Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (19)

Search Parameters:
Keywords = canyon heads

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 14257 KiB  
Article
Shallow-Water Submarine Landslide Susceptibility Map: The Example in a Sector of Capo d’Orlando Continental Margin (Southern Tyrrhenian Sea)
by Elena Scacchia, Daniele Casalbore, Fabiano Gamberi, Daniele Spatola, Marco Bianchini and Francesco Latino Chiocci
J. Mar. Sci. Eng. 2025, 13(7), 1350; https://doi.org/10.3390/jmse13071350 - 16 Jul 2025
Viewed by 356
Abstract
Active continental margins, generally characterized by narrow shelves incised by canyons, are pervasively shaped by submarine landslides that can occur near coastal areas. In this context, creating landslide susceptibility maps is the first step in landslide geohazard assessment. This paper focuses on shallow-water [...] Read more.
Active continental margins, generally characterized by narrow shelves incised by canyons, are pervasively shaped by submarine landslides that can occur near coastal areas. In this context, creating landslide susceptibility maps is the first step in landslide geohazard assessment. This paper focuses on shallow-water submarine landslides along the Capo d’Orlando continental margin and presents a related susceptibility map using the Weight of Evidence method. This method quantifies the strength of the association between a landslide inventory and predisposing factors. A geomorphological analysis of the continental shelf and upper slope yielded a landslide inventory of 450 initiation points, which were combined with five specifically selected preconditioning factors. The results revealed that the most favourable conditions for shallow-water landslides include slopes between 5° and 15°, proximity to faults (<1 km), proximity to river mouths (<2 km), the presence of consolidated lithologies and sandy terraces, and slopes facing NE and E. The landslide susceptibility map indicates that susceptible areas are in canyon heads and flanks, as well as in undisturbed slope portions near canyon heads where retrogressive landslides are likely. The model results are robust (AUC = 0.88), demonstrating that this method can be effectively applied in areas with limited geological data for preliminary susceptibility assessments. Full article
(This article belongs to the Section Coastal Engineering)
Show Figures

Figure 1

20 pages, 5590 KiB  
Article
Enhanced CNN-BiLSTM-Attention Model for High-Precision Integrated Navigation During GNSS Outages
by Wulong Dai, Houzeng Han, Jian Wang, Xingxing Xiao, Dong Li, Cai Chen and Lei Wang
Remote Sens. 2025, 17(9), 1542; https://doi.org/10.3390/rs17091542 - 26 Apr 2025
Viewed by 899
Abstract
The Global Navigation Satellite System (GNSS)/Inertial Navigation System (INS) integrated navigation technology is widely utilized in vehicle positioning. However, in complex environments such as urban canyons or tunnels, GNSS signal outages due to obstructions lead to rapid error accumulation in INS-only operation, with [...] Read more.
The Global Navigation Satellite System (GNSS)/Inertial Navigation System (INS) integrated navigation technology is widely utilized in vehicle positioning. However, in complex environments such as urban canyons or tunnels, GNSS signal outages due to obstructions lead to rapid error accumulation in INS-only operation, with error growth rates reaching 10–50 m per min. To enhance positioning accuracy during GNSS outages, this paper proposes an error compensation method based on CNN-BiLSTM-Attention. When GNSS signals are available, a mapping model is established between specific force, angular velocity, speed, heading angle, and GNSS position increments. During outages, this model, combined with an improved Kalman filter, predicts pseudo-GNSS positions and their covariances in real-time to compute an aided navigation solution. The improved Kalman filter integrates Sage–Husa adaptive filtering and strong tracking Kalman filtering, dynamically estimating noise covariances to enhance robustness and address the challenge of unknown pseudo-GNSS covariances. Real-vehicle experiments conducted in a city in Jiangsu Province simulated a 120 s GNSS outage, demonstrating that the proposed method delivers a stable navigation solution with a post-convergence positioning accuracy of 0.7275 m root mean square error (RMSE), representing a 93.66% improvement over pure INS. Moreover, compared to other deep learning models (e.g., LSTM), this approach exhibits faster convergence and higher precision, offering a reliable solution for vehicle positioning in GNSS-denied scenarios. Full article
Show Figures

