Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (939)

Search Parameters:
Keywords = car mobility

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 7677 KiB  
Article
Hyperspectral Imaging Combined with a Dual-Channel Feature Fusion Model for Hierarchical Detection of Rice Blast
by Yuan Qi, Tan Liu, Songlin Guo, Peiyan Wu, Jun Ma, Qingyun Yuan, Weixiang Yao and Tongyu Xu
Agriculture 2025, 15(15), 1673; https://doi.org/10.3390/agriculture15151673 - 2 Aug 2025
Viewed by 225
Abstract
Rice blast caused by Magnaporthe oryzae is a major cause of yield reductions and quality deterioration in rice. Therefore, early detection of the disease is necessary for controlling the spread of rice blast. This study proposed a dual-channel feature fusion model (DCFM) to [...] Read more.
Rice blast caused by Magnaporthe oryzae is a major cause of yield reductions and quality deterioration in rice. Therefore, early detection of the disease is necessary for controlling the spread of rice blast. This study proposed a dual-channel feature fusion model (DCFM) to achieve effective identification of rice blast. The DCFM model extracted spectral features using successive projection algorithm (SPA), random frog (RFrog), and competitive adaptive reweighted sampling (CARS), and extracted spatial features from spectral images using MobileNetV2 combined with the convolutional block attention module (CBAM). Then, these features were fused using the feature fusion adaptive conditioning module in DCFM and input into the fully connected layer for disease identification. The results show that the model combining spectral and spatial features was superior to the classification models based on single features for rice blast detection, with OA and Kappa higher than 90% and 88%, respectively. The DCFM model based on SPA screening obtained the best results, with an OA of 96.72% and a Kappa of 95.97%. Overall, this study enables the early and accurate identification of rice blast, providing a rapid and reliable method for rice disease monitoring and management. It also offers a valuable reference for the detection of other crop diseases. Full article
Show Figures

Figure 1

27 pages, 3107 KiB  
Article
Modeling School Commuting Mode Choice Under Normal and Adverse Weather Conditions in Chiang Rai City
by Chanyanuch Pangderm, Tosporn Arreeras and Xiaoyan Jia
Future Transp. 2025, 5(3), 101; https://doi.org/10.3390/futuretransp5030101 - 1 Aug 2025
Viewed by 96
Abstract
This study investigates the factors influencing school trip mode choice among senior high school students in the Chiang Rai urban area, Chiang Rai, Thailand, under normal and adverse weather conditions. Utilizing data from 472 students across six extra-large urban schools, a Multinomial Logit [...] Read more.
This study investigates the factors influencing school trip mode choice among senior high school students in the Chiang Rai urban area, Chiang Rai, Thailand, under normal and adverse weather conditions. Utilizing data from 472 students across six extra-large urban schools, a Multinomial Logit (MNL) regression model was applied to examine the effects of socio-demographic attributes, household vehicle ownership, travel distance, and spatial variables on mode selection. The results revealed notable modal shifts during adverse weather, with motorcycle usage decreasing and private vehicle reliance increasing, while school bus usage remained stable, highlighting its role as a resilient transport option. Car ownership emerged as a strong enabler of modal flexibility, whereas students with limited access to private transport demonstrated reduced adaptability. Additionally, increased waiting and travel times during adverse conditions underscored infrastructure and service vulnerabilities, particularly for mid-distance travelers. The findings suggest an urgent need for transport policies that promote inclusive and climate-resilient mobility systems, particularly in the context of Chiang Rai, including expanded school bus services, improved first-mile connectivity, and enhanced pedestrian infrastructure. This study contributes to the literature by addressing environmental variability in school travel behavior and offers actionable insights for sustainable transport planning in secondary cities and border regions. Full article
Show Figures

