Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,670)

Search Parameters:
Keywords = captured energy efficiency

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 4475 KiB  
Article
DFT Investigation into Adsorption–Desorption Properties of Mg/Ni-Doped Calcium-Based Materials
by Wei Shi, Renwei Li, Xin Bao, Haifeng Yang and Dehao Kong
Crystals 2025, 15(8), 711; https://doi.org/10.3390/cryst15080711 (registering DOI) - 3 Aug 2025
Abstract
Although concentrated solar power (CSP) coupled with calcium looping (CaL) offers a promising avenue for efficient thermal chemical energy storage, calcium-based sorbents suffer from accelerated structural degradation and decreased CO2 capture capacity during multiple cycles. This study used Density Functional Theory (DFT) [...] Read more.
Although concentrated solar power (CSP) coupled with calcium looping (CaL) offers a promising avenue for efficient thermal chemical energy storage, calcium-based sorbents suffer from accelerated structural degradation and decreased CO2 capture capacity during multiple cycles. This study used Density Functional Theory (DFT) calculations to investigate the mechanism by which Mg and Ni doping improves the adsorption/desorption performance of CaO. The DFT results indicate that Mg and Ni doping can effectively reduce the formation energy of oxygen vacancies on the CaO surface. Mg–Ni co-doping exhibits a significant synergistic effect, with the formation energy of oxygen vacancies reduced to 5.072 eV. Meanwhile, the O2− diffusion energy barrier in the co-doped system was reduced to 2.692 eV, significantly improving the ion transport efficiency. In terms of CO2 adsorption, Mg and Ni co-doping enhances the interaction between surface O atoms and CO2, increasing the adsorption energy to −1.703 eV and forming a more stable CO32− structure. For the desorption process, Mg and Ni co-doping restructured the CaCO3 surface structure, reducing the CO2 desorption energy barrier to 3.922 eV and significantly promoting carbonate decomposition. This work reveals, at the molecular level, how Mg and Ni doping optimizes adsorption–desorption in calcium-based materials, providing theoretical guidance for designing high-performance sorbents. Full article
(This article belongs to the Special Issue Performance and Processing of Metal Materials)
Show Figures

Figure 1

18 pages, 3091 KiB  
Article
Construction of Typical Scenarios for Multiple Renewable Energy Plant Outputs Considering Spatiotemporal Correlations
by Yuyue Zhang, Yan Wen, Nan Wang, Zhenhua Yuan, Lina Zhang and Runjia Sun
Symmetry 2025, 17(8), 1226; https://doi.org/10.3390/sym17081226 (registering DOI) - 3 Aug 2025
Abstract
A high-quality set of typical scenarios is significant for power grid planning. Existing construction methods for typical scenarios do not account for the spatiotemporal correlations among renewable energy plant outputs, failing to adequately reflect the distribution characteristics of original scenarios. To address the [...] Read more.
A high-quality set of typical scenarios is significant for power grid planning. Existing construction methods for typical scenarios do not account for the spatiotemporal correlations among renewable energy plant outputs, failing to adequately reflect the distribution characteristics of original scenarios. To address the issues mentioned above, this paper proposes a construction method for typical scenarios considering spatiotemporal correlations, providing high-quality typical scenarios for power grid planning. Firstly, a symmetric spatial correlation matrix and a temporal autocorrelation matrix are defined, achieving quantitative representation of spatiotemporal correlations. Then, distributional differences between typical and original scenarios are quantified from multiple dimensions, and a scenario reduction model considering spatiotemporal correlations is established. Finally, the genetic algorithm is improved by incorporating adaptive parameter adjustment and an elitism strategy, which can efficiently obtain high-quality typical scenarios. A case study involving five wind farms and fourteen photovoltaic plants in Belgium is presented. The rate of error between spatial correlation matrices of original and typical scenario sets is lower than 2.6%, and the rate of error between temporal autocorrelations is lower than 2.8%. Simulation results demonstrate that typical scenarios can capture the spatiotemporal correlations of original scenarios. Full article
(This article belongs to the Special Issue New Power System and Symmetry)
Show Figures

