Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (52)

Search Parameters:
Keywords = carbon emissions from rural buildings

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1337 KiB  
Article
Application of Prefabricated Public Buildings in Rural Areas with Extreme Hot–Humid Climate: A Case Study of the Yongtai County Digital Industrial Park, Fuzhou, China
by Xin Wu, Jiaying Wang, Ruitao Zhang, Qianru Bi and Jinghan Pan
Buildings 2025, 15(15), 2767; https://doi.org/10.3390/buildings15152767 - 6 Aug 2025
Abstract
Accomplishing China’s national targets of carbon peaking and carbon neutrality necessitates proactive solutions, hinging critically on fundamentally transforming rural construction models. Current construction practices in rural areas are characterized by inefficiency, high resource consumption, and reliance on imported materials. These shortcomings not only [...] Read more.
Accomplishing China’s national targets of carbon peaking and carbon neutrality necessitates proactive solutions, hinging critically on fundamentally transforming rural construction models. Current construction practices in rural areas are characterized by inefficiency, high resource consumption, and reliance on imported materials. These shortcomings not only jeopardize the attainment of climate objectives, but also hinder equitable development between urban and rural regions. Using the Digital Industrial Park in Yongtai County, Fuzhou City, as a case study, this study focuses on prefabricated public buildings in regions with extreme hot–humid climate, and innovatively integrates BIM (Building Information Modeling)-driven carbon modeling with the Gaussian Two-Step Floating Catchment Area (G2SFCA) method for spatial accessibility assessment to investigate the carbon emissions and economic benefits of prefabricated buildings during the embodied stage, and analyzes the spatial accessibility of prefabricated building material suppliers in Fuzhou City and identifies associated bottlenecks, seeking pathways to promote sustainable rural revitalization. Compared with traditional cast-in-situ buildings, embodied carbon emissions of prefabricated during their materialization phase significantly reduced. This dual-perspective approach ensures that the proposed solutions possess both technical rigor and logistical feasibility. Promoting this model across rural areas sharing similar climatic conditions would advance the construction industry’s progress towards the dual carbon goals. Full article
Show Figures

Figure 1

14 pages, 1882 KiB  
Article
Carbon-Negative Construction Material Based on Rice Production Residues
by Jüri Liiv, Catherine Rwamba Githuku, Marclus Mwai, Hugo Mändar, Peeter Ritslaid, Merrit Shanskiy and Ergo Rikmann
Materials 2025, 18(15), 3534; https://doi.org/10.3390/ma18153534 - 28 Jul 2025
Viewed by 284
Abstract
This study presents a cost-effective, carbon-negative construction material for affordable housing, developed entirely from locally available agricultural wastes: rice husk ash, wood ash, and rice straw—materials often problematic to dispose of in many African regions. Rice husk ash provides high amorphous silica, acting [...] Read more.
This study presents a cost-effective, carbon-negative construction material for affordable housing, developed entirely from locally available agricultural wastes: rice husk ash, wood ash, and rice straw—materials often problematic to dispose of in many African regions. Rice husk ash provides high amorphous silica, acting as a strong pozzolanic agent. Wood ash contributes calcium oxide and alkalis to serve as a reactive binder, while rice straw functions as a lightweight organic filler, enhancing thermal insulation and indoor climate comfort. These materials undergo natural pozzolanic reactions with water, eliminating the need for Portland cement—a major global source of anthropogenic CO2 emissions (~900 kg CO2/ton cement). This process is inherently carbon-negative, not only avoiding emissions from cement production but also capturing atmospheric CO2 during lime carbonation in the hardening phase. Field trials in Kenya confirmed the composite’s sufficient structural strength for low-cost housing, with added benefits including termite resistance and suitability for unskilled laborers. In a collaboration between the University of Tartu and Kenyatta University, a semi-automatic mixing and casting system was developed, enabling fast, low-labor construction of full-scale houses. This innovation aligns with Kenya’s Big Four development agenda and supports sustainable rural development, post-disaster reconstruction, and climate mitigation through scalable, eco-friendly building solutions. Full article
Show Figures