Figure 1

33 pages, 870 KiB  
Article
Decarbonizing Urban Transport: Policies and Challenges in Bucharest
by Adina-Petruța Pavel and Adina-Roxana Munteanu
Future Transp. 2025, 5(3), 99; https://doi.org/10.3390/futuretransp5030099 (registering DOI) - 1 Aug 2025
Viewed by 177
Abstract
Urban transport is a key driver of greenhouse gas emissions in Europe, making its decarbonization essential to achieving EU climate neutrality targets. This study examines how European strategies, such as the Green Deal, the Sustainable and Smart Mobility Strategy, and the Fit for [...] Read more.
Urban transport is a key driver of greenhouse gas emissions in Europe, making its decarbonization essential to achieving EU climate neutrality targets. This study examines how European strategies, such as the Green Deal, the Sustainable and Smart Mobility Strategy, and the Fit for 55 package, are reflected in Romania’s transport policies, with a focus on implementation challenges and urban outcomes in Bucharest. By combining policy analysis, stakeholder mapping, and comparative mobility indicators, the paper critically assesses Bucharest’s current reliance on private vehicles, underperforming public transport satisfaction, and limited progress on active mobility. The study develops a context-sensitive reform framework for the Romanian capital, grounded in transferable lessons from Western and Central European cities. It emphasizes coordinated metropolitan governance, public trust-building, phased car-restraint measures, and investment alignment as key levers. Rather than merely cataloguing policy intentions, the paper offers practical recommendations informed by systemic governance barriers and public attitudes. The findings will contribute to academic debates on urban mobility transitions in post-socialist cities and provide actionable insights for policymakers seeking to operationalize EU decarbonization goals at the metropolitan scale. Full article
Show Figures

Figure 1

26 pages, 4949 KiB  
Article
Sustainable Mobility in Barcelona: Trends, Challenges and Policies for Urban Decarbonization
by Carolina Sifuentes-Muñoz, Blanca Arellano and Josep Roca
Sustainability 2025, 17(15), 6964; https://doi.org/10.3390/su17156964 - 31 Jul 2025
Viewed by 192
Abstract
The Barcelona Metropolitan Area (AMB) has implemented various policies to reduce car use and promote more sustainable mobility. Initiatives such as superblocks, Low Emission Zones (LEZs), and the Bicivia network aim to transform the urban model in response to environmental and congestion challenges. [...] Read more.
The Barcelona Metropolitan Area (AMB) has implemented various policies to reduce car use and promote more sustainable mobility. Initiatives such as superblocks, Low Emission Zones (LEZs), and the Bicivia network aim to transform the urban model in response to environmental and congestion challenges. However, the high reliance on private vehicles for intermunicipal travel, uneven infrastructure, and social resistance to certain changes remain significant issues. This study examines the evolution of mobility patterns and assesses the effectiveness of the above policies in fostering real and sustainable change. A mixed-methods approach was adopted, which combined an exploratory factor analysis (EFA) of 2011–2024 data, trend linear regression, and a comparative international analysis. The EFA identified four key structural dimensions: traditional transport infrastructure, active mobility and bus lines, public bicycles and mixed use, and transport efficiency and punctuality. The findings reveal a clear reduction in private car use and an increase in sustainable modes of transport. This indicates that there are prospects for future transformation. Nonetheless, challenges persist in intermunicipal mobility and the public acceptance of the measures. This study provides empirical and comparative evidence and emphasizes the need for integrated metropolitan governance to achieve a resilient and sustainable urban model. Full article
Show Figures