Figure 1

24 pages, 2863 KiB  
Article
An Integrated–Intensified Adsorptive-Membrane Reactor Process for Simultaneous Carbon Capture and Hydrogen Production: Multi-Scale Modeling and Simulation
by Seckin Karagoz
Gases 2025, 5(3), 17; https://doi.org/10.3390/gases5030017 (registering DOI) - 2 Aug 2025
Abstract
Minimizing carbon dioxide emissions is crucial due to the generation of energy from fossil fuels. The significance of carbon capture and storage (CCS) technology, which is highly successful in mitigating carbon emissions, has increased. On the other hand, hydrogen is an important energy [...] Read more.
Minimizing carbon dioxide emissions is crucial due to the generation of energy from fossil fuels. The significance of carbon capture and storage (CCS) technology, which is highly successful in mitigating carbon emissions, has increased. On the other hand, hydrogen is an important energy carrier for storing and transporting energy, and technologies that rely on hydrogen have become increasingly promising as the world moves toward a more environmentally friendly approach. Nevertheless, the integration of CCS technologies into power production processes is a significant challenge, requiring the enhancement of the combined power generation–CCS process. In recent years, there has been a growing interest in process intensification (PI), which aims to create smaller, cleaner, and more energy efficient processes. The goal of this research is to demonstrate the process intensification potential and to model and simulate a hybrid integrated–intensified adsorptive-membrane reactor process for simultaneous carbon capture and hydrogen production. A comprehensive, multi-scale, multi-phase, dynamic, computational fluid dynamics (CFD)-based process model is constructed, which quantifies the various underlying complex physicochemical phenomena occurring at the pellet and reactor levels. Model simulations are then performed to investigate the impact of dimensionless variables on overall system performance and gain a better understanding of this cyclic reaction/separation process. The results indicate that the hybrid system shows a steady-state cyclic behavior to ensure flexible operating time. A sustainability evaluation was conducted to illustrate the sustainability improvement in the proposed process compared to the traditional design. The results indicate that the integrated–intensified adsorptive-membrane reactor technology enhances sustainability by 35% to 138% for the chosen 21 indicators. The average enhancement in sustainability is almost 57%, signifying that the sustainability evaluation reveals significant benefits of the integrated–intensified adsorptive-membrane reactor process compared to HTSR + LTSR. Full article
Show Figures

Figure 1

35 pages, 3218 KiB  
Article
Integrated GBR–NSGA-II Optimization Framework for Sustainable Utilization of Steel Slag in Road Base Layers
by Merve Akbas
Appl. Sci. 2025, 15(15), 8516; https://doi.org/10.3390/app15158516 (registering DOI) - 31 Jul 2025
Viewed by 98
Abstract
This study proposes an integrated, machine learning-based multi-objective optimization framework to evaluate and optimize the utilization of steel slag in road base layers, simultaneously addressing economic costs and environmental impacts. A comprehensive dataset of 482 scenarios was engineered based on literature-informed parameters, encompassing [...] Read more.
This study proposes an integrated, machine learning-based multi-objective optimization framework to evaluate and optimize the utilization of steel slag in road base layers, simultaneously addressing economic costs and environmental impacts. A comprehensive dataset of 482 scenarios was engineered based on literature-informed parameters, encompassing transport distance, processing energy intensity, initial moisture content, gradation adjustments, and regional electricity emission factors. Four advanced tree-based ensemble regression algorithms—Random Forest Regressor (RFR), Extremely Randomized Trees (ERTs), Gradient Boosted Regressor (GBR), and Extreme Gradient Boosting Regressor (XGBR)—were rigorously evaluated. Among these, GBR demonstrated superior predictive performance (R2 > 0.95, RMSE < 7.5), effectively capturing complex nonlinear interactions inherent in slag processing and logistics operations. Feature importance analysis via SHapley Additive exPlanations (SHAP) provided interpretative insights, highlighting transport distance and energy intensity as dominant factors affecting unit cost, while moisture content and grid emission factor predominantly influenced CO2 emissions. Subsequently, the Gradient Boosted Regressor model was integrated into a Non-Dominated Sorting Genetic Algorithm II (NSGA-II) framework to explore optimal trade-offs between cost and emissions. The resulting Pareto front revealed a diverse solution space, with significant nonlinear trade-offs between economic efficiency and environmental performance, clearly identifying strategic inflection points. To facilitate actionable decision-making, the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) method was applied, identifying an optimal balanced solution characterized by a transport distance of 47 km, energy intensity of 1.21 kWh/ton, moisture content of 6.2%, moderate gradation adjustment, and a grid CO2 factor of 0.47 kg CO2/kWh. This scenario offered a substantial reduction (45%) in CO2 emissions relative to cost-minimized solutions, with a moderate increase (33%) in total cost, presenting a realistic and balanced pathway for sustainable infrastructure practices. Overall, this study introduces a robust, scalable, and interpretable optimization framework, providing valuable methodological advancements for sustainable decision making in infrastructure planning and circular economy initiatives. Full article
Show Figures

