000 and TEP, the improvement in PNT’s thermal conductivity, and the contribution of CNF to flexibility. This composite phase change material, with excellent comprehensive properties, has broad application prospects in thermal safety for electronic equipment, significantly expanding its practical scope. Full article
(This article belongs to the Special Issue Carbon Nanocomposites for Energy)
Show Figures

Graphical abstract

17 pages, 3041 KB  
Article
Electrospun Polycaprolactone/Carbon Nanotube Membranes for Transdermal Drug Delivery Systems
by Elizabeth Ortiz-Maldonado, Eduardo San Martin-Martínez, Ningel Omar Gama-Castañeda, Marquidia Pacheco, Ulises Figueroa-López, Andrea Guevara-Morales, Esmeralda Juárez, Andy Ruiz and Horacio Vieyra
Polymers 2026, 18(1), 15; https://doi.org/10.3390/polym18010015 - 21 Dec 2025
Viewed by 324
Abstract
The development of membranes and patches for controlled drug release to enhance therapeutic efficacy is a promising approach to addressing the challenge posed by poor adherence to pharmacological therapies for chronic diseases. In this study, we designed an electrospun polycaprolactone (PCL) nanofibrous membrane [...] Read more.
The development of membranes and patches for controlled drug release to enhance therapeutic efficacy is a promising approach to addressing the challenge posed by poor adherence to pharmacological therapies for chronic diseases. In this study, we designed an electrospun polycaprolactone (PCL) nanofibrous membrane reinforced with different concentrations (0.04%, 0.05%, 0.075%, and 0.2%) of functionalized multi-walled carbon nanotubes (f-MWCNTs) intended for biomedical applications, such as transdermal devices. We characterized the resulting composites using scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), atomic force microscopy (AFM), and dynamic mechanical analysis (DMA) to evaluate their morphology, chemical composition, and mechanical properties. We also measured their cytotoxicity upon contact with peripheral blood mononuclear cells. The nanofibers had diameters below 100 nm and inclusions of microspheres, which were attributed to the electrospinning expansion phenomenon. Spectroscopic and mechanical analyses confirmed molecular interactions between the PCL matrix and the f-MWCNTs. Finally, biological tests demonstrated that both the dispersion of f-MWCNTs and the nanofiber sizing render the membranes biocompatible, supporting their potential use as drug-delivery systems. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Graphical abstract

10 pages, 2311 KB  
Article
CVD-Grown Carbon Nanofibers on Knitted Carbon Fabric for Enhanced Supercapacitor Performance
by Xiaojing Jia, Jiangsan Wang and Jing Dang
Crystals 2025, 15(12), 1049; https://doi.org/10.3390/cryst15121049 - 11 Dec 2025
Viewed by 334
Abstract
The escalating demand for high-performance energy storage devices has driven extensive research into flexible electrode materials for supercapacitors. Integrating structured carbon nanomaterials with flexible substrates to construct binder-free electrode architectures represents a promising strategy for improving supercapacitor capacitance and rate capability. However, achieving [...] Read more.
The escalating demand for high-performance energy storage devices has driven extensive research into flexible electrode materials for supercapacitors. Integrating structured carbon nanomaterials with flexible substrates to construct binder-free electrode architectures represents a promising strategy for improving supercapacitor capacitance and rate capability. However, achieving stable, binder-free integration of structure-controlled nanostructured carbon materials with flexible substrates remains a critical challenge. In this study, we report a direct synthesis approach for one-dimensional (1D) carbon nanofibers (CNFs) on commercial flexible carbon fabric (CF) via chemical vapor deposition (CVD). The resulting CNFs exhibit two typical average diameters—approximately 25 nm and 50 nm—depending on the growth temperature, with both displaying highly graphitized structures. Electrochemical characterization of the CNFs/CF composites in 1 M H2SO4 electrolyte revealed typical electric double-layer capacitor (EDLC) behavior. Notably, the 25 nm-CNFs/CF electrode achieves a high specific capacitance of 87.5 F/g, significantly outperforming the 50 nm-CNFs/CF electrode, which reaches 50.2 F/g. Compared with previously reported carbon nanotube CNTs/CF electrodes, the 25 nm-CNFs/CF electrode exhibits superior capacitance and lower resistance. Full article
(This article belongs to the Special Issue Advanced Catalytic Materials in Energy and Environment)
Show Figures