Figure 1

22 pages, 5960 KiB  
Article
Application of Integrated Geospatial Analysis and Machine Learning in Identifying Factors Affecting Ride-Sharing Before/After the COVID-19 Pandemic
by Afshin Allahyari and Farideddin Peiravian
ISPRS Int. J. Geo-Inf. 2025, 14(8), 291; https://doi.org/10.3390/ijgi14080291 - 28 Jul 2025
Viewed by 278
Abstract
Ride-pooling, as a sustainable mode of ride-hailing services, enables different riders to share a vehicle while traveling along similar routes. The COVID-19 pandemic led to the suspension of this service, but Transportation Network Companies (TNCs) such as Uber and Lyft resumed it after [...] Read more.
Ride-pooling, as a sustainable mode of ride-hailing services, enables different riders to share a vehicle while traveling along similar routes. The COVID-19 pandemic led to the suspension of this service, but Transportation Network Companies (TNCs) such as Uber and Lyft resumed it after a significant delay following the lockdown. This raises the question of what determinants shape ride-pooling in the post-pandemic era and how they spatially influence shared ride-hailing compared to the pre-pandemic period. To address this gap, this study employs geospatial analysis and machine learning to examine the factors affecting ride-pooling trips in pre- and post-pandemic periods. Using over 66 million trip records from 2019 and 43 million from 2023, we observe a significant decline in shared trip adoption, from 16% to 2.91%. The results of an extreme gradient boosting (XGBoost) model indicate a robust capture of non-linear relationships. The SHAP analysis reveals that the percentage of the non-white population is the dominant predictor in both years, although its influence weakened post-pandemic, with a breakpoint shift from 78% to 90%, suggesting reduced sharing in mid-range minority areas. Crime density and lower car ownership consistently correlate with higher sharing rates, while dense, transit-rich areas exhibit diminished reliance on shared trips. Our findings underscore the critical need to enhance transportation integration in underserved communities. Concurrently, they highlight the importance of encouraging shared ride adoption in well-served, high-demand areas where solo ride-hailing is prevalent. We believe these results can directly inform policies that foster more equitable, cost-effective, and sustainable shared mobility systems in the post-pandemic landscape. Full article
Show Figures

Figure 1

23 pages, 476 KiB  
Article
Predictors of Sustainable Student Mobility in a Suburban Setting
by Nataša Kovačić and Hrvoje Grofelnik
Sustainability 2025, 17(15), 6726; https://doi.org/10.3390/su17156726 - 24 Jul 2025
Viewed by 280
Abstract
Analyses of student mobility are typically conducted in an urban environment and are informed by socio-demographic or trip attributes. The prevailing focus is on individual modes of transport, different groups of commuters travelling to campus, students’ behavioural perceptions, and the totality of student [...] Read more.
Analyses of student mobility are typically conducted in an urban environment and are informed by socio-demographic or trip attributes. The prevailing focus is on individual modes of transport, different groups of commuters travelling to campus, students’ behavioural perceptions, and the totality of student trips. This paper starts with the identification of the determinants of student mobility that have received insufficient research attention. Utilising surveys, the study captures the mobility patterns of a sample of 1014 students and calculates their carbon footprint (CF; in kg/academic year) to assess whether the factors neglected in previous studies influence differences in the actual environmental load of student commuting. A regression analysis is employed to ascertain the significance of these factors as predictors of sustainable student mobility. This study exclusively focuses on the group of student commuters to campus and analyses the trips associated with compulsory activities at a suburban campus that is distant from the university centre and student facilities, which changes the mobility context in terms of commuting options. The under-researched factors identified in this research have not yet been quantified as CF. The findings confirm that only some of the factors neglected in previous research are statistically significant predictors of the local environmental load of student mobility. Specifically, variables such as student employment, frequency of class attendance, and propensity for ride-sharing could be utilised to forecast and regulate students’ mobility towards more sustainable patterns. However, all of the under-researched factors (including household size, region of origin (i.e., past experiences), residing at term-time accommodation while studying, and the availability of a family car) have an influence on the differences in CF magnitude in the studied campus. Full article
Show Figures

Figure 1

18 pages, 3850 KiB  
Article
Operational Evaluation of Mixed Flow on Highways Considering Trucks and Autonomous Vehicles Based on an Improved Car-Following Decision Framework
by Nan Kang, Chun Qian, Yiyan Zhou and Wenting Luo
Sustainability 2025, 17(14), 6450; https://doi.org/10.3390/su17146450 - 15 Jul 2025
Viewed by 339
Abstract
This study proposes a new method to improve the accuracy of car-following models in predicting the mobility of mixed traffic flow involving trucks and automated vehicles (AVs). A classification is developed to categorize car-following behaviors into eight distinct modes based on vehicle type [...] Read more.
This study proposes a new method to improve the accuracy of car-following models in predicting the mobility of mixed traffic flow involving trucks and automated vehicles (AVs). A classification is developed to categorize car-following behaviors into eight distinct modes based on vehicle type (passenger car/truck) and autonomy level (human-driven vehicle [HDV]/AV) for parameter calibration and simulation. The car-following model parameters are calibrated based on the HighD dataset, and the models are selected through minimizing statistical error. A cellular-automaton-based simulation platform is implemented in MATLAB (R2023b), and a decision framework is developed for the simulation. Key findings demonstrate that mode-specific parameter calibration improves model accuracy, achieving an average error reduction of 80% compared to empirical methods. The simulation results reveal a positive correlation between the AV penetration rate and traffic flow stability, which consequently enhances capacity. Specifically, a full transition from 0% to 100% AV penetration increases traffic capacity by 50%. Conversely, elevated truck penetration rates degrade traffic flow stability, reducing the average speed by 75.37% under full truck penetration scenarios. Additionally, higher AV penetration helps stabilize traffic flow, leading to reduced speed fluctuations and lower emissions, while higher truck proportions contribute to higher emissions due to increased traffic instability. Full article
(This article belongs to the Section Sustainable Transportation)
Show Figures