Figure 1

21 pages, 1616 KiB  
Article
Optimization Design and Operation Analysis of Integrated Energy System for Rural Active Net-Zero Energy Buildings
by Jingshuai Pang, Yi Guo, Ruiqi Wang, Hongyin Chen, Zheng Wu, Manzheng Zhang and Yuanfu Li
Energies 2025, 18(15), 3924; https://doi.org/10.3390/en18153924 - 23 Jul 2025
Viewed by 225
Abstract
To address energy shortages and achieve carbon peaking/neutrality, this study develops a distributed renewable-based integrated energy system (IES) for rural active zero-energy buildings (ZEBs). Energy consumption patterns of typical rural houses are analyzed, guiding the design of a resource-tailored IES that balances economy [...] Read more.
To address energy shortages and achieve carbon peaking/neutrality, this study develops a distributed renewable-based integrated energy system (IES) for rural active zero-energy buildings (ZEBs). Energy consumption patterns of typical rural houses are analyzed, guiding the design of a resource-tailored IES that balances economy and sustainability. Key equipment capacities are optimized to achieve net-zero/zero energy consumption targets. For typical daily cooling/heating/power loads, equipment output is scheduled using a dual-objective optimization model minimizing operating costs and CO2 emissions. Results demonstrate that: (1) Net-zero-energy IES outperforms separated production (SP) and full electrification systems (FES) in economic-environmental benefits; (2) Zero-energy IES significantly reduces rural building carbon emissions. The proposed system offers substantial practical value for China’s rural energy transition. Full article
Show Figures

Figure 1

18 pages, 5741 KiB  
Article
Research on Design Strategy for Zero-Carbon Touristic Apartment Openings Based on Building Life Cycle
by Yiru Wang, Fangyuan Wang, Yang Yang, Xun Sun and Dekun Dong
Buildings 2025, 15(14), 2427; https://doi.org/10.3390/buildings15142427 - 10 Jul 2025
Viewed by 217
Abstract
The timeshare is gradually becoming an essential global tourism operation model, especially in rural areas of China, where the leisure industry is developing rapidly. Meanwhile, the environmental issues of the rapidly growing timeshare-related building production have received widespread attention. The existing research on [...] Read more.
The timeshare is gradually becoming an essential global tourism operation model, especially in rural areas of China, where the leisure industry is developing rapidly. Meanwhile, the environmental issues of the rapidly growing timeshare-related building production have received widespread attention. The existing research on zero-carbon buildings considers carbon emissions as a constant value and cannot adapt to the impact of user changes during the operation phase. Constructing a low-carbon design applicable to timeshare is significant for controlling carbon emissions in the construction industry and responding to the environmental crisis. The practical carbon emissions of touristic apartments depend on the requirement changes in different customer clusters. The timeshare theory reflects the requirement change in different customer clusters based on the timeshare property ownership change. This paper focuses on a dynamic design strategy for zero-carbon building openings to reduce practical carbon emissions. Firstly, this research clarifies the primary customer clusters and conducts a touristic apartment unit model by timeshare property ownership. Then, this research clarifies the changes in customer requirements to analyze the spatial function changes in the operating phase. Finally, the study identifies six dynamic carbon emission indicators, such as the window-to-wall ratio, ventilation rate, and effective daylight area, and through passive design methods, provides 13 variable devices applied in the operating phase to control dynamic carbon emission indicators by customers. This paper also offers a flexible method to effectively decrease and accurately control carbon emissions by reducing the possible device utility. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

