Effects of Daytime vs. Nighttime on Travel Mode Choice and Use Patterns: Insights from a Ride-Pooling Survey in Germany
Abstract
1. Introduction
2. Literature Review
2.1. Nighttime Travel Behavior
2.2. Nighttime Utilization of RP Services
3. Methodology
3.1. Description of the RP Service Fips
3.2. Data Collection and Sample Description
3.3. Stated Choice Experiment Design
3.4. Model Specification
3.5. Model Selection
4. Results and Discussion
4.1. Revealed Preferences: Nighttime RP Usage and Perceptions
4.2. Stated Preferences for Daytime and Nighttime Travel Mode
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gödde, J.; Ruhrort, L.; Allert, V.; Scheiner, J. User characteristics and spatial correlates of ride-pooling demand–Evidence from Berlin and Munich. J. Transp. Geogr. 2023, 109, 103596. [Google Scholar] [CrossRef]
- Ke, J.; Yang, H.; Zheng, Z. On ride-pooling and traffic congestion. Transp. Res. Part B Methodol. 2020, 142, 213–231. [Google Scholar] [CrossRef]
- Shulika, O.; Bujak, M.; Ghasemi, F.; Kucharski, R. Spatiotemporal variability of ride-pooling potential–Half a year New York City experiment. J. Transp. Geogr. 2024, 114, 103767. [Google Scholar] [CrossRef]
- Wang, Y.; Zheng, B.; Lim, E.-P. Understanding the effects of taxi ride-sharing—A case study of Singapore. Comput. Environ. Urban Syst. 2018, 69, 124–132. [Google Scholar] [CrossRef]
- Fagnant, D.J.; Kockelman, K.M. Dynamic ride-sharing and fleet sizing for a system of shared autonomous vehicles in Austin, Texas. Transportation 2018, 45, 143–158. [Google Scholar] [CrossRef]
- Shaheen, S.; Chan, N. Mobility and the sharing economy: Potential to facilitate the first-and last-mile public transit connections. Built Environ. 2016, 42, 573–588. [Google Scholar] [CrossRef]
- Araldo, A.; de Palma, A.; Arib, S.; Gauthier, V.; Sere, R.; Chaabouni, Y.; Kharouaa, O.; Ari, A. Pooling for first and last mile: Integrating carpooling and transit. arXiv 2020, arXiv:2010.13438. [Google Scholar]
- Kostorz-Weiss, N.; Engelhardt, R.; Wilkes, G.; Dandl, F.; Heilig, M.; Zwick, F.; Fraedrich, E.; Bogenberger, K.; Vortisch, P.; Kagerbauer, M. Assessing the Role of Ride-Pooling in Urban Transportation Systems Using a Large-Scale Integrated Supply and Demand Model-Investigations Based on Empirical Data from Europe’s Largest Ride-Pooling Service. 2024; Under review. [Google Scholar] [CrossRef]
- Burghard, U.; Scherrer, A. Sharing vehicles or sharing rides-Psychological factors influencing the acceptance of carsharing and ridepooling in Germany. Energy Policy 2022, 164, 112874. [Google Scholar] [CrossRef]
- Lokhandwala, M.; Cai, H. Dynamic ride sharing using traditional taxis and shared autonomous taxis: A case study of NYC. Transp. Res. Part C Emerg. Technol. 2018, 97, 45–60. [Google Scholar] [CrossRef]
- Currie, G.; Delbosc, A.; Mahmoud, S. Factors Influencing Young Peoples’ Perceptions of Personal Safety on Public Transport. J. Public Transp. 2013, 16, 1–19. [Google Scholar] [CrossRef]
- Orozco-Fontalvo, M.; Soto, J.; Arévalo, A.; Oviedo-Trespalacios, O. Women’s perceived risk of sexual harassment in a Bus Rapid Transit (BRT) system: The case of Barranquilla, Colombia. J. Transp. Health 2019, 14, 100598. [Google Scholar] [CrossRef]
- Zwick, F.; Axhausen, K.W. Ride-pooling demand prediction: A spatiotemporal assessment in Germany. J. Transp. Geogr. 2022, 100, 103307. [Google Scholar] [CrossRef]
- Schaller, B. The New Automobility: Lyft, Uber and the Future of American Cities. 2018. Available online: https://trid.trb.org/View/1527868 (accessed on 27 March 2025).