Figure 1

16 pages, 9021 KiB  
Article
Effects of Daytime vs. Nighttime on Travel Mode Choice and Use Patterns: Insights from a Ride-Pooling Survey in Germany
by Mehmet Emre Goerguelue, Nadine Kostorz-Weiss, Ann-Sophie Voss, Martin Kagerbauer and Peter Vortisch
Appl. Sci. 2025, 15(14), 7774; https://doi.org/10.3390/app15147774 - 10 Jul 2025
Viewed by 335
Abstract
Ride-pooling (RP) services, in which passengers with similar destinations share a ride, offer considerable potential for enhancing urban mobility by bridging gaps in public transportation (PT) networks and providing a convenient alternative to private car use. For the effective design and operation of [...] Read more.
Ride-pooling (RP) services, in which passengers with similar destinations share a ride, offer considerable potential for enhancing urban mobility by bridging gaps in public transportation (PT) networks and providing a convenient alternative to private car use. For the effective design and operation of such services, a detailed understanding of user preferences and usage patterns is essential. This study investigates differences in RP preferences and usage between day and night (with nighttime defined as 10:00 p.m. to 5:00 a.m.), drawing on both a stated choice experiment (SCE) and revealed preference data collected in Mannheim, Germany. The focus lies on the local RP service fips, which is integrated into the PT system. The SCE, conducted in 2024 with 566 participants, was analyzed using a nested logit model. The analysis of the SCE reveals that nighttime preferences for RP are characterized by reduced sensitivity to travel time and cost, creating an opportunity for RP operators to optimize stop network designs during nighttime hours by increasing pooling rates. In addition, it indicates a greater likelihood of private car usage at night, especially among women, likely due to safety concerns and limited PT availability. The analysis of revealed preference data provides a complementary perspective. It shows that the RP nighttime service primarily attracts younger users, while many respondents report not being active on weekend nights. However, the combination of low public awareness and limited service availability, evidenced by rejected booking requests, suggests that existing demand is not being fully captured. This implies that low usage is not merely the result of low demand, but also of structural barriers on both the supply and information side. Overcoming these barriers through targeted information campaigns and expansion of nighttime service capacity could substantially enhance sustainable urban travel options during nighttime. Full article
(This article belongs to the Special Issue Sustainable Urban Mobility)
Show Figures