27 pages, 3204 KiB  
Review
Exploring Carbon Emissions in the Construction Industry: A Review of Accounting Scales, Boundaries, Trends, and Gaps
by Qinfeng Zhao, Zhirui Wu, Yi Yu, Tian Wang and Shan Huang
Buildings 2025, 15(11), 1900; https://doi.org/10.3390/buildings15111900 - 31 May 2025
Viewed by 784
Abstract
The construction industry, characterized by high energy consumption and carbon emissions, plays a pivotal role in climate change mitigation. This paper employs bibliometric analysis, based on 282 articles from the SCIE and SSCI in the Web of Science spanning 1992–2022, to explore research [...] Read more.
The construction industry, characterized by high energy consumption and carbon emissions, plays a pivotal role in climate change mitigation. This paper employs bibliometric analysis, based on 282 articles from the SCIE and SSCI in the Web of Science spanning 1992–2022, to explore research trends and themes in Carbon Emissions of Construction Industry (CECI). A manual review was conducted to identify challenges and possibilities concerning accounting scales, objects, boundaries, and methods in CECI research. Key findings include (1) temporal and thematic evolution, with a notable increase in research activity since 2015, primarily focusing on energy efficiency, sustainable development, green building technologies, and policy evaluation; (2) scale-specific gaps, as 80.7% of studies are conducted at macro (national/regional) or micro (building/material) levels, while city-scale analyses are significantly underrepresented, with only 13 articles identified; (3) object granularity deficiencies, with 74.8% of studies not distinguishing between building types, resulting in rural residential, educational, and office buildings being significantly underrepresented; (4) system boundary limitations, as few studies account for emissions from building demolition or the disposal and recycling of construction waste, indicating a substantial gap in life-cycle carbon assessments. Furthermore, the predominant reliance on the carbon emission factor method, along with embedded assumptions in accounting processes, presents challenges for improving carbon accounting accuracy. This review synthesizes insights into prevailing research scales, object classifications, system boundaries, and methodological practices, and highlights the urgent need for more granular, lifecycle-based, and methodologically diverse approaches. These findings provide a foundation for advancing CECI research toward more comprehensive, accurate, and context-sensitive carbon assessments in the construction sector. Full article
Show Figures

Figure 1

24 pages, 25714 KiB  
Article
Comparison of Energy Demand for Heating and CO2 Emissions in Urban and Rural Areas, the Case of Hajdú-Bihar County, Hungary
by Ferenc Kalmár, Béla Bodó and Tünde Kalmár
Buildings 2025, 15(10), 1625; https://doi.org/10.3390/buildings15101625 - 12 May 2025
Viewed by 423
Abstract
Mitigating carbon dioxide emissions in the building sector is a primary global goal. This paper compares different residential buildings in urban and rural regions of Hajdú-Bihar County (Hungary). Significant differences were found between urban and rural single-family houses concerning their energy performance; however, [...] Read more.
Mitigating carbon dioxide emissions in the building sector is a primary global goal. This paper compares different residential buildings in urban and rural regions of Hajdú-Bihar County (Hungary). Significant differences were found between urban and rural single-family houses concerning their energy performance; however, the differences in CO2 emissions were not significant. Only the differences in specific heat losses were significant between urban single-family and masonry-structured multifamily buildings. Panel buildings demonstrate the best energy performance from their construction period, but due to high investment costs and the inability to change the heat source, the CO2 emissions from these buildings have a lower limit today. In both single-family houses and masonry-structured multifamily buildings, meeting the heat demand can be achieved with zero CO2 emissions using existing technologies. Full article
(This article belongs to the Special Issue Energy Efficiency and Carbon Neutrality in Buildings)
Show Figures