Figure 1

22 pages, 2499 KiB  
Article
Low-Power Vibrothermography for Detecting Barely Visible Impact Damage in CFRP Laminates: A Comparative Imaging Study
by Zulham Hidayat, Muhammet Ebubekir Torbali, Nicolas P. Avdelidis and Henrique Fernandes
Appl. Sci. 2025, 15(15), 8514; https://doi.org/10.3390/app15158514 (registering DOI) - 31 Jul 2025
Viewed by 79
Abstract
This study explores the application of low-power vibrothermography (LVT) for detecting barely visible impact damage (BVID) in carbon fibre-reinforced polymer (CFRP) laminates. Composite specimens with varying impact energies (2.5–20 J) were excited using a single piezoelectric transducer with a nominal centre frequency of [...] Read more.
This study explores the application of low-power vibrothermography (LVT) for detecting barely visible impact damage (BVID) in carbon fibre-reinforced polymer (CFRP) laminates. Composite specimens with varying impact energies (2.5–20 J) were excited using a single piezoelectric transducer with a nominal centre frequency of 28 kHz, operated at a fixed excitation frequency of 28 kHz. Thermal data were captured using an infrared camera. To enhance defect visibility and suppress background noise, the raw thermal sequences were processed using principal component analysis (PCA) and robust principal component analysis (RPCA). In LVT, RPCA and PCA provided comparable signal-to-noise ratios (SNR), with no consistent advantage for either method across all cases. In contrast, for pulsed thermography (PT) data, RPCA consistently resulted in higher SNR values, except for one sample. The LVT results were further validated by comparison with PT and phased array ultrasonic testing (PAUT) data to confirm the location and shape of detected damage. These findings demonstrate that LVT, when combined with PCA or RPCA, offers a reliable method for identifying BVID and can support safer, more efficient structural health monitoring of composite materials. Full article
(This article belongs to the Special Issue Application of Acoustics as a Structural Health Monitoring Technology)
Show Figures