Figure 1

27 pages, 5427 KiB  
Article
Beyond Traditional Public Transport: A Cost–Benefit Analysis of First and Last-Mile AV Solutions in Periurban Environment
by Félix Carreyre, Tarek Chouaki, Nicolas Coulombel, Jaâfar Berrada, Laurent Bouillaut and Sebastian Hörl
Sustainability 2025, 17(14), 6282; https://doi.org/10.3390/su17146282 - 9 Jul 2025
Viewed by 353
Abstract
With the advent of Autonomous Vehicles (AV) technology, extensive research around the design of on-demand mobility systems powered by such vehicles is performed. An important part of these studies consists in the evaluation of the economic impact of such systems for involved stakeholders. [...] Read more.
With the advent of Autonomous Vehicles (AV) technology, extensive research around the design of on-demand mobility systems powered by such vehicles is performed. An important part of these studies consists in the evaluation of the economic impact of such systems for involved stakeholders. In this work, a cost–benefit analysis (CBA) is applied to the introduction of AV services in Paris-Saclay, an intercommunity, south of Paris, simulated through MATSim, an agent-based model capable of capturing complex travel behaviors and dynamic traffic interactions. AVs would be implemented as a feeder service, first- and last-mile service to public transit, allowing intermodal trips for travelers. The system is designed to target the challenges of public transport accessibility in periurban areas and high private car use, which the AV feeder service is designed to mitigate. To our knowledge, this study is one of the first CBA analyses of an intermodal AV system relying on an agent-based simulation. The introduction of AV in a periurban environment would generate more pressure on the road network (0.8% to 1.7% increase in VKT for all modes, and significant congestion around train stations) but would improve traveler utilities. The utility gains from the new AV users benefiting from a more comfortable mode offsets the longer travel times from private car users. A Stop-Based routing service generates less congestion than a Door-to-Door routing service, but the access/egress time counterbalances this gain. Finally, in a periurban environment where on-demand AV feeder service would be added to reduce the access and egress cost of public transit, the social impact would be nuanced for travelers (over 99% of gains captured by the 10% of most benefiting agents), but externality would increase. This would benefit some travelers but would also involve additional congestion. In that case, a Stop-Based routing on a constrained network (e.g., existing bus network) significantly improves economic viability and reduces infrastructure costs and would be less impacting than a Door-to-Door service. Full article
(This article belongs to the Section Sustainable Transportation)
Show Figures

Figure 1

24 pages, 3447 KiB  
Article
Vehicle-to-Grid Services in University Campuses: A Case Study at the University of Rome Tor Vergata
by Antonio Comi and Elsiddig Elnour
Future Transp. 2025, 5(3), 89; https://doi.org/10.3390/futuretransp5030089 - 8 Jul 2025
Viewed by 345
Abstract
As electric vehicles (EVs) become increasingly integrated into urban mobility, the load on electrical grids increases, prompting innovative energy management strategies. This paper investigates the deployment of vehicle-to-grid (V2G) services at the University of Rome Tor Vergata, leveraging high-resolution floating car data (FCD) [...] Read more.
As electric vehicles (EVs) become increasingly integrated into urban mobility, the load on electrical grids increases, prompting innovative energy management strategies. This paper investigates the deployment of vehicle-to-grid (V2G) services at the University of Rome Tor Vergata, leveraging high-resolution floating car data (FCD) to forecast and schedule energy transfers from EVs to the grid. The methodology follows a four-step process: (1) vehicle trip detection, (2) the spatial identification of V2G in the campus, (3) a real-time scheduling algorithm for V2G services, which accommodates EV user mobility requirements and adheres to charging infrastructure constraints, and finally, (4) the predictive modelling of transferred energy using ARIMA and LSTM models. The results demonstrate that substantial energy can be fed back to the campus grid during peak hours, with predictive models, particularly LSTM, offering high accuracy in anticipating transfer volumes. The system aligns energy discharge with campus load profiles while preserving user mobility requirements. The proposed approach shows how campuses can function as microgrids, transforming idle EV capacity into dynamic, decentralised energy storage. This framework offers a scalable model for urban energy optimisation, supporting broader goals of grid resilience and sustainable development. Full article
(This article belongs to the Special Issue Innovation in Last-Mile and Long-Distance Transportation)
Show Figures

Figure 1

33 pages, 8582 KiB  
Article
Mobile Tunnel Lining Measurable Image Scanning Assisted by Collimated Lasers
by Xueqin Wu, Jian Ma, Jianfeng Wang, Hongxun Song and Jiyang Xu
Sensors 2025, 25(13), 4177; https://doi.org/10.3390/s25134177 - 4 Jul 2025
Viewed by 251
Abstract
The health of road tunnel linings directly impacts traffic safety and requires regular inspection. Appearance defects on tunnel linings can be measured through images scanned by cameras mounted on a car to avoid disrupting traffic. Existing tunnel lining mobile scanning methods often fail [...] Read more.
The health of road tunnel linings directly impacts traffic safety and requires regular inspection. Appearance defects on tunnel linings can be measured through images scanned by cameras mounted on a car to avoid disrupting traffic. Existing tunnel lining mobile scanning methods often fail in image stitching due to the lack of corresponding feature points in the lining images, or require complex, time-consuming algorithms to eliminate stitching seams caused by the same issue. This paper proposes a mobile scanning method aided by collimated lasers, which uses lasers as corresponding points to assist with image stitching to address the problems. Additionally, the lasers serve as structured light, enabling the measurement of image projection relationships. An inspection car was developed based on this method for the experiment. To ensure operational flexibility, a single checkerboard was used to calibrate the system, including estimating the poses of lasers and cameras, and a Laplace kernel-based algorithm was developed to guarantee the calibration accuracy. Experiments show that the performance of this algorithm exceeds that of other benchmark algorithms, and the proposed method produces nearly seamless, measurable tunnel lining images, demonstrating its feasibility. Full article
(This article belongs to the Section Remote Sensors)
Show Figures