Figure 1

30 pages, 4100 KiB  
Article
Carbon Neutrality and Resilient Districts, a Common Strategy in European Union Countries in 2050
by Modeste Kameni Nematchoua, Minoson Sendrahasina Rakotomalala and Sigrid Reiter
Atmosphere 2025, 16(5), 508; https://doi.org/10.3390/atmos16050508 - 28 Apr 2025
Cited by 1 | Viewed by 647
Abstract
Confronted with the climate emergency, reducing CO2 emissions has become a priority for all nations of the world because the follow-up of humanity depends on it. Most European Union (EU) member states have pledged to cut their net greenhouse gas emissions by [...] Read more.
Confronted with the climate emergency, reducing CO2 emissions has become a priority for all nations of the world because the follow-up of humanity depends on it. Most European Union (EU) member states have pledged to cut their net greenhouse gas emissions by at least 55% by 2030 and reach full carbon neutrality by 2050, using 1990 as the baseline year. Despite this common effort, there is still a lack of effective decision-making on carbon neutrality strategies applied throughout the life cycle of a building in all EU countries. A common strategy is proposed in this study to fill this gap in the literature. The building sector is a real lever for reducing the carbon footprint and saving energy. Currently, the methodology for achieving large-scale carbon neutrality is well established. However, there is only a limited number of experts worldwide who have mastered this technology, making it challenging to develop a standardized approach for all nations. The absence of extensive, regular, and consistent data on carbon emissions has considerably hindered the understanding of the root causes of climate change at both the building and neighborhood levels. Is it not it time to break this barrier? With this in mind, this study was carried out with the intention of proposing a common method to achieve carbon neutrality at the neighborhood scale in European Union countries. The most significant parameters having a direct impact on carbon emissions have facilitated the adaptation of the three types of neighborhood in the different capitals of the EU countries, in particular, local building materials, microclimate, the energy mix of each country, and the mode of daily transport. The life cycle assessment of the three districts was conducted using the Plaides LCAv6.25.3 tool in combination with Meteonorm software version 8.2.0, considering a 100-year lifespan for the buildings. In addition, the cost of the various environmental impacts is assessed based on the monetary indicators for European Committee for Standardization indicators method. The main results showed that the distribution of carbon dioxide is 73.3% higher in urban areas than in sustainable neighborhoods and 39.0% higher in urban districts than in rural districts. Nearly zero emissions in the next decade are again possible by applying the scenario involves global warming combined with the complete (100%) renovation of all buildings and the transition to 100% electric vehicles along with the use of solar panels. This strategy makes it possible to reduce between 90.1% and 99.9% of the emission rate in residential districts regarding EU countries. Full article
(This article belongs to the Section Climatology)
Show Figures

Figure 1

29 pages, 21754 KiB  
Article
Multi-Objective Optimization-Driven Research on Rural Residential Building Design in Inner Mongolia Region
by Dezhi Zou, Cheng Sun and Denghui Gao
Energies 2025, 18(7), 1867; https://doi.org/10.3390/en18071867 - 7 Apr 2025
Viewed by 751
Abstract
According to the China Building Energy Consumption and Carbon Emissions Research Report (2023), the construction industry accounts for 36.3% of total societal energy consumption, with residential buildings contributing significantly due to their extensive coverage and high operational frequency. Addressing energy efficiency and carbon [...] Read more.
According to the China Building Energy Consumption and Carbon Emissions Research Report (2023), the construction industry accounts for 36.3% of total societal energy consumption, with residential buildings contributing significantly due to their extensive coverage and high operational frequency. Addressing energy efficiency and carbon reduction in this sector is critical for achieving national sustainability goals. This study proposes an optimization methodology for rural dwellings in Inner Mongolia, focusing on reducing energy demand while enhancing indoor thermal comfort and daylight performance. A parametric model was developed using Grasshopper, with energy consumption, thermal comfort (PPD), and Useful Daylight Illuminance (UDI) simulated through Ladybug and Honeybee tools. Key parameters analyzed include building morphology, envelope structures, and indoor thermal environments, followed by systematic optimization of building components. To refine multi-objective inputs, a specialized wall database was established, enabling categorization and dynamic visualization of material properties and construction methods. Comparative analysis demonstrated a 22.56% reduction in energy consumption, 19.26% decrease in occupant thermal dissatisfaction (PPD), and 25.44% improvement in UDI values post-optimization. The proposed framework provides a scientifically validated approach for improving energy efficiency and environmental adaptability in cold-climate rural architecture. Full article
(This article belongs to the Section G: Energy and Buildings)
Show Figures