Figure 1

33 pages, 4670 KiB  
Article
Universal Prediction of CO2 Adsorption on Zeolites Using Machine Learning: A Comparative Analysis with Langmuir Isotherm Models
by Emrah Kirtil
ChemEngineering 2025, 9(4), 80; https://doi.org/10.3390/chemengineering9040080 - 28 Jul 2025
Viewed by 175
Abstract
The global atmospheric concentration of carbon dioxide (CO2) has exceeded 420 ppm. Adsorption-based carbon capture technologies, offer energy-efficient, sustainable solutions. Relying on classical adsorption models like Langmuir to predict CO2 uptake presents limitations due to the need for case-specific parameter [...] Read more.
The global atmospheric concentration of carbon dioxide (CO2) has exceeded 420 ppm. Adsorption-based carbon capture technologies, offer energy-efficient, sustainable solutions. Relying on classical adsorption models like Langmuir to predict CO2 uptake presents limitations due to the need for case-specific parameter fitting. To address this, the present study introduces a universal machine learning (ML) framework using multiple algorithms—Generalized Linear Model (GLM), Feed-forward Multilayer Perceptron (DL), Decision Tree (DT), Random Forest (RF), Support Vector Machine (SVM), and Gradient Boosted Trees (GBT)—to reliably predict CO2 adsorption capacities across diverse zeolite structures and conditions. By compiling over 5700 experimentally measured adsorption data points from 71 independent studies, this approach systematically incorporates critical factors including pore size, Si/Al ratio, cation type, temperature, and pressure. Rigorous Cross-Validation confirmed superior performance of the GBT model (R2 = 0.936, RMSE = 0.806 mmol/g), outperforming other ML models and providing comparable performance with classical Langmuir model predictions without separate parameter calibration. Feature importance analysis identified pressure, Si/Al ratio, and cation type as dominant influences on adsorption performance. Overall, this ML-driven methodology demonstrates substantial promise for accelerating material discovery, optimization, and practical deployment of zeolite-based CO2 capture technologies. Full article
Show Figures

Figure 1

20 pages, 1676 KiB  
Article
Data-Driven Distributionally Robust Optimization for Solar-Powered EV Charging Under Spatiotemporal Uncertainty in Urban Distribution Networks
by Tianhao Wang, Xuejiao Zhang, Xiaolin Zheng, Jian Wang, Shiqian Ma, Jian Chen, Mengyu Liu and Wei Wei
Energies 2025, 18(15), 4001; https://doi.org/10.3390/en18154001 - 27 Jul 2025
Viewed by 337
Abstract
The rapid electrification of transportation and the proliferation of rooftop solar photovoltaics (PVs) in urban environments are reshaping the operational dynamics of power distribution networks. However, the inherent uncertainty in electric vehicle (EV) behavior—including arrival times, charging preferences, and state-of-charge—as well as spatially [...] Read more.
The rapid electrification of transportation and the proliferation of rooftop solar photovoltaics (PVs) in urban environments are reshaping the operational dynamics of power distribution networks. However, the inherent uncertainty in electric vehicle (EV) behavior—including arrival times, charging preferences, and state-of-charge—as well as spatially and temporally variable solar generation, presents a profound challenge to existing scheduling frameworks. This paper proposes a novel data-driven distributionally robust optimization (DDRO) framework for solar-powered EV charging coordination under spatiotemporal uncertainty. Leveraging empirical datasets of EV usage and solar irradiance from a smart city deployment, the framework constructs Wasserstein ambiguity sets around historical distributions, enabling worst-case-aware decision-making without requiring the assumption of probability laws. The problem is formulated as a two-stage optimization model. The first stage determines day-ahead charging schedules, solar utilization levels, and grid allocations across an urban-scale distribution feeder. The second stage models real-time recourse actions—such as dynamic curtailment or demand reshaping—after uncertainties are realized. Physical grid constraints are modeled using convexified LinDistFlow equations, while EV behavior is segmented into user classes with individualized uncertainty structures. The model is evaluated on a modified IEEE 123-bus feeder with 52 EV-PV nodes, using 15 min resolution over a 24 h horizon and 12 months of real-world data. Comparative results demonstrate that the proposed DDRO method reduces total operational costs by up to 15%, eliminates voltage violations entirely, and improves EV service satisfaction by more than 30% relative to deterministic and stochastic baselines. This work makes three primary contributions: it introduces a robust, tractable optimization architecture that captures spatiotemporal uncertainty using empirical Wasserstein sets; it integrates behavioral and physical modeling within a unified dispatch framework for urban energy-mobility systems; and it demonstrates the value of robust coordination in simultaneously improving grid resilience, renewable utilization, and EV user satisfaction. The results offer practical insights for city-scale planners seeking to enable the reliable and efficient electrification of mobility infrastructure under uncertainty. Full article
Show Figures