- Anzenhofer, F.; Fleckenstein, D.; Klein, R.; Steinhardt, C. Analyzing the Impact of Demand Management in Rural Shared Mobility-on-Demand Systems. SRN Electron. J. 2023, 4682056. [Google Scholar] [CrossRef]
- Irannezhad, E.; Mahadevan, R. Examining factors influencing the adoption of solo, pooling and autonomous ride-hailing services in Australia. Transp. Res. Part C Emerg. Technol. 2022, 136, 103524. [Google Scholar] [CrossRef]
- Ke, J.; Yang, H.; Li, X.; Wang, H.; Ye, J. Pricing and equilibrium in on-demand ride-pooling markets. Transp. Res. Part B Methodol. 2020, 139, 411–431. [Google Scholar] [CrossRef]
- Soza-Parra, J.; Kucharski, R.; Cats, O. The shareability potential of ride-pooling under alternative spatial demand patterns. Transp. A Transp. Sci. 2024, 20, 2140022. [Google Scholar] [CrossRef]
- Kapitza, J. Freitagnachts unterwegs im ÖPNV. Standort 2022, 46, 68–75. [Google Scholar] [CrossRef]
- Scagnolari, S.; Walker, J.; Maggi, R. Young drivers’ night-time mobility preferences and attitude toward alcohol consumption: A Hybrid Choice Model. Accid. Anal. Prev. 2015, 83, 74–89. [Google Scholar] [CrossRef]
- McCray, T.; Brais, N. Exploring the Role of Transportation in Fostering Social Exclusion: The Use of GIS to Support Qualitative Data. Netw. Spat. Econ. 2007, 7, 397–412. [Google Scholar] [CrossRef]
- Yu, S.; Han, X.; Liu, L.; Liu, G.; Cheng, M.; Ke, Y.; Li, L. Exploring usage pattern variation of free-floating bike-sharing from a night travel perspective. Sci. Rep. 2024, 14, 16017. [Google Scholar] [CrossRef]
- Faghih-Imani, A.; Hampshire, R.; Marla, L.; Eluru, N. An empirical analysis of bike sharing usage and rebalancing: Evidence from Barcelona and Seville. Transp. Res. Part A Policy Pract. 2017, 97, 177–191. [Google Scholar] [CrossRef]
- Kapitza, J. How people get to work at night. A discrete choice model approach towards the influence of nighttime on the choice of transport mode for commuting to work. J. Transp. Geogr. 2022, 104, 103418. [Google Scholar] [CrossRef]
- Bromley, R.; Thomas, C.; Millie, A. Exploring safety concerns in the night-time city: Revitalising the evening economy. Town Plan. Rev. 2000, 71, 71–96. [Google Scholar] [CrossRef]
- Gelino, B.W.; Graham, M.E.; Strickland, J.C.; Glatter, H.W.; Hursh, S.R.; Reed, D.D. Using behavioral economics to optimize safer undergraduate late-night transportation. J. Appl. Behav. Anal. 2024, 57, 117–130. [Google Scholar] [CrossRef]
- Kapitza, J. Commuting at night: How time of day affects commuter perceptions. Travel Behav. Soc. 2024, 35, 100750. [Google Scholar] [CrossRef]
- Heinen, E.; Maat, K.; van Wee, B. Day-to-Day Choice to Commute or Not by Bicycle. Transp. Res. Rec. 2011, 2230, 9–18. [Google Scholar] [CrossRef]
- Kostorz, N.; Fraedrich, E.; Kagerbauer, M. Usage and user characteristics—insights from Moia, Europe’s largest ridepooling service. Sustainability 2021, 13, 958. [Google Scholar] [CrossRef]
- Zwick, F.; Fraedrich, E.; Kostorz, N.; Kagerbauer, M. Ridepooling als ÖPNV-Ergänzung: Der Moia-Nachtservice während der Corona-Pandemie. Int. Verkehrswesen 2020, 72, 84–88. [Google Scholar]