Figure 1

19 pages, 27219 KiB  
Article
A Method for Assessing the Potential of Multifunctional Retrofitting of Rural Roofs Based on GF-2 Remote Sensing Imagery
by Junqi Wang, Linlin Cheng, Yang Zheng, Huizhen Cui and Mengyao Zhu
Sensors 2025, 25(3), 770; https://doi.org/10.3390/s25030770 - 27 Jan 2025
Viewed by 975
Abstract
Green roofs and photovoltaic (PV) roofs are important forms of roof retrofitting, and unused rural roofs provide favorable conditions for the development of green roofs and PV roofs. Here, this study proposes a new method for assessing the potential of multifunctional retrofitting of [...] Read more.
Green roofs and photovoltaic (PV) roofs are important forms of roof retrofitting, and unused rural roofs provide favorable conditions for the development of green roofs and PV roofs. Here, this study proposes a new method for assessing the potential of multifunctional retrofitting of rural roofs. Firstly, rural roof types were classified into three categories based on GF-2 imagery: flat roofs, east–west pitched roofs, and north–south pitched roofs. The roof types were extracted based on the revised U-Net model, which aims to enhance the extracted features of the buildings and improve the perception of the buildings. Secondly, three types of retrofits—PV roofs, green roofs, and PV-green roofs—were designed taking into account the type, orientation, and area of the roofs. Finally, the potential electricity and carbon benefits of the different retrofit types of roofs were calculated separately, with the aim of realizing an assessment of the potential for roof retrofitting in the rural areas of Mentougou, Beijing. The results of the study showed that 35,407 (281.97 ha) roofs could be used for multifunctional retrofitting. If rural roofs are retrofitted with multifunctionality according to the methodology of this paper, they can absorb an additional 4.66 × 104 kg/yr of CO2 and increase biomass production by 0.99 × 104 kg/yr compared to retrofitting only PV roofs, and they can generate an additional 34.1 GWh/yr of electricity and reduce CO2 emissions by an additional 3.3 × 107 kg/yr compared to retrofitting to both PV roofs and green roofs. The assessment methodology of this study provides decision makers with data references on the multifunctional potential of rural rooftops for retrofitting, which can optimize the use of rural rooftops, and at the same time is important for promoting the energy transition in rural areas. Full article
(This article belongs to the Special Issue Recent Advances in Synthetic Aperture Radar (SAR) Remote Sensing)
Show Figures

Figure 1

24 pages, 6944 KiB  
Article
Peak Assessment and Driving Factor Analysis of Residential Building Carbon Emissions in China’s Urban Agglomerations
by Haiyan Huang, Fanhao Liao, Zhihui Liu, Shuangping Cao, Congguang Zhang and Ping Yao
Buildings 2025, 15(3), 333; https://doi.org/10.3390/buildings15030333 - 22 Jan 2025
Cited by 1 | Viewed by 871
Abstract
Urban agglomerations, as hubs of population, economic activity, and energy consumption, significantly contribute to greenhouse gas emissions. The interconnected infrastructure, energy networks, and shared economic systems of these regions create complex emission dynamics that cannot be effectively managed through isolated city-level strategies. However, [...] Read more.
Urban agglomerations, as hubs of population, economic activity, and energy consumption, significantly contribute to greenhouse gas emissions. The interconnected infrastructure, energy networks, and shared economic systems of these regions create complex emission dynamics that cannot be effectively managed through isolated city-level strategies. However, these regions also present unique opportunities for innovation, policy implementation, and resource optimization, making them crucial focal points in efforts to reduce carbon emissions. This study examines China’s three major urban agglomerations: the Yangtze River Delta, the Pearl River Delta, and the Beijing–Tianjin–Hebei region. Utilizing data from 2005 to 2020 and a comprehensive evaluation model (BCPCAM), the research offers more profound insights into the socio-economic factors and collaborative mechanisms influencing emission trends, facilitating the development of targeted strategies for sustainable development and carbon neutrality. The findings indicate that (1) economic development and carbon control can progress synergistically to some extent, as economically advanced cities like Beijing and Shanghai have achieved their carbon peaks earlier; (2) natural resource endowment significantly affects urban carbon emissions, with resource-rich cities such as Tangshan and Handan, where fossil fuels dominate the energy mix, facing considerable challenges in reducing emissions; and (3) notable differences exist in the growth patterns of carbon emissions between urban and rural buildings, underscoring the need for tailored carbon reduction policies. Full article
Show Figures