Figure 1

37 pages, 7561 KiB  
Article
Efficient Machine Learning-Based Prediction of Solar Irradiance Using Multi-Site Data
by Hassan N. Noura, Zaid Allal, Ola Salman and Khaled Chahine
Future Internet 2025, 17(8), 336; https://doi.org/10.3390/fi17080336 - 27 Jul 2025
Viewed by 175
Abstract
Photovoltaic panels have become a promising solution for generating renewable energy and reducing our reliance on fossil fuels by capturing solar energy and converting it into electricity. The effectiveness of this conversion depends on several factors, such as the quality of the solar [...] Read more.
Photovoltaic panels have become a promising solution for generating renewable energy and reducing our reliance on fossil fuels by capturing solar energy and converting it into electricity. The effectiveness of this conversion depends on several factors, such as the quality of the solar panels and the amount of solar radiation received in a specific region. This makes accurate solar irradiance forecasting essential for planning and managing efficient solar power systems. This study examines the application of machine learning (ML) models for accurately predicting global horizontal irradiance (GHI) using a three-year dataset from six distinct photovoltaic stations: NELHA, ULL, HSU, RaZON+, UNLV, and NWTC. The primary aim is to identify optimal shared features for GHI prediction across multiple sites using a 30 min time shift based on autocorrelation analysis. Key features identified for accurate GHI prediction include direct normal irradiance (DNI), diffuse horizontal irradiance (DHI), and solar panel temperatures. The predictions were performed using tree-based algorithms and ensemble learners, achieving R2 values exceeding 95% at most stations, with NWTC reaching 99%. Gradient Boosting Regression (GBR) performed best at NELHA, NWTC, and RaZON, while Multi-Layer Perceptron (MLP) excelled at ULL and UNLV. CatBoost was optimal for HSU. The impact of time-shifting values on performance was also examined, revealing that larger shifts led to performance deterioration, though MLP performed well under these conditions. The study further proposes a stacking ensemble approach to enhance model generalizability, integrating the strengths of various models for more robust GHI prediction. Full article
(This article belongs to the Section Smart System Infrastructure and Applications)
Show Figures

Figure 1

25 pages, 1490 KiB  
Article
Globalization, Financial Risk, and Environmental Degradation in China: The Role of Human Capital and Renewable Energy Use
by Ruwayda Nsair and Ahmad Bassam Alzubi
Sustainability 2025, 17(15), 6810; https://doi.org/10.3390/su17156810 - 27 Jul 2025
Viewed by 570
Abstract
Amid rising climate concerns, understanding how renewable energy adoption, human capital, fossil fuel efficiency, and globalization collectively shape CO2 emissions is crucial for unlocking pathways to a cleaner, resilient, and globally connected low-carbon future. Using China as a case study, this research [...] Read more.
Amid rising climate concerns, understanding how renewable energy adoption, human capital, fossil fuel efficiency, and globalization collectively shape CO2 emissions is crucial for unlocking pathways to a cleaner, resilient, and globally connected low-carbon future. Using China as a case study, this research investigates the drivers of CO2 emissions, focusing on fossil fuel efficiency, renewable energy adoption, and globalization, utilizing quarterly data from 1984Q1 to 2023Q4. To ensure robust and nuanced insights, the study integrates advanced machine learning techniques alongside Quantile-on-Quantile Kernel Regularized Least Squares (QQ-KRLS) and a Modified Quantile Regression as robustness checks, capturing complex distributional dynamics often overlooked in conventional analyses. To the authors’ knowledge, this is the first empirical study examining such relationships for the case of China. The results reveal that globalization, fossil fuel efficiency, renewable energy, human capital, and financial risk all contribute to increasing CO2 emissions. The study proposes precise policies based on the findings obtained. Full article
(This article belongs to the Special Issue Advances in Climate and Energy Economics)
Show Figures