- Kuehnel, N.; Zwick, F.; Kuhlen, T.-E. Revealed demand patterns of people with disabilities in on-demand ridepooling. Eur. J. Transp. Infrastruct. Res. 2025, 25, 33–58. [Google Scholar] [CrossRef]
- Krauss, K.; Krail, M.; Axhausen, K.W. What drives the utility of shared transport services for urban travellers? A stated preference survey in German cities In. Case Stud. Transp. Policy 2021, 9, 1433–1445. [Google Scholar] [CrossRef]
- Hou, Y.; Garikapati, V.; Weigl, D.; Henao, A.; Moniot, M.; Sperling, J. Factors Influencing Willingness to Pool in Ride-Hailing Trips. Transp. Res. Rec. 2020, 2674, 419–429. [Google Scholar] [CrossRef]
- Rhein-Neckar-Verkehr GmbH. Fips—Personen-Shuttle. Rhein-Neckar-Verkehr GmbH. 2025. Available online: https://www.rnv-online.de/english/ (accessed on 27 March 2025).
- Institute for Transport Studies (Karlsruhe Institute of Technology). Accompanying Research fips. Institute for Transport Studies (Karlsruhe Institute of Technology). 2025. Available online: https://www.ifv.kit.edu/english/21_1650.php (accessed on 27 March 2025).
- Goerguelue, M.E.; Barthelmes, L.; Kagerbauer, M. Accompanying Research on Automated Minibusses in Monheim am Rhein: Report on Results; Karlsruhe Institute of Technology: Karlsruhe, Germany, 2024. [CrossRef]
- Bundesministerium für Verkehr und Digitale Infrastruktur, infas, Deutsches Zentrum für Luft- und Raumfahrt, Institut für Verkehrsplanung und Transportsysteme, infas360. Mobilität in Tabellen (MiT 2017). Bundesministerium für Verkehr und Digitale Infrastruktur. 2018. Available online: https://mobilitaet-in-tabellen.bast.de/ (accessed on 27 March 2025).
- ChoiceMetrics. Ngene 1.2: User Manual & Reference Guide. 2018. Available online: https://dl.icdst.org/pdfs/files4/a4dfa4b81043c641ec83525d32e8e33f.pdf (accessed on 27 March 2025).
- McFadden, D. Conditional logit analysis of qualitative choice behavior. In Frontiers in Econometrics; Zarembka, P., Ed.; Academic Press: New York, NY, USA, 1974; pp. 105–142. [Google Scholar]
- Train, K.E. Discrete Choice Methods with Simulation; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Hermaputi, R.L.; Hua, C. Decoding Jakarta Women’s Non-Working Travel-Mode Choice: Insights from Interpretable Machine-Learning Models. Sustainability 2024, 16, 8454. [Google Scholar] [CrossRef]
- Hagenauer, J.; Helbich, M. A Comparative Study of Machine Learning Classifiers for Modeling Travel Mode Choice. Expert Syst. Appl. 2017, 78, 273–282. [Google Scholar] [CrossRef]
- Martín-Baos, J.Á.; López-Gómez, J.A.; Rodriguez-Benitez, L.; Hillel, T.; García-Ródenas, R. A prediction and behavioural analysis of machine learning methods for modelling travel mode choice. Transp. Res. Part C Emerg. Technol. 2023, 156, 104318. [Google Scholar] [CrossRef]
- Koppelman, F.; Bhat, C. A Self Instructing Course in Mode Choice Modelling: Multinomial and Nested Logit Models; U.S. Department of Transportation, Federal Transit Administration: Washington, DC, USA, 2006.