Figure 1

17 pages, 5871 KiB  
Article
A GIS-Based Estimation of Bioenergy Potential from Cereal and Legume Straw Biomasses in Alentejo, Portugal
by Abel Rodrigues, Alexandre B. Gonçalves, Benvindo Maçãs, António Cordeiro and Paulo Brito
Appl. Sci. 2025, 15(2), 868; https://doi.org/10.3390/app15020868 - 17 Jan 2025
Cited by 1 | Viewed by 1041
Abstract
Portugal exhibits a large deficit in cereals with an import/export ratio of about 18%. Alentejo is a southern vast plain region, which is the largest cereal producer in the country, with about 80% of the total cereal area. The region also shows a [...] Read more.
Portugal exhibits a large deficit in cereals with an import/export ratio of about 18%. Alentejo is a southern vast plain region, which is the largest cereal producer in the country, with about 80% of the total cereal area. The region also shows a huge local energy deficit with a ratio of about 17% between spent and produced energy. In this context, this work used GIS modeling based on available digital geographical information on soil and topographic conditions in Alentejo for estimating optimal production areas of four main classes of cereal and legume classes, which were wheat, barley, oat/lupin, and triticale/broad bean. The estimated areas were validated by 199 sample points in the field and allowed to quantify a potential of bioenergy production from straw biomasses based on yields of biomass net calorific values of 18 MJkg−1 and yields of 6, 9, 6, and 9 tons/ha for the four classes in the order indicated. The estimated areas allocated to the cereal and legume classes covered approximately four municipalities in the region. The total modeled area in Alentejo for the four cultivation classes was 44,980 ha. The results showed that even if 50% of the estimated total straw biomass produced was used for animal feed, the estimated bioenergy production of the remaining half biomass would be of about 2940 TJy−1, or about 12.5% of the actual regional energy production, which is an energy amount able to supply 35 organic Rankine cycle (ORC) 2.5 MW cogeneration units and 347 boilers with 125 kW thermal power, delivering renewable electricity to the grid, and heating facilities as diverse as buildings, nursing homes, or horticultural greenhouses. More than 160 kton of CO2 fossil emissions would also be avoided, delivering a contribution to mitigating effects of climate change. By contributing to the reduction of the large cereal dependence and the carbon emissions of the country, the proposed strategy would contribute to increasing the decentralized bioenergy production for applications in buildings and local facilities, significantly boosting the socio-economic dynamics of rural areas involved. Full article
Show Figures