Figure 1

18 pages, 28824 KiB  
Article
Multifactorial Controls on the Dongdaobei Submarine Canyon System, Xisha Sea, South China Sea
by Meijing Sun, Hongjun Chen, Chupeng Yang, Xiaosan Hu and Jie Liu
J. Mar. Sci. Eng. 2025, 13(3), 564; https://doi.org/10.3390/jmse13030564 - 14 Mar 2025
Viewed by 547
Abstract
The submarine canyons system is the most widely distributed geomorphic unit on the global continental margin. It is an important concept in the field of deep-water sedimentation and geohazards. Based on high-resolution multibeam bathymetry and two-dimensional seismic data, the dendritic canyon system north [...] Read more.
The submarine canyons system is the most widely distributed geomorphic unit on the global continental margin. It is an important concept in the field of deep-water sedimentation and geohazards. Based on high-resolution multibeam bathymetry and two-dimensional seismic data, the dendritic canyon system north of Dongdao island is studied at the eastern Xisha area of the South China Sea. The Dongdaobei submarine canyon is distributed in water depths between 1000 and 3150 m. The main source area in the upper course of the canyon originates from the northwest of Dongdao platform and the Yongxing platform. The sediments from the source area are transported to the main canyon in the form of various gravity flows. Landslides on the slope significantly impact canyon evolution by delivering sediment to the canyon head and causing channel deflection through substrate failure and flow-path reorganization. A large number of pockmarks are distributed around the north slope of the main canyon. The small-scale channels, which are formed as a result of the continuous erosion of the pockmark chains, are connected to the canyon sidewalls. The seamounts are distributed along the south bank of the canyon, exerting a controlling influence on the directional changes in the main canyon’s downstream segment. The formation and evolution of the Dongdaobei submarine canyon are primarily influenced by several factors, including tectonic activity and inherited negative topography, erosion by sedimentary gravity flows, sediment instability, and the shielding effect of seamounts. Full article
(This article belongs to the Special Issue Marine Geohazards: Characterization to Prediction)
Show Figures

Figure 1

12 pages, 3550 KiB  
Article
Deep Learning Based Characterization of Cold-Water Coral Habitat at Central Cantabrian Natura 2000 Sites Using YOLOv8
by Alberto Gayá-Vilar, Alberto Abad-Uribarren, Augusto Rodríguez-Basalo, Pilar Ríos, Javier Cristobo and Elena Prado
J. Mar. Sci. Eng. 2024, 12(9), 1617; https://doi.org/10.3390/jmse12091617 - 11 Sep 2024
Cited by 2 | Viewed by 1512
Abstract
Cold-water coral (CWC) reefs, such as those formed by Desmophyllum pertusum and Madrepora oculata, are vital yet vulnerable marine ecosystems (VMEs). The need for accurate and efficient monitoring of these habitats has driven the exploration of innovative approaches. This study presents a [...] Read more.
Cold-water coral (CWC) reefs, such as those formed by Desmophyllum pertusum and Madrepora oculata, are vital yet vulnerable marine ecosystems (VMEs). The need for accurate and efficient monitoring of these habitats has driven the exploration of innovative approaches. This study presents a novel application of the YOLOv8l-seg deep learning model for the automated detection and segmentation of these key CWC species in underwater imagery. The model was trained and validated on images collected at two Natura 2000 sites in the Cantabrian Sea: the Avilés Canyon System (ACS) and El Cachucho Seamount (CSM). Results demonstrate the model’s high accuracy in identifying and delineating individual coral colonies, enabling the assessment of coral cover and spatial distribution. The study revealed significant variability in coral cover between and within the study areas, highlighting the patchy nature of CWC habitats. Three distinct coral community groups were identified based on percentage coverage composition and abundance, with the highest coral cover group being located exclusively in the La Gaviera canyon head within the ACS. This research underscores the potential of deep learning models for efficient and accurate monitoring of VMEs, facilitating the acquisition of high-resolution data essential for understanding CWC distribution, abundance, and community structure, and ultimately contributing to the development of effective conservation strategies. Full article
(This article belongs to the Special Issue Application of Deep Learning in Underwater Image Processing)
Show Figures