Figure 1

16 pages, 1145 KiB  
Article
A Hybrid Transformer–Mamba Model for Multivariate Metro Energy Consumption Forecasting
by Liheng Long, Zhiyao Chen, Junqian Wu, Qing Fu, Zirui Zhang, Fan Feng and Ronghui Zhang
Electronics 2025, 14(15), 2986; https://doi.org/10.3390/electronics14152986 - 26 Jul 2025
Viewed by 313
Abstract
With the rapid growth of urban populations and the expansion of metro networks, accurate energy consumption prediction has become a critical task for optimizing metro operations and supporting low-carbon city development. Traditional statistical and machine learning methods often struggle to model the complex, [...] Read more.
With the rapid growth of urban populations and the expansion of metro networks, accurate energy consumption prediction has become a critical task for optimizing metro operations and supporting low-carbon city development. Traditional statistical and machine learning methods often struggle to model the complex, nonlinear, and time-varying nature of metro energy data. To address these challenges, this paper proposes MTMM, a novel hybrid model that integrates the multi-head attention mechanism of the Transformer with the efficient, state-space-based Mamba architecture. The Transformer effectively captures long-range temporal dependencies, while Mamba enhances inference speed and reduces complexity. Additionally, the model incorporates multivariate energy features, leveraging the correlations among different energy consumption types to improve predictive performance. Experimental results on real-world data from the Guangzhou Metro demonstrate that MTMM significantly outperforms existing methods in terms of both MAE and MSE. The model also shows strong generalization ability across different prediction lengths and time step configurations, offering a promising solution for intelligent energy management in metro systems. Full article
(This article belongs to the Special Issue AI Applications for Smart Grid)
Show Figures

Figure 1

25 pages, 3454 KiB  
Article
Dynamic Temperature–Vacuum Swing Adsorption for Sustainable Direct Air Capture: Parametric Optimisation for High-Purity CO2 Removal
by Maryam Nasiri Ghiri, Hamid Reza Nasriani, Leila Khajenoori, Samira Mohammadkhani and Karl S. Williams
Sustainability 2025, 17(15), 6796; https://doi.org/10.3390/su17156796 - 25 Jul 2025
Viewed by 512
Abstract
Direct air capture (DAC), as a complementary strategy to carbon capture and storage (CCS), offers a scalable and sustainable pathway to remove CO2 directly from the ambient air. This study presents a detailed evaluation of the amine-functionalised metal-organic framework (MOF) sorbent, mmen-Mg [...] Read more.
Direct air capture (DAC), as a complementary strategy to carbon capture and storage (CCS), offers a scalable and sustainable pathway to remove CO2 directly from the ambient air. This study presents a detailed evaluation of the amine-functionalised metal-organic framework (MOF) sorbent, mmen-Mg2(dobpdc), for DAC using a temperature–vacuum swing adsorption (TVSA) process. While this sorbent has demonstrated promising performance in point-source CO2 capture, this is the first dynamic simulation-based study to rigorously assess its effectiveness for low-concentration atmospheric CO2 removal. A transient one-dimensional TVSA model was developed in Aspen Adsorption and validated against experimental breakthrough data to ensure accuracy in capturing both the sharp and gradual adsorption kinetics. To enhance process efficiency and sustainability, this work provides a comprehensive parametric analysis of key operational factors, including air flow rate, temperature, adsorption/desorption durations, vacuum pressure, and heat exchanger temperature, on process performance, including CO2 purity, recovery, productivity, and specific energy consumption. Under optimal conditions for this sorbent (vacuum pressure lower than 0.15 bar and feed temperature below 15 °C), the TVSA process achieved ~98% CO2 purity, recovery over 70%, and specific energy consumption of about 3.5 MJ/KgCO2. These findings demonstrate that mmen-Mg2(dobpdc) can achieve performance comparable to benchmark DAC sorbents in terms of CO2 purity and recovery, underscoring its potential for scalable DAC applications. This work advances the development of energy-efficient carbon removal technologies and highlights the value of step-shape isotherm adsorbents in supporting global carbon-neutrality goals. Full article
(This article belongs to the Section Waste and Recycling)
Show Figures