- Hess, S.; Palma, D. Apollo: A Flexible, Powerful Cust. Free. Package Choice Model Estim. Application. J. Choice Model 2019, 32, 100170. [Google Scholar] [CrossRef]
- Schwarz, G. Estimating the Dimension of a Model. Ann. Stat. 1978, 6, 461–464. [Google Scholar] [CrossRef]
Category | Day and Night RP Users (n = 90|15%) | Daytime-only RP Users (n = 138|23%) | Non RP Users (n = 271|62%) | Germany (2017 [37]) |
---|---|---|---|---|
Sociodemographics | ||||
Female | 50.0% | 51.4% | 51.7% | 49% |
Average age [years] | 42.9 | 51.6 | 51.3 | 44.4 |
Individual with mobility impairments | 14.4% | 32.6% | 10.5% | 11% |
Employed | 58.9% | 60.1% | 64.3% | 47% |
Student | 10.0% | 2.1% | 5.2% | 2% |
Retired | 20.0% | 30.4% | 22.0% | 21% |
Lives in Mannheim city | 90.0% | 86.2% | 84.8% | – |
Availability of mobility tools | ||||
Driver’s license | 58.9% | 71.7% | 84.2% | 87% |
Avg. number of cars per household | 0.79 | 0.83 | 1.2 | 1.1 |
RP use at least once per week | 46.7% | 40.6% | – | – |
Public transit pass | 64.4% | 48.6% | 37.0% | 18% |
Bicycle available | 64.4% | 64.5% | 75.1% | 73% |
Car-sharing membership | 10.0% | 8.7% | 6.0% | 3% |
Bike-sharing membership | 10.0% | 10.1% | 8.1% | – |
E-scooter-sharing membership | 17.8% | 10.1% | 8.9% | – |
Attributes | Walking | Bicycle | Private Car | PT | RP | Taxi |
---|---|---|---|---|---|---|
Travel time (min) | 25, 35, 45, 55 | 9, 14, 19, 24 | 5, 8, 11, 14 | 6, 9, 12, 15 | 6, 9, 12, 15 | 5, 8, 11, 14 |
Egress time (min) | - | - | 2, 4, 6 | 4, 6, 8 | 2, 4 | - |
Degress time (min) | - | - | 1, 3, 5 | 2, 4, 6 | 2, 4, 6 | - |
Waiting time—day (min) | - | - | - | 4, 8, 12 | 4, 8, 12 | - |
Waiting time—night (min) | - | - | - | 15, 30, 45 | 15, 30, 45 | 2, 7, 12 |
Transfer (within PT) | - | - | - | 0, 1 | - | - |
Travel costs (EUR) | - | - | 1.5, 3, 4.5 | 0, 1.7, 3.2, 4.7 | 0, 1, 3.5, 4.5, 5.5 | 12, 18, 24 |
Model | LL | BIC | #Parameters |
---|---|---|---|
MNL base | 5 | ||
NL base | 7 | ||
MNL extended | 56 | ||
NL extended | 58 |
Walking | Bicycle | Private Car | PT | RP | Taxi | |
---|---|---|---|---|---|---|
Base attributes | ||||||
Alternative specific constants | 0.4 | 0 | 0.82 ** | 0.23 | 0.4 | −1.26 *** |
Travel time (min) | ||||||
Day | −0.05 *** | −0.07 *** | −0.35 ** | 0 | −0.06 *** | n.a. |
Night | −0.04 | −0.07 *** | 0 | 0 | 0 | −0.04 ** |
Travel cost (EUR) | ||||||
Day | n.a. | n.a. | −0.14 *** | −0.17 *** | −0.17 *** | 0 |
Night | n.a. | n.a. | −0.06 * | 0 | 0 | 0 |
Egress/Degress time (min) | ||||||
Day | n.a. | n.a. | −0.05 *** | 0 | −0.1 *** | n.a. |
Night | n.a. | n.a. | −0.07 *** | −0.05 *** | 0 | n.a. |
Waiting time (min) | ||||||