Figure 1

25 pages, 5134 KiB  
Article
Evaluation and Analysis of Passive Energy Saving Renovation Measures for Rural Residential Buildings in Cold Regions: A Case Study in Tongchuan, China
by Ping Cao, Jiawei Wang, Dinglei Huang, Zhi Cao and Danyang Li
Sustainability 2025, 17(2), 540; https://doi.org/10.3390/su17020540 - 12 Jan 2025
Cited by 1 | Viewed by 971
Abstract
Energy-saving renovation of rural residences is an effective means of promoting sustainable rural development. This study focuses on a single-story rural residential building located in Tongchuan City, Shaanxi Province, China (a cold region), as a case study. Retrofits were conducted on the exterior [...] Read more.
Energy-saving renovation of rural residences is an effective means of promoting sustainable rural development. This study focuses on a single-story rural residential building located in Tongchuan City, Shaanxi Province, China (a cold region), as a case study. Retrofits were conducted on the exterior windows, roof, and exterior walls, with the addition of a sunroom. Using life cycle assessments (LCAs) and orthogonal experimental methods combined with value engineering principles, we calculated various indicators including the energy efficiency improvement rate, implied carbon emissions, proportion of implied carbon emissions, carbon footprint, carbon reduction rate, carbon payback period, and investment payback period. The impact of traditional retrofitting measures on these indicators was analyzed. The results indicate that carbon emissions from the production of building materials are a key concern among the embodied carbon emissions from the retrofits, while transportation, construction, and demolition contribute minimally. Changes in the depth of the sunroom had the most significant impact on comprehensive indicators, followed by changes to the roof. After retrofitting, the carbon reduction rate was underestimated by 9.35% to 12.02% due to embodied carbon emissions. The carbon payback period for all schemes is estimated to be between 3.27 and 4.21 years. Based on current market conditions, developing corresponding carbon economics can enhance the economic viability of the project. This approach extends the investment payback period by more than 7% while also helping to narrow the income gap between urban and rural residents to some extent. Overall, the environmental impact assessment of the alternative schemes promotes sustainable rural development and provides scientific and effective guidance for the construction of project decision-making evaluation systems and architectural designers. Full article
(This article belongs to the Section Green Building)
Show Figures

Figure 1

20 pages, 7269 KiB  
Article
A Study on Carbon-Reduction Strategies for Rural Residential Buildings Based on Economic Benefits in the Gannan Tibetan Area, China
by Jingjing Yang and Xilong Zhang
Sustainability 2025, 17(1), 131; https://doi.org/10.3390/su17010131 - 27 Dec 2024
Cited by 1 | Viewed by 874
Abstract
The building sector contributes approximately half of all carbon emissions. The heating stage accounts for the largest proportion of building carbon emissions. The focus on carbon-reduction strategies in rural areas could not be copied from urban buildings due to different heating modes limited [...] Read more.
The building sector contributes approximately half of all carbon emissions. The heating stage accounts for the largest proportion of building carbon emissions. The focus on carbon-reduction strategies in rural areas could not be copied from urban buildings due to different heating modes limited by economic factors. The Gannan region in Gansu province was selected to carry out an on-site survey on heating conditions, including the heating modes, the energy used for heating, heating fees, residents’ satisfaction with heating, and the thermal environment of the typical building. The results showed that local rural residents burnt scattered coal for heating using primitive heating stoves with low efficiency, causing low air temperatures and high heating fees. The carbon emissions generated by heating reached 5743.28 kgCO2e·m−2. Several strategies for reducing carbon emissions were proposed, considering the economic benefits limited by rural economic development. A parameter of reduced carbon emissions per investment input was proposed to evaluate the carbon-reduction strategies. The results showed that biomass was the most economical way to reduce carbon emissions. Reduced carbon emissions per investment input reached 44.19 kgCO2e·CNY−1 with energy efficiency of 50%, followed by thermal insulation design of 32.31 kgCO2e·CNY−1, natural gas furnaces of 26.08 kgCO2e·CNY−1, and air-source heat pumps of 20.27 kgCO2e·CNY−1. In addition, carbon emissions generated by biomass were 12.4% and 24% of those caused by coal and natural gas supplying the same energy. Moreover, building insulation should be increased according to economic benefits. The optimum energy efficiency was 55% in Gannan. The results provided a reference for building low-carbon heating in rural areas, which could help achieve the low-carbon goal with low investments. Full article
Show Figures