Figure 1

18 pages, 2131 KiB  
Article
Sustainability-Oriented Assessment of Passenger Car Emissions in Relation to Euro Standards Using the ECE-15 Driving Cycle
by Saugirdas Pukalskas, Dominik Adamaitis, Dainius Paliulis and Šarūnas Mikaliūnas
Sustainability 2025, 17(13), 6000; https://doi.org/10.3390/su17136000 - 30 Jun 2025
Viewed by 243
Abstract
This study introduces an original sustainability-oriented methodology for calculating pollutant emissions (g/km) based on the ECE-15 driving cycle, aimed at evaluating passenger car compliance with various Euro emission standards. Four vehicles—two diesel and two gasoline-powered—representing Euro 4 to Euro 6 categories, respectively, were [...] Read more.
This study introduces an original sustainability-oriented methodology for calculating pollutant emissions (g/km) based on the ECE-15 driving cycle, aimed at evaluating passenger car compliance with various Euro emission standards. Four vehicles—two diesel and two gasoline-powered—representing Euro 4 to Euro 6 categories, respectively, were tested under controlled laboratory conditions. CO, HC, NOx, and CO2 emissions were measured and analyzed using the developed method. The Euro 4 Nissan Qashqai+2 exceeded the CO limit by 2.07 times, while NOx and HC emissions were below the threshold by 1.46 and 50%, respectively. CO2 exceeded the limit by only 6.2%. The Euro 5 Nissan Qashqai showed extremely low CO and HC levels—33 and 333 times below the limit—but exceeded NOx by 1.32 times, with CO2 emissions 62.8% above the target. Both Euro 6 vehicles (VW Passat) exhibited undetectable CO emissions, HC levels under 2% of the limit, and NOx reduced by 3.81 to 15 times. However, their CO2 emissions remained elevated, at 2.9% and 51.4% above the standard, respectively. The results confirm the effectiveness of modern emission control technologies, while also highlighting that CO2 remains a major challenge, particularly for powerful gasoline vehicles. Full article
(This article belongs to the Special Issue Sustainable Energy System: Efficiency and Cost of Renewable Energy)
Show Figures

Figure 1

26 pages, 4037 KiB  
Article
Sustainability Assessment Framework for Urban Transportation Combining System Dynamics Modeling and GIS; A TOD and Parking Policy Approach
by Ahad Farnood, Ursula Eicker, Carmela Cucuzzella, Govind Gopakumar and Sepideh Khorramisarvestani
Smart Cities 2025, 8(4), 107; https://doi.org/10.3390/smartcities8040107 - 30 Jun 2025
Viewed by 619
Abstract
Urban transportation systems face increasing pressure to reduce car dependency and greenhouse gas emissions while supporting sustainable growth. This study addresses the lack of integrated modeling approaches that capture both spatial and temporal dynamics in transport planning. It develops a novel framework combining [...] Read more.
Urban transportation systems face increasing pressure to reduce car dependency and greenhouse gas emissions while supporting sustainable growth. This study addresses the lack of integrated modeling approaches that capture both spatial and temporal dynamics in transport planning. It develops a novel framework combining System Dynamics (SD) and Geographic Information Systems (GIS) to assess the sustainability of Transit-Oriented Development (TOD) strategies and parking policies in two brownfield redevelopment sites in Montreal. The framework embeds spatial metrics, such as proximity to transit, parking availability, and active transportation infrastructure into dynamic feedback loops. Using scenario analysis, the study compares a baseline reflecting current norms with an intervention scenario emphasizing higher density near transit, reduced parking ratios, and improved walkability and bike infrastructure. The results suggest that aligning TOD principles with targeted parking limits and investments in active mobility can substantially reduce car ownership and emissions. While primarily conceptual, the model provides a foundation for location-sensitive, feedback-driven planning tools that support sustainable urban mobility. Full article
Show Figures