Figure 1

38 pages, 2182 KiB  
Article
Smart Grid Strategies for Tackling the Duck Curve: A Qualitative Assessment of Digitalization, Battery Energy Storage, and Managed Rebound Effects Benefits
by Joseph Nyangon
Energies 2025, 18(15), 3988; https://doi.org/10.3390/en18153988 - 25 Jul 2025
Viewed by 366
Abstract
Modern utilities face unprecedented pressures as trends in digital transformation and democratized energy choice empower consumers to engage in peak shaving, flexible load management, and adopt grid automation and intelligence solutions. A powerful confluence of architectural, technological, and socio-economic forces is transforming the [...] Read more.
Modern utilities face unprecedented pressures as trends in digital transformation and democratized energy choice empower consumers to engage in peak shaving, flexible load management, and adopt grid automation and intelligence solutions. A powerful confluence of architectural, technological, and socio-economic forces is transforming the U.S. electricity market, triggering significant changes in electricity production, transmission, and consumption. Utilities are embracing digital twins and repurposed Utility 2.0 concepts—distributed energy resources, microgrids, innovative electricity market designs, real-time automated monitoring, smart meters, machine learning, artificial intelligence, and advanced data and predictive analytics—to foster operational flexibility and market efficiency. This analysis qualitatively evaluates how digitalization, Battery Energy Storage Systems (BESSs), and adaptive strategies to mitigate rebound effects collectively advance smart duck curve management. By leveraging digital platforms for real-time monitoring and predictive analytics, utilities can optimize energy flows and make data-driven decisions. BESS technologies capture surplus renewable energy during off-peak periods and discharge it when demand spikes, thereby smoothing grid fluctuations. This review explores the benefits of targeted digital transformation, BESSs, and managed rebound effects in mitigating the duck curve problem, ensuring that energy efficiency gains translate into actual savings. Furthermore, this integrated approach not only reduces energy wastage and lowers operational costs but also enhances grid resilience, establishing a robust framework for sustainable energy management in an evolving market landscape. Full article
(This article belongs to the Special Issue Policy and Economic Analysis of Energy Systems)
Show Figures

Figure 1

31 pages, 3300 KiB  
Article
Economic Growth and Energy Consumption in Thailand: Evidence from the Energy Kuznets Curve Using Provincial-Level Data
by Thanakhom Srisaringkarn and Kentaka Aruga
Energies 2025, 18(15), 3980; https://doi.org/10.3390/en18153980 - 25 Jul 2025
Viewed by 350
Abstract
This study investigates the relationship between economic growth and energy consumption using the Energy Kuznets Curve (EKC) framework. Spatial econometric models, including the Spatial Panel Lag Model and the Spatial Dynamic Panel Lag IV Model, are employed to capture both spatial and dynamic [...] Read more.
This study investigates the relationship between economic growth and energy consumption using the Energy Kuznets Curve (EKC) framework. Spatial econometric models, including the Spatial Panel Lag Model and the Spatial Dynamic Panel Lag IV Model, are employed to capture both spatial and dynamic effects. The results indicate that energy consumption in Thailand is spatially clustered, with energy use tending to spill over into neighboring provinces and concentrating in specific regions. Key factors that positively influence energy consumption include gross provincial product (GPP) per capita, population density, and road density. Regions characterized by favorable climates, sufficient infrastructure, and high levels of economic activity exhibit higher per capita energy consumption. The EKC analysis reveals a U-shape relationship between GPP per capita and energy consumption in the BKK&VIC, CE, EA, WE, and NE regions. As many regions continue to experience rising energy consumption, the findings underscore the importance of Thailand adopting more efficient energy usage strategies in tandem with its economic development. Full article
(This article belongs to the Special Issue Environmental Sustainability and Energy Economy)
Show Figures