Figure 1

37 pages, 4686 KB  
Review
Nano Carbon-Based Hybrid Strategies for Mitigating Silicon Anode Expansion in Lithium-Ion Batteries: A Comprehensive Review
by Wonhwa Lee, Yunki Jung, Jin-Yong Hong, Young-Pyo Jeon and Jea Uk Lee
Materials 2025, 18(24), 5532; https://doi.org/10.3390/ma18245532 - 9 Dec 2025
Viewed by 858
Abstract
Silicon is considered one of the most promising anode materials for lithium-ion batteries because of its high theoretical capacity and low lithiation potential. However, its practical application is limited by significant volume expansion, unstable solid–electrolyte interphase formation, and poor intrinsic conductivity. This review [...] Read more.
Silicon is considered one of the most promising anode materials for lithium-ion batteries because of its high theoretical capacity and low lithiation potential. However, its practical application is limited by significant volume expansion, unstable solid–electrolyte interphase formation, and poor intrinsic conductivity. This review summarizes recent advances in hybrid strategies using multi-walled carbon nanotubes (MWCNTs), single-walled carbon nanotubes (SWCNTs), graphene, carbon nanofibers (CNFs), and pitch-derived carbons. We compare their respective benefits and drawbacks regarding conductivity, structural resilience, and scalability, while also addressing critical challenges such as dispersion, defect control, and processing costs. The discussion emphasizes the importance of hierarchical, multifunctional architectures that combine different forms of carbon to achieve synergistic performance. Finally, we outline future directions in interfacial engineering, defect and doping optimization, and electrode design under high-loading conditions. We believe that this review can offer perspectives on developing durable, energy-dense, and commercially viable silicon anodes for next-generation lithium-ion batteries. Full article
Show Figures

Graphical abstract

19 pages, 4580 KB  
Article
Synergistic Influence of Multi-Walled Carbon Nanotubes and Nanosilica Powder on Mechanical Performance of Mortar with Demolished Concrete Waste Aggregate and Polypropylene Fibers Addition Using Taguchi Design of Experiment
by Daniel Lepadatu, Loredana Emanuela Judele, Dana Roxana Bucur, Isabela Maria Simion, Ioana Sorina Entuc, Eduard Proaspat, Razvan Ionut Teodorescu, Abdessamad Kobi and Santiago Garcia-Granda
Materials 2025, 18(24), 5485; https://doi.org/10.3390/ma18245485 - 5 Dec 2025
Viewed by 437
Abstract
This study investigates the synergistic influence of multi-walled carbon nanotubes (MWC-NTs), nanosilica powder (NSP), and polypropylene fiber waste (PFW) on the mechanical performance of mortar incorporating demolished concrete waste aggregates (DCWA). The replacement of natural aggregates with DCWA typically results in strength reductions [...] Read more.
This study investigates the synergistic influence of multi-walled carbon nanotubes (MWC-NTs), nanosilica powder (NSP), and polypropylene fiber waste (PFW) on the mechanical performance of mortar incorporating demolished concrete waste aggregates (DCWA). The replacement of natural aggregates with DCWA typically results in strength reductions and weak interfacial transition zones; therefore, the combined use of nanomaterials and microfibers is proposed as a mitigation strategy. A Taguchi Design of Experiments (DOE) approach was employed to optimize mix parameters, including MWCNT dosage, NSP content, PFW volume fraction, and DCWA replacement level. Mortar mixtures were prepared with MWCNTs (0–0.1% by binder weight), NSP (0–2% by binder weight), PFW (0–0.3% by volume), and DCWA (0–20% replacement of fine sand). Mechanical performance was assessed through compressive and flexural strength tests. A combined statistical approach using the Pareto chart and ANOVA identified the most influential parameters and their respective contributions to the response variable. The innovative aspect of this research lies in the synergistic integration of MWCNTs, NSP, demolished concrete waste, and polypropylene fiber waste within the mortar matrix, with the incorporation of nanomaterials specifically intended to compensate for the strength reduction typically induced by the use of demolition concrete waste aggregates. Although a potential nano-scale synergy between MWCNTs and NSP was initially considered, the experimental results indicated that the most relevant synergistic effects occurred among broader mix parameters rather than specifically between the two nanomaterials. Even so, when assessed individually, both nanomaterials contributed to improving the mechanical characteristics of the mortar—particularly nanosilica, which demonstrated a more pronounced effect—yet these individual enhancements did not translate into a distinct synergistic interaction between MWCNTs and NSP. The Taguchi DOE proved to be an efficient tool for multiple factor analysis, enabling reliable identification of the most influential parameters with a minimum number of tests. Its application facilitated the development of mortar mixtures that effectively integrate demolition waste while achieving enhanced mechanical performance through nano- and micro-scale reinforcement. Full article
Show Figures