Figure 1

22 pages, 7590 KiB  
Article
Resilient Factor Graph-Based GNSS/IMU/Vision/Odo Integrated Navigation Scheme Enhanced by Noise Approximate Gaussian Estimation in Challenging Environments
by Ziyue Li, Qian Meng, Zuliang Shen, Lihui Wang, Lin Li and Haonan Jia
Remote Sens. 2024, 16(12), 2176; https://doi.org/10.3390/rs16122176 - 15 Jun 2024
Cited by 1 | Viewed by 2157
Abstract
The signal blockage and multipath effects of the Global Navigation Satellite System (GNSS) caused by urban canyon scenarios have brought great technical challenges to the positioning and navigation of autonomous vehicles. In this paper, an improved factor graph optimization algorithm enhanced by a [...] Read more.
The signal blockage and multipath effects of the Global Navigation Satellite System (GNSS) caused by urban canyon scenarios have brought great technical challenges to the positioning and navigation of autonomous vehicles. In this paper, an improved factor graph optimization algorithm enhanced by a resilient noise model is proposed. The measurement noise is resilient and adjusted based on an approximate Gaussian distribution-based estimation. In estimating and adjusting the noise parameters of the measurement model, the error covariance matrix of the multi-sensor fusion positioning system is dynamically optimized to improve the system accuracy. Firstly, according to the approximate Gaussian statistical property of the GNSS/odometer velocity residual sequence, the measured data are divided into an approximate Gaussian fitting region and an approximate Gaussian convergence region. Secondly, the interval is divided according to the measured data, and the corresponding variational Bayesian network and Gaussian mixture model are used to estimate the innovation online. Further, the noise covariance matrix of the adaptive factor graph-based model is dynamically optimized using the estimated noise parameters. Finally, based on low-cost inertial navigation equipment, GNSS, odometer, and vision, the algorithm is implemented and verified using a simulation platform and real-vehicle road test. The experimental results show that in a complex urban road environment, compared with the traditional factor graph fusion localization algorithm, the maximum improvement in accuracy of the proposed algorithm can reach 65.63%, 39.52%, and 42.95% for heading, position, and velocity, respectively. Full article
(This article belongs to the Special Issue Geospatial Artificial Intelligence (GeoAI) in Remote Sensing)
Show Figures

Figure 1

20 pages, 27134 KiB  
Article
Landslide Identification in Human-Modified Alpine and Canyon Area of the Niulan River Basin Based on SBAS-InSAR and Optical Images
by Shuo Yang, Deying Li, Yujie Liu, Zhihui Xu, Yiqing Sun and Xiangjie She
Remote Sens. 2023, 15(8), 1998; https://doi.org/10.3390/rs15081998 - 10 Apr 2023
Cited by 15 | Viewed by 2490
Abstract
Landslide identification in alpine and canyon areas is difficult due to the terrain limitations. The main objective of this research was to explore the method of combining small baseline subset interferometric synthetic aperture radar (SBAS-InSAR), multi-temporal optical images and field surveys to identify [...] Read more.
Landslide identification in alpine and canyon areas is difficult due to the terrain limitations. The main objective of this research was to explore the method of combining small baseline subset interferometric synthetic aperture radar (SBAS-InSAR), multi-temporal optical images and field surveys to identify potential landslides in the human-modified alpine and canyon area of the Niulan River in southwestern China based on terrain visibility analysis. The visibility of the terrain is analyzed using the different incident and heading angles of the Sentinel satellite’s ascending and descending orbits. Based on the SAR image data of Sentinel-1A satellites from 2016 to 2019, the SBAS-InSAR method was used to identify landslides, and then multi-temporal optical images were used to facilitate landslide identification. Field surveys were carried out to verify the identification accuracy. A total of 28 landslides were identified, including 13 indicated by SBAS-InSAR, 8 by optical imaging and 7 by field investigation. Many landslides were induced by the impoundment and fluctuation of reservoir water. The comparison and verification of typical landslide monitoring data and reservoir water fluctuations revealed that a sudden drop of reservoir water had a great influence on landslide stability. These research results can facilitate a comprehensive understanding of landslide distribution in the reservoir area and guide the follow-up landslide risk management. Full article
(This article belongs to the Special Issue Ground Deformation Source Modeling Using Remote Sensing Techniques)
Show Figures