Figure 1

39 pages, 1839 KiB  
Review
The Integration of the Internet of Things (IoT) Applications into 5G Networks: A Review and Analysis
by Aymen I. Zreikat, Zakwan AlArnaout, Ahmad Abadleh, Ersin Elbasi and Nour Mostafa
Computers 2025, 14(7), 250; https://doi.org/10.3390/computers14070250 - 25 Jun 2025
Cited by 1 | Viewed by 1709
Abstract
The incorporation of Internet of Things (IoT) applications into 5G networks marks a significant step towards realizing the full potential of connected systems. 5G networks, with their ultra-low latency, high data speeds, and huge interconnection, provide a perfect foundation for IoT ecosystems to [...] Read more.
The incorporation of Internet of Things (IoT) applications into 5G networks marks a significant step towards realizing the full potential of connected systems. 5G networks, with their ultra-low latency, high data speeds, and huge interconnection, provide a perfect foundation for IoT ecosystems to thrive. This connectivity offers a diverse set of applications, including smart cities, self-driving cars, industrial automation, healthcare monitoring, and agricultural solutions. IoT devices can improve their reliability, real-time communication, and scalability by exploiting 5G’s advanced capabilities such as network slicing, edge computing, and enhanced mobile broadband. Furthermore, the convergence of IoT with 5G fosters interoperability, allowing for smooth communication across diverse devices and networks. This study examines the fundamental technical applications, obstacles, and future perspectives for integrating IoT applications with 5G networks, emphasizing the potential benefits while also addressing essential concerns such as security, energy efficiency, and network management. The results of this review and analysis will act as a valuable resource for researchers, industry experts, and policymakers involved in the progression of 5G technologies and their incorporation with IT solutions. Full article
Show Figures

Figure 1

15 pages, 2061 KiB  
Article
Optimised Centralised Charging of Electric Vehicles Along Motorways
by Ekaterina Dudkina, Claudio Scarpelli, Valerio Apicella, Massimo Ceraolo and Emanuele Crisostomi
Sustainability 2025, 17(12), 5668; https://doi.org/10.3390/su17125668 - 19 Jun 2025
Viewed by 481
Abstract
Nowadays, when battery-powered electric vehicles (EVs) travel along motorways, their drivers decide where to recharge their cars’ batteries with no or scarce information on the occupancy status of the next charging stations. While this may still be acceptable in most countries, due to [...] Read more.
Nowadays, when battery-powered electric vehicles (EVs) travel along motorways, their drivers decide where to recharge their cars’ batteries with no or scarce information on the occupancy status of the next charging stations. While this may still be acceptable in most countries, due to the limited number of EVs on motorways, long queues may build-up in the coming years with increased electric mobility, unless smart allocation strategies are designed and implemented. For instance, as we shall investigate in this manuscript, a centralised coordination of the charging strategies of individual EVs has the potential to significantly reduce the queuing time at charging stations. In particular, in this paper we explain how the charging problem on motorways can be modelled as an optimisation problem, we propose some strategies based on dynamic optimisation to solve it, and we explain how this may be implemented in practice using a centralised charge manager that exchanges information with the EVs and solves the optimisation problems. Finally, we compare in a realistic scenario the current decentralised recharging strategies with a centralised one, and we show that, under simplifying assumptions, queueing times can be reduced by more than 50%. Such a significant reduction allows one to greatly improve vehicular flows and general journey durations without requiring building new infrastructure. Reducing queuing times has a positive impact on traffic congestion and emissions, and the more geographically balanced energy demand of the proposed methodology mitigates energy consumption peaks. Full article
Show Figures

Figure 1

Back to TopTop