Figure 1

14 pages, 2311 KB  
Article
Chitin-Based Porous Carbon Containing Cuprous Sulfide for Supercapacitor Electrode Materials
by Jiangyang Han, Wenchao Yu, Fukun Niu, Yang Hu, Hongmei Qin, Zhuqun Shi, Chuanxi Xiong and Quanling Yang
Polymers 2025, 17(23), 3186; https://doi.org/10.3390/polym17233186 - 29 Nov 2025
Viewed by 339
Abstract
Chitin-derived biomass carbon materials are promising supercapacitor electrode materials due to their wide availability, low cost, high specific surface area, and nitrogen doping capability. However, their practical application is limited by insufficient conductivity and cyclic stability, often requiring functional modification or integration with [...] Read more.
Chitin-derived biomass carbon materials are promising supercapacitor electrode materials due to their wide availability, low cost, high specific surface area, and nitrogen doping capability. However, their practical application is limited by insufficient conductivity and cyclic stability, often requiring functional modification or integration with complementary materials. In this study, we present a novel strategy by incorporating copper sulfide (Cu2S) into a chitin-based carbon matrix. Cu2S, known for its high intrinsic conductivity, excellent electroactivity, and theoretical specific capacity (~335 mAh·g−1), was uniformly doped into the three-dimensional carbon aerogel framework derived from chitin nanofibers (ChNF) through sol–gel, freeze-drying, and high-temperature carbonization processes. The resulting chitin-based carbon/Cu2S composite aerogel (CChNF/Cu2S) exhibited a hierarchical porous structure with Cu2S nanoparticles (20–30 nm) uniformly distributed on the carbon fiber surface. Electrochemical tests demonstrated its excellent performance, achieving a specific capacitance of 852 F·g−1 at 1 A·g−1, highlighting the synergistic effects of the conductive Cu2S and nitrogen-doped carbon framework for high-performance supercapacitor applications. Full article
(This article belongs to the Collection Electrochemical-Storage Technology with Polymer Science)
Show Figures

Figure 1

35 pages, 4178 KB  
Review
Nanomaterials from Textile Waste for Purification and Environmental Applications
by Niyi Gideon Olaiya, Md. Al-Amin, Kaifur Rashed and Chrysanthos Maraveas
Polymers 2025, 17(23), 3098; https://doi.org/10.3390/polym17233098 - 21 Nov 2025
Viewed by 1201
Abstract
The growing scarcity of natural renewable resources has accelerated interest in producing nanomaterials from waste streams. Nanomaterials offer exceptional reinforcement capabilities for advanced composites, driving the need for sustainable and scalable production routes. While prior reviews have broadly examined nanomaterial synthesis from biomass [...] Read more.
The growing scarcity of natural renewable resources has accelerated interest in producing nanomaterials from waste streams. Nanomaterials offer exceptional reinforcement capabilities for advanced composites, driving the need for sustainable and scalable production routes. While prior reviews have broadly examined nanomaterial synthesis from biomass or industrial residues, they often overlook textile waste as a strategic feedstock. This review uniquely focuses on the upcycling of textile waste—one of the most abundant yet underutilized waste streams—into high-value nanomaterials, thereby advancing circular economy principles. Unlike earlier studies that primarily discuss energy recovery or generic recycling, this work systematically explores mechanical, chemical, and thermal conversion routes tailored for textiles, leading to the production of cellulose nanofibers, cellulose nanocrystals, and carbon nanoparticles, which represent a significant class of biodegradable nanomaterials. Furthermore, a comprehensive analysis of the physicochemical properties of the nanomaterials and their emerging applications in water purification and environmental remediation is provided. An alternative pathway for nanomaterial synthesis from waste rather than renewable sources, providing information on the effective extraction of nanomaterials from mixed fiber compositions and dye residues present in textile waste, is also highlighted. By addressing current challenges and outlining future research directions, this review establishes a roadmap for sustainable textile waste valorization, marking a critical step toward eco-friendly nanomaterial production. Full article
(This article belongs to the Special Issue Derived Polymers from Biomass and Wastes)
Show Figures