Figure 1

19 pages, 6743 KiB  
Article
Laboratory Studies of Internal Solitary Waves Propagating and Breaking over Submarine Canyons
by Ying-Tien Lin, Ling Liu, Biyun Sheng, Yeping Yuan and Keke Hu
J. Mar. Sci. Eng. 2023, 11(2), 355; https://doi.org/10.3390/jmse11020355 - 5 Feb 2023
Cited by 2 | Viewed by 2488
Abstract
This paper carried out laboratory experiments to study evolution of internal solitary waves (ISWs) over submarine canyons with a combination of PIV (particle image velocimetry) and PLIF (planar laser-induced fluorescence) techniques. Taking canyon angle θ and collapse height ∆H as variables, Froude [...] Read more.
This paper carried out laboratory experiments to study evolution of internal solitary waves (ISWs) over submarine canyons with a combination of PIV (particle image velocimetry) and PLIF (planar laser-induced fluorescence) techniques. Taking canyon angle θ and collapse height ∆H as variables, Froude number Fr, head position, energy loss, vorticity field and turbulence intensity when ISWs propagate to the canyon were analyzed. According to the Froude number Fr values, the study cases can be divided into three types: Fr > 1.7 means complete internal hydraulic jump (IHJ); 1 < Fr < 1.7 denotes wavy IHJ and Fr < 1 represents no IHJ. The greater canyon angle, collapse depth and amplitude of the incident wave more easily generate IHJs, which can lead to more energy loss, greater vorticity and turbulence intensity in the canyon area. Among all canyon cases, vorticity and turbulence intensity of the no IHJ case showing an obvious bimodal distribution are smaller than IHJ cases. For wavy IHJ, the energy dissipation is not obvious, and the average turbulent intensity performs a “sharp unimodal distribution”. Complete IHJ cases last for a long time and cause violent mixing, the average turbulent intensity is the largest and its distribution presents a “gentle single peak” pattern. For the 180° conditions (no canyon cases), less energy is delivered to the reflected wave and more energy is dissipated near the terrain, so the energy loss is the largest in comparison to other conditions. These findings will deepen our understanding of the evolution mechanisms of ISWs propagating over submarine canyons. Full article
(This article belongs to the Special Issue Frontiers in Physical Oceanography)
Show Figures

Figure 1

11 pages, 1311 KiB  
Article
Distribution and Abundance of the Blue Whale (Balaenoptera musculus indica) off Sri Lanka during the Southwest Monsoon 2018
by Liyanage U. S. P. Kirumbara, Jayasinghe R. P. P. Krishantha, Krakstad Jens-Otto and Arulananthan Kanapathipillai
J. Mar. Sci. Eng. 2022, 10(11), 1626; https://doi.org/10.3390/jmse10111626 - 2 Nov 2022
Cited by 4 | Viewed by 3563
Abstract
Blue whales Balaenoptera musculus are the most abundant and widely distributed cetacean species in Sri Lankan waters. A vessel-based opportunistic line transect survey focusing on marine mammals was conducted in Sri Lankan waters between 24 June to 12 July 2018, while an ecosystem [...] Read more.
Blue whales Balaenoptera musculus are the most abundant and widely distributed cetacean species in Sri Lankan waters. A vessel-based opportunistic line transect survey focusing on marine mammals was conducted in Sri Lankan waters between 24 June to 12 July 2018, while an ecosystem survey was performed by the R/V Dr. Fridtjof Nansen. The entire transect length was 2090 km within an area of 3895 km2. Overall, 72% (n = 57) of blue whale observations were group assemblages ranging between 1 and 5 individuals out of a total of 79 sightings. The largest aggregations of blue whales were recorded at the intersection of the submarine canyon off the coastline of Mirissa and busy shipping lanes between Dondra Head and Galle, where previous ship strikes were recorded. Overall, the average observed group size was 2.64 (CV, 12.34%; 95% CI, 2.07–3.38), the average group density was 0.0029 km−2 (CV, 35.96%; 95% CI, 0.00145–0.00610), and the total blue whale abundance within the survey area was 513 individuals (CV, 38.02%; 95% CI, 243–1083). These survey results fill vital knowledge gaps regarding the abundance and distribution of blue whales in Sri Lanka, which is essential for the establishment of management and conservation strategies. Full article
(This article belongs to the Special Issue Recent Advances in Marine Mammal Research in Indo-Pacific Area)
Show Figures