Day | n.a. | n.a. | n.a. | 0 | 0 | 0 |
Night | n.a. | n.a. | n.a. | −0.02 *** | −0.01 *** | 0 |
Further attributes | ||||||
Female | ||||||
Day | 0.37 * | 0 | 0.57 *** | 0.55 *** | 0.62 *** | n.a. |
Night | 0 | 0 | 0.93 *** | 0.75 *** | 0.42 ** | 0.71 *** |
Bicycle ownership | ||||||
Day | −1.1 *** | 0 | −1.27 *** | −1.32 *** | −1.38 *** | n.a. |
Night | −0.9 *** | 0 | −0.83 *** | −1.58 *** | −1.5 *** | −1.12 *** |
Individual with mobility impairments | ||||||
Day | 0 | 0 | 0 | 0.54 * | 0 | n.a. |
Night | 0 | 0 | 0 | 0 | 0 | 1.32 *** |
Trip to main train station | ||||||
Day | 0 | 0 | 0 | 0.87 *** | 1.07 *** | n.a. |
Night | 0 | 0 | 0 | 0.71 ** | 0.76 *** | 0.86 *** |
Leisure trip | ||||||
Day | 0 | 0 | 0 | 0 | 0 | n.a. |
Night | 0 | 0 | −0.45 * | 0 | 0 | 0 |
Home trip | ||||||
Day | 0 | 0 | 0 | 0 | 0 | n.a. |
Night | 0 | 0 | −0.42 * | 0 | 0 | 0 |
RP service awareness | ||||||
Day | 0.38 * | 0 | 0 | 0 | 1.06 *** | n.a. |
Night | 0 | 0 | −1.03 *** | 0 | 1.11 *** | 0 |
RP frequent user | ||||||
Day | 0 | 0 | 0 | 0 | 0.61 *** | n.a. |
Night | 0 | 0 | 0 | 0 | 0 | 0 |
PT pass ownership | ||||||
Day | 0 | 0 | −0.73 *** | 0.68 *** | 0 | n.a. |
Night | 0 | 0 | 0 | 0 | 0 | 0 |
Private car ownership | ||||||
Day | 0 | 0 | 0 | −0.5 *** | 0 | n.a. |
Night | 0 | 0 | 0 | 0 | 0 | 0 |
Child(-ren) in household | ||||||
Day | 0 | 0 | 0 | −0.35 * | 0 | n.a. |
Night | 0 | 0 | 0 | 0 | 0 | 0 |
Employed | ||||||
Day | 0 | 0 | 0 | −0.5 *** | 0 | n.a. |
Night | 0 | 0 | 0 | 0 | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Goerguelue, M.E.; Kostorz-Weiss, N.; Voss, A.-S.; Kagerbauer, M.; Vortisch, P. Effects of Daytime vs. Nighttime on Travel Mode Choice and Use Patterns: Insights from a Ride-Pooling Survey in Germany. Appl. Sci. 2025, 15, 7774. https://doi.org/10.3390/app15147774
Goerguelue ME, Kostorz-Weiss N, Voss A-S, Kagerbauer M, Vortisch P. Effects of Daytime vs. Nighttime on Travel Mode Choice and Use Patterns: Insights from a Ride-Pooling Survey in Germany. Applied Sciences. 2025; 15(14):7774. https://doi.org/10.3390/app15147774
Chicago/Turabian StyleGoerguelue, Mehmet Emre, Nadine Kostorz-Weiss, Ann-Sophie Voss, Martin Kagerbauer, and Peter Vortisch. 2025. "Effects of Daytime vs. Nighttime on Travel Mode Choice and Use Patterns: Insights from a Ride-Pooling Survey in Germany" Applied Sciences 15, no. 14: 7774. https://doi.org/10.3390/app15147774
APA StyleGoerguelue, M. E., Kostorz-Weiss, N., Voss, A.-S., Kagerbauer, M., & Vortisch, P. (2025). Effects of Daytime vs. Nighttime on Travel Mode Choice and Use Patterns: Insights from a Ride-Pooling Survey in Germany. Applied Sciences, 15(14), 7774. https://doi.org/10.3390/app15147774