Figure 1

18 pages, 4061 KB  
Article
Aerosol Spraying of Carbon Nanofiber-Based Films for NO2 Detection: The Role of the Spraying Technique
by Artyom Shishin, Valeriy Golovakhin, Eugene Maksimovskiy, Ekaterina Vostretsova, Vladimir Timofeev and Alexander Bannov
Appl. Sci. 2025, 15(22), 12110; https://doi.org/10.3390/app152212110 - 14 Nov 2025
Viewed by 361
Abstract
This study is devoted to the determination of the role of aerosol spraying in the formation of NO2 sensor properties of carbon nanofiber (CNF)-based films. This is the first paper to systematically apply the aerosol spraying technique to CNF-based films and link [...] Read more.
This study is devoted to the determination of the role of aerosol spraying in the formation of NO2 sensor properties of carbon nanofiber (CNF)-based films. This is the first paper to systematically apply the aerosol spraying technique to CNF-based films and link the spraying parameters directly to sensor performance metrics (response, signal-to-noise ratio, response times, etc.). Chemiresistive gas sensors were created based on CNFs and tested at room temperature (25 ± 1 °C). It has been shown that the increase in the concentration of the CNF/ethanol mixture used for spraying from 3 to 30 mg/mL led to a growth in sensor response from 1.2% to 12.0% at 2 ppm NO2. The increase in the thickness of the CNF film of the sensor induced a growth in ΔR/R0 to NO2 that is attributed to the formation of a porous film. With increased film thickness, the response improves (from 7.0% to 10.6% at 2 ppm NO2) as does the signal-to-noise ratio (from 735:1 to 1892:1). The creation of hybrid all-carbon composites based on CNFs and multi-walled carbon nanotubes (MWCNTs) resulted in a decrease in both sensor response and signal-to-noise ratio; however, the response time and recovery degree improved. Two types of hybrid materials based on CNFs and MWCNTs were created using aerosol spraying to enhance the sensor behavior of CNFs. The obtained data confirm the dominant role of the thickness of CNF-based films and their density (in terms of distance between nearest carbon inclusions within the film) in sensor characteristics. The machine learning data used to describe the sensing behavior of two gases with opposite resistance changes when in contact with CNFs, namely NO2 and NH3, showed final accuracies of 92.13% on training data and 91.98% on validation data. Full article
Show Figures

Figure 1

16 pages, 3946 KB  
Article
Tribological Behavior of SPS-Prepared Al-Matrix–ZrO2-Nanofiber Composites with Graphene Nanoplatelets Solid-Lubricating Surface Films
by Viktor Puchý, Richard Sedlák, Marek Vojtko, Mária Podobová, Ondrej Petruš, Lucia Čiripová and Ladislav Falat
Crystals 2025, 15(11), 971; https://doi.org/10.3390/cryst15110971 - 12 Nov 2025
Viewed by 362
Abstract
In this study, the tribological compatibility of ZrO2-nanofiber-strengthened Al-matrix composites with graphene nanoplatelets (GNPs)-derived surface film acting as a solid lubricant was investigated. The substrate materials prepared by Spark Plasma Sintering (SPS) included the pure aluminum monolith (reference material) and two [...] Read more.
In this study, the tribological compatibility of ZrO2-nanofiber-strengthened Al-matrix composites with graphene nanoplatelets (GNPs)-derived surface film acting as a solid lubricant was investigated. The substrate materials prepared by Spark Plasma Sintering (SPS) included the pure aluminum monolith (reference material) and two Al–ZrO2 nanocomposites with either 1 or 3 wt.% of ZrO2 nanofibers. The GNPs-derived solid lubricant films were dry mechanically burnished into the metallographically polished surfaces. The durability of these burnished films was evaluated by performing tribological friction experiments using a ball-on-disk method. Thus, a friction load capacity of GNP-derived tribofilms on the substrate materials and its effect on the coefficient of friction (COF) were evaluated. The results showed that the films burnished on the surfaces of Al–ZrO2 nanofiber composites were more resistant to much higher loads than films burnished on monolithic aluminum. The obtained findings indicated that ZrO2 nanofiber protrusions likely stabilize a GNP-derived carbon tribolayer on the polished composite surfaces. As a result, the reinforcement of aluminum with ceramic nanofibers led also to a significant reduction in COF. The highest improvement of tribological performance was observed for the Al–ZrO2 nanofiber composite with 1 wt.% ZrO2 nanofibers. The increase of ZrO2 nanofibers up to 3 wt.% was no more efficient due to nanofiber clustering leading to lower stability of the carbon friction film. Our objective was to isolate the role of the aluminum substrate, specifically, ZrO2 nanofiber protrusions in the formation and retention of a GNP-derived carbon tribofilm under room-temperature, ambient-air dry sliding. Full article
(This article belongs to the Section Hybrid and Composite Crystalline Materials)
Show Figures