Figure 1

15 pages, 2617 KiB  
Article
Controls of Submarine Canyons Connected to Shore during the LGM Sea-Level Rise: Examples from Taiwan
by Cheng-Shing Chiang and Ho-Shing Yu
J. Mar. Sci. Eng. 2022, 10(4), 494; https://doi.org/10.3390/jmse10040494 - 2 Apr 2022
Cited by 7 | Viewed by 3188
Abstract
During the Last Glacial Maximum (LGM) (~20,000 years ago), the sea level was lower than that during the present day by 120 m and the heads of most submarine canyons were close or connected to the coastline or shore, with enhanced terrestrial sediment [...] Read more.
During the Last Glacial Maximum (LGM) (~20,000 years ago), the sea level was lower than that during the present day by 120 m and the heads of most submarine canyons were close or connected to the coastline or shore, with enhanced terrestrial sediment input due to direct connections with river mouths. This was followed by a relative sea-level rise of 120 m and the migration of coastlines landward. As a result, the heads of some paleo-submarine canyons were no longer near river mouths or connected to the shore. Such canyons became inactive due to the lack of terrestrial sediment input. Only 4% of the world’s submarine canyons reach the coastline and remain active today. Among 13 submarine canyons off the shore of Taiwan, we identified seven (n = 7, 54%) that remain connected to the shore and are active during the present-day highstand. The purpose of this study is to determine the key controls of canyon heads that remain connected to the shore with terrestrial sediment input during the Holocene sea-level rise. As a result of high uplift rates, narrow coastal range, steep gradients, frequent earthquakes, and typhoon development in the Taiwan mountain belt, Taiwan has the highest-yield river and sediment supply. This has led to the transportation of large volumes of sediment to the surrounding deep seas. Narrow steep shelves and large sediment volumes associated with small mountain rivers are the main controls involved in the development of shore-connected canyons on the active Taiwan margin. Shore-connected canyons are present in greater numbers in the major earthquake zone on the eastern Taiwan margin. Frequent earthquake events are another significant factor in the occurrence of shore-connected canyons in the Taiwan region. Full article
(This article belongs to the Special Issue Coastline Evolution: From the Present to the Geological Perspective)
Show Figures

Figure 1

19 pages, 10789 KiB  
Article
Different Ground Subsidence Contributions Revealed by Integrated Discussion of Sentinel-1 Datasets, Well Discharge, Stratigraphical and Geomorphological Data: The Case of the Gioia Tauro Coastal Plain (Southern Italy)
by Giuseppe Cianflone, Giovanni Vespasiano, Cristiano Tolomei, Rosanna De Rosa, Rocco Dominici, Carmine Apollaro, Kristine Walraevens and Maurizio Polemio
Sustainability 2022, 14(5), 2926; https://doi.org/10.3390/su14052926 - 2 Mar 2022
Cited by 10 | Viewed by 5248
Abstract
Groundwater is the main water supply for agricultural and industrial needs in many coastal plains worldwide. Groundwater depletion often triggers land subsidence, which threatens manmade infrastructure and activities and aggravates other geohazards. We applied a multi-temporal interferometric synthetic aperture radar technique to Sentinel-1 [...] Read more.
Groundwater is the main water supply for agricultural and industrial needs in many coastal plains worldwide. Groundwater depletion often triggers land subsidence, which threatens manmade infrastructure and activities and aggravates other geohazards. We applied a multi-temporal interferometric synthetic aperture radar technique to Sentinel-1 datasets to detect ground motion in the Gioia Tauro plain (Calabria, Southern Italy) from 2018 to 2021. The InSAR data were analysed through the integrated use of groundwater head, stratigraphical and geomorphological data, and land use information to distinguish the potential subsidence divers. The results show that subsiding areas, with a mean rate of about 10 mm/yr, are in the middle of the plain, and their location is influenced by the spatial distribution of compressible sediments included in the shallow aquifer. Furthermore, the subsidence arrangement is spatially accordant with the main groundwater depression area, which can be ascribed to the ongoing and increasing water pumping for predominantly agricultural usage. We also observed that subsidence (up to 10 mm/yr) affects the western dock of the Gioia Tauro harbour, in front of which, in very shallow water, are two submarine canyon heads already affected by slides in the past. Full article
Show Figures