Figure 1

22 pages, 3507 KiB  
Article
An Ensemble Model of Attention-Enhanced N-BEATS and XGBoost for District Heating Load Forecasting
by Shaohua Yu, Xiaole Yang, Hengrui Ye, Daogui Tang, Hamidreza Arasteh and Josep M. Guerrero
Energies 2025, 18(15), 3984; https://doi.org/10.3390/en18153984 - 25 Jul 2025
Viewed by 211
Abstract
Accurate heat load forecasting is essential for the efficiency of District Heating Systems (DHS). Still, it is challenged by the need to model long-term temporal dependencies and nonlinear relationships with weather and other factors. This study proposes a hybrid deep learning framework combining [...] Read more.
Accurate heat load forecasting is essential for the efficiency of District Heating Systems (DHS). Still, it is challenged by the need to model long-term temporal dependencies and nonlinear relationships with weather and other factors. This study proposes a hybrid deep learning framework combining an attention-enhanced Neural Basis Expansion Analysis for Time Series (N-BEATS) model and eXtreme Gradient Boosting (XGBoost). The N-BEATS component, with a multi-head self-attention mechanism, captures temporal dynamics, while XGBoost models non-linear impacts of external variables. Predictions are integrated using an optimized weighted averaging strategy. Evaluated on a dataset from 103 heating units, the model outperformed 13 baselines, achieving an MSE of 0.4131, MAE of 0.3732, RMSE of 0.6427, and R2 of 0.9664. This corresponds to a reduction of 32.6% in MSE, 32.0% in MAE, and 17.9% in RMSE, and an improvement of 5.1% in R2 over the best baseline. Ablation studies and statistical tests confirmed the effectiveness of the attention mechanism and ensemble strategy. This model provides an efficient solution for DHS load forecasting, facilitating optimized energy dispatch and enhancing system performance. Full article
Show Figures

Figure 1

22 pages, 4670 KiB  
Article
Integrated Carbon Flow Tracing and Topology Reconfiguration for Low-Carbon Optimal Dispatch in DG-Embedded Distribution Networks
by Rao Fu, Guofeng Xia, Sining Hu, Yuhao Zhang, Handaoyuan Li and Jiachuan Shi
Mathematics 2025, 13(15), 2395; https://doi.org/10.3390/math13152395 - 25 Jul 2025
Viewed by 228
Abstract
Addressing the imperative for energy transition amid depleting fossil fuels, distributed generation (DG) is increasingly integrated into distribution networks (DNs). This integration necessitates low-carbon dispatching solutions that reconcile economic and environmental objectives. To bridge the gap between conventional “electricity perspective” optimization and emerging [...] Read more.
Addressing the imperative for energy transition amid depleting fossil fuels, distributed generation (DG) is increasingly integrated into distribution networks (DNs). This integration necessitates low-carbon dispatching solutions that reconcile economic and environmental objectives. To bridge the gap between conventional “electricity perspective” optimization and emerging “carbon perspective” requirements, this research integrated Carbon Emission Flow (CEF) theory to analyze spatiotemporal carbon flow characteristics within DN. Recognizing the limitations of the single-objective approach in balancing multifaceted demands, a multi-objective optimization model was formulated. This model could capture the spatiotemporal dynamics of nodal carbon intensity for low-carbon dispatching while comprehensively incorporating diverse operational economic costs to achieve collaborative low-carbon and economic dispatch in DG-embedded DN. To efficiently solve this complex constrained model, a novel Q-learning enhanced Moth Flame Optimization (QMFO) algorithm was proposed. QMFO synergized the global search capability of the Moth Flame Optimization (MFO) algorithm with the adaptive decision-making of Q-learning, embedding an adaptive exploration strategy to significantly enhance solution efficiency and accuracy for multi-objective problems. Validated on a 16-node three-feeder system, the method co-optimizes switch configurations and DG outputs, achieving dual objectives of loss reduction and carbon emission mitigation while preserving radial topology feasibility. Full article
(This article belongs to the Special Issue Mathematical and Computational Methods for Mechanics and Engineering)
Show Figures

Figure 1

Back to TopTop