Figure 1

15 pages, 2663 KB  
Article
Carbon NanoFiber-Integrated VN@CNS Multilevel Architectures for High-Performance Zinc-Ion Batteries
by Yun Cheng, Taoyun Zhou, Jianbo Wang, Yiwen Wang and Xinyu Li
Micromachines 2025, 16(11), 1265; https://doi.org/10.3390/mi16111265 - 10 Nov 2025
Viewed by 522
Abstract
Aqueous zinc-ion batteries (AZIBs) have attracted considerable attention due to their intrinsic safety, low cost, and environmental friendliness. However, drastic volume expansion, sluggish reaction kinetics, and the insufficient structural stability of electrode materials still remain key challenges. In this work, a cascade structure-guided [...] Read more.
Aqueous zinc-ion batteries (AZIBs) have attracted considerable attention due to their intrinsic safety, low cost, and environmental friendliness. However, drastic volume expansion, sluggish reaction kinetics, and the insufficient structural stability of electrode materials still remain key challenges. In this work, a cascade structure-guided electron transport strategy was used to construct a vanadium nitride@carbon nanosheet/carbon nanofiber (VN@CNS/CNF) composite as a high-performance cathode for AZIBs. In this rationally engineered architecture, carbon-coated VN nanoparticles are uniformly anchored on a conductive carbon nanofiber network, forming a multidimensional interconnected structure that enables fast electron/ion transport and robust mechanical stability. The carbon shell effectively alleviates volume expansion and prevents VN nanoparticle agglomeration, while the continuous carbon fiber backbone reduces charge transfer resistance and enhances reaction kinetics. Benefiting from this synergistic structural design, the VN@CNS/CNF electrode delivers a high specific capacity of 564 mAh g−1 at 0.1 A g−1, maintains 99% capacity retention after 50 cycles, and retains 280 mAh g−1 even at 8 A g−1 after prolonged cycling. This study provides a new structural engineering strategy for vanadium nitride-based electrodes and provides strategic guidance for the development of fast-charging, durable aqueous zinc-ion batteries. Full article
(This article belongs to the Special Issue Advancing Energy Storage Techniques: Chemistry, Materials and Devices)
Show Figures

Figure 1

23 pages, 5499 KB  
Article
Enhanced Room Temperature NO2 Detection by Carbon Nanofibers and Single-Walled Carbon Nanotubes: Experimental and Molecular Dynamics
by Arina D. Lozben’, Arina R. Smagulova, Mohammad Khajavian, Valery Golovakhin, Artyom A. Shishin, Sofia A. Shpakova, Dmitriy I. Ostertak, Arina V. Ukhina, Eugene A. Maksimovskiy, Alexandra I. Bogomolova, Dmitry V. Smovzh and Alexander G. Bannov
Chemosensors 2025, 13(11), 389; https://doi.org/10.3390/chemosensors13110389 - 4 Nov 2025
Cited by 1 | Viewed by 902
Abstract
This study explores the development of new room-temperature NO2 sensors utilizing carbon nanofibers (CNFs), single-walled carbon nanotubes (SWCNTs), and their hybrids with reduced graphite oxide (rGO), fabricated via a facile drop casting method with varying concentrations of carbon/ethanol mixtures. The concentration-dependent relation [...] Read more.
This study explores the development of new room-temperature NO2 sensors utilizing carbon nanofibers (CNFs), single-walled carbon nanotubes (SWCNTs), and their hybrids with reduced graphite oxide (rGO), fabricated via a facile drop casting method with varying concentrations of carbon/ethanol mixtures. The concentration-dependent relation of sensor response to NO2 has been found. Comprehensive characterization techniques, including electron microscopy, Raman spectroscopy, optical microscopy, and X-ray diffraction were employed to analyze the sensing materials. Our results reveal that CNFs exhibit superior sensitivity, reaching −1.32%/ppm at an optimal suspension concentration of 1.5 mg/mL, outperforming SWCNTs. The creation of hybrid composites, specifically CNFs/rGO and SWCNTs/rGO, further enhances sensing performance due to synergistic effects. Molecular dynamics simulations revealed increased adsorption behavior of the CNFs/rGO hybrid sensing material. The fabricated devices, based on all-carbon composites, are effective and energy-efficient platforms for NO2 detection, offering promising solutions for environmental monitoring, the chemical industry, and industrial safety applications. Full article
(This article belongs to the Section Applied Chemical Sensors)
Show Figures