Figure 1

17 pages, 4260 KiB  
Article
Ecological Benefit Optimization and Design of Rural Residential Roofs Based on the “Dual Carbon” Goal
by Zhixiu Li, Yuyan Wang, Yihan Wang and Yangyang Wei
Buildings 2024, 14(12), 3715; https://doi.org/10.3390/buildings14123715 - 21 Nov 2024
Cited by 1 | Viewed by 1136
Abstract
With the continuous advancement of urbanization, rural areas are facing increasingly severe environmental pollution, excessive energy consumption, and high carbonization resulting from both daily living and production activities. This study, which is aligned with the low-carbon objectives of “carbon sequestration increase and emissions [...] Read more.
With the continuous advancement of urbanization, rural areas are facing increasingly severe environmental pollution, excessive energy consumption, and high carbonization resulting from both daily living and production activities. This study, which is aligned with the low-carbon objectives of “carbon sequestration increase and emissions reduction”, explores the optimization strategies for ecological benefits through the combined application of rooftop photovoltaics and rooftop greening in rural residences. Three design approaches are proposed for integrating rooftop photovoltaics with green roofing: singular arrangement, distributed arrangement, and combined arrangement. Using PVsyst (7.4.7) software, this study simulates the effects of roof inclination, system output, and installation formats on the performance of photovoltaic systems, providing a comprehensive analysis of carbon reduction benefits in ecological rooftop construction. A rural area in East China was selected as a sample for adaptive exploration of ecological roof applications. The results of our research indicate that the optimal tilt angle for rooftop photovoltaic (PV) installations in the sample rural area is 17°. Based on simulations combining the region’s annual solar path and the solar parameters on the winter solstice, the minimum spacing for PV arrays is calculated to be 1.925 m. The carbon reduction benefits of the three arrangement methods are ranked, from highest to lowest, as follows: combined arrangement 14530.470tCO2e > singular arrangement 11950.761tCO2e > distributed arrangement 7444.819tCO2e. The integrated design of rooftop PV systems and green roofing not only meets the energy demands of buildings but also significantly reduces their carbon footprint, achieving the dual objectives of energy conservation and sustainable development. Therefore, the combined application of rooftop PV systems and green roofing in rural spaces can provide data support and strategic guidance for advancing green transformation and ecological civilization in East China, offering significant practical value for promoting low-carbon rural development. Full article
(This article belongs to the Special Issue Urban Sustainability: Sustainable Housing and Communities)
Show Figures

Figure 1

18 pages, 7096 KiB  
Article
Balancing Environmental Impact and Practicality: A Case Study on the Cement-Stabilized Rammed Earth Construction in Southeast Rural China
by Shan Dai, Wenfeng Bai and Jing Xiao
Sustainability 2024, 16(20), 8731; https://doi.org/10.3390/su16208731 - 10 Oct 2024
Cited by 2 | Viewed by 3077
Abstract
Construction using earth materials demonstrates ecological sustainability using locally sourced natural materials and environmentally friendly demolition methods. In this study, the environmental impact of adding cement to soil materials for rammed earth farmhouse construction in rural China was investigated and comparatively simulated using [...] Read more.
Construction using earth materials demonstrates ecological sustainability using locally sourced natural materials and environmentally friendly demolition methods. In this study, the environmental impact of adding cement to soil materials for rammed earth farmhouse construction in rural China was investigated and comparatively simulated using the One Click LCA database, focusing on the conflict between sustainability objectives and the practical aspects of cement addition. By analyzing how the addition of cement aligns with local construction practices and addressing the debate surrounding the inclusion of cement in rammed-earth construction, our objective is to provide insights into achieving a balance between the environmental impact and the pragmatic considerations of using cement in earthen building practices. Three local structure scenarios are evaluated via simulations: cement-stabilized rammed earth wall, fired brick wall, and a localized reinforced concrete frame structure. The quantitative environmental impacts are assessed, and the qualitative differences in adaptation, economic sustainability, and other factors are examined in the context of present-day development in rural China. The results show that the use of cement-stabilized rammed earth wall-supported structures is associated with higher embodied carbon emissions compared to structures supported by reinforced concrete frames and enclosed by brick walls; however, these emissions are lower than those for brick wall-supported structures while effectively meeting the structural requirements. In addition, the use of cement-stabilized earth for perimeter walls simplifies material management and disposal throughout the building’s life cycle, and the cost-effectiveness of cement has been found to be substantially greater than that of reinforced concrete frames and brick structures, improving economic viability and social acceptability, especially among low-income communities in rural areas Full article
Show Figures

Figure 1

Back to TopTop