Figure 1

15 pages, 2807 KB  
Article
One-Step Electrospun LTO Anode for Flexible Li-Ion Batteries
by Edi Edna Mados, Roni Amit, Noy Kluska, Diana Golodnitsky and Amit Sitt
Batteries 2025, 11(11), 405; https://doi.org/10.3390/batteries11110405 - 4 Nov 2025
Viewed by 767
Abstract
Fiber-based and fabric batteries signify a groundbreaking development in energy storage, allowing for the straightforward incorporation of power sources into wearable fabrics, intelligent apparel, and adaptable electronics. In this study, we introduce a novel strategy for one-step fabrication of a flexible lithium titanate [...] Read more.
Fiber-based and fabric batteries signify a groundbreaking development in energy storage, allowing for the straightforward incorporation of power sources into wearable fabrics, intelligent apparel, and adaptable electronics. In this study, we introduce a novel strategy for one-step fabrication of a flexible lithium titanate oxide (Li4Ti5O12, LTO) anode directly on a copper current collector via electrospinning, eliminating the need for high-temperature post-processing. Based on our previous work with electrospun nanofiber cathodes and carbon-based current collector, we prepared the LTO electrode using polyethylene oxide (PEO) as a binder and carbon additives to enhance mechanical integrity and conductivity. LTO fiber mats detached from the current collector were found to endure multiple instances of bending, twisting, and folding without any structural damage. LTO/Li cells incorporating electrospun fiber LTO electrodes with 72 wt% active material loading deliver a high capacity of 170 mAh g−1 at 0.05 C. In addition, they demonstrate excellent cycling stability with a capacity loss of only 0.01% per cycle over 200 cycles and maintain a capacity of 160 mAh g−1 at 0.1 C. The scalability of the heat-treatment-free method for fabricating flexible LTO anodes, together with the improved mechanical durability and electrochemical performance, offers a promising route toward the development of next-generation flexible and wearable energy storage devices. Full article
Show Figures

Figure 1

11 pages, 2027 KB  
Communication
Silicon@Carbon Composite with Bioinspired Root-Nodule Nanostructures as Anode for High-Performance Lithium-Ion Batteries
by Yitong Sun, Lei Zhao, Ning Mi, Jiahao He and Jiantie Xu
Molecules 2025, 30(21), 4157; https://doi.org/10.3390/molecules30214157 - 22 Oct 2025
Cited by 1 | Viewed by 699
Abstract
Silicon (Si) is a promising high-capacity anode material for lithium–ion batteries but faces challenges such as severe volume fluctuations during cycles and the formation of unstable solid-electrolyte interphase films on the electrode surface. To address these limitations, we developed a bioinspired Si@C composite [...] Read more.
Silicon (Si) is a promising high-capacity anode material for lithium–ion batteries but faces challenges such as severe volume fluctuations during cycles and the formation of unstable solid-electrolyte interphase films on the electrode surface. To address these limitations, we developed a bioinspired Si@C composite anode through polydopamine-mediated self-assembly of aromatic polyamide nanofibers and nano–Si, followed by controlled pyrolysis at 1000 °C under N2. The resulting hierarchical architecture mimics the symbiotic root-nodule structure of legumes, featuring vascular bundle-like carbon frameworks and chemically bonded Si/C interfaces. The optimized composite delivers an initial capacity of 1107.0 mAh g−1 at 0.1 A g−1 and retains 580.0 mAh g−1 after 100 cycles with 52.4% retention. The exceptional electrochemical properties arise from the optimized architecture and surface interactions. The nature-inspired carbon network minimizes ionic transport resistance via vertically aligned porous pathways while simultaneously boosting lithium–ion adsorption capacity. Furthermore, radially aligned graphitic ribbons are generated through controlled polyamide thermal transformation that effectively mitigates electrode swelling and maintains stable interfacial layers during cycling. Full article
Show Figures

Figure 1

Back to TopTop