Figure 1

36 pages, 15851 KiB  
Review
Offshore Geological Hazards: Charting the Course of Progress and Future Directions
by Gemma Ercilla, David Casas, Belén Alonso, Daniele Casalbore, Jesús Galindo-Zaldívar, Soledad García-Gil, Eleonora Martorelli, Juan-Tomás Vázquez, María Azpiroz-Zabala, Damien DoCouto, Ferran Estrada, Mᵃ Carmen Fernández-Puga, Lourdes González-Castillo, José Manuel González-Vida, Javier Idárraga-García, Carmen Juan, Jorge Macías, Asier Madarieta-Txurruka, José Nespereira, Desiree Palomino, Olga Sánchez-Guillamón, Víctor Tendero-Salmerón, Manuel Teixeira, Javier Valencia and Mariano Yenesadd Show full author list remove Hide full author list
Oceans 2021, 2(2), 393-428; https://doi.org/10.3390/oceans2020023 - 31 May 2021
Cited by 20 | Viewed by 13424
Abstract
Offshore geological hazards can occur in any marine domain or environment and represent a serious threat to society, the economy, and the environment. Seismicity, slope sedimentary instabilities, submarine volcanism, fluid flow processes, and bottom currents are considered here because they are the most [...] Read more.
Offshore geological hazards can occur in any marine domain or environment and represent a serious threat to society, the economy, and the environment. Seismicity, slope sedimentary instabilities, submarine volcanism, fluid flow processes, and bottom currents are considered here because they are the most common hazardous processes; tsunamis are also examined because they are a secondary hazard generated mostly by earthquakes, slope instabilities, or volcanic eruptions. The hazards can co-occur and interact, inducing a cascading sequence of events, especially in certain contexts, such as tectonic indentations, volcanic islands, and canyon heads close to the coast. We analyze the key characteristics and main shortcomings of offshore geological hazards to identify their present and future directions for marine geoscience investigations of their identification and characterization. This review establishes that future research will rely on studies including a high level of multidisciplinarity. This approach, which also involves scientific and technological challenges, will require effective integration and interplay between multiscale analysis, mapping, direct deep-sea observations and testing, modelling, and linking offshore observations with onshore observations. Full article
Show Figures

Figure 1

18 pages, 16257 KiB  
Article
Aveiro Canyon Head (Portugal) Submarine Slope Instability Assessment
by Nuno Lapa, Fernando M. F. S. Marques and Aurora Rodrigues
Appl. Sci. 2020, 10(24), 9038; https://doi.org/10.3390/app10249038 - 17 Dec 2020
Cited by 4 | Viewed by 2471
Abstract
Mass wasting events are the main processes of sedimentary dynamics that affect the marine environment and which, due to their spatial and temporal variability, are difficult to study and evaluate. Affecting the marine floor, between the coastline and the abyssal plain, these processes [...] Read more.
Mass wasting events are the main processes of sedimentary dynamics that affect the marine environment and which, due to their spatial and temporal variability, are difficult to study and evaluate. Affecting the marine floor, between the coastline and the abyssal plain, these processes are triggered by multiple causes, having different magnitudes and causing drastic changes and impacts on the marine environment and human activities. In this paper, the submarine landslide susceptibility affecting the upper course of the Aveiro canyon (West Iberian Margin) is addressed using statistical models which are based on the statistical relations between a landslide inventory and the landslide predisposing factors bathymetry, sediment cover, slope angle, aspect and curvature. The statistical methods were the widely proven bivariate information value (IV) and the multivariate logistic regression (LR). The model results were validated against the landslide inventory using receiver operating characteristic (ROC) curves and the corresponding area under the curve (AUC), which provided satisfactory results, with IV AUC = 0.79 and LR AUC = 0.83, in spite of the limitations of the databases used in this study. The results obtained suggest that these methods may be useful for the preliminary assessment of sea floor slope instability at a regional scale of analysis, enabling the selection of sites to be studied with much more detailed and expensive methods. Full article
(This article belongs to the Section Marine Science and Engineering)
Show Figures

Figure 1

38 pages, 17426 KiB  
Article
Integrated Morpho-Bathymetric, Seismic-Stratigraphic, and Sedimentological Data on the Dohrn Canyon (Naples Bay, Southern Tyrrhenian Sea): Relationships with Volcanism and Tectonics
by Gemma Aiello, Marina Iorio, Flavia Molisso and Marco Sacchi
Geosciences 2020, 10(8), 319; https://doi.org/10.3390/geosciences10080319 - 17 Aug 2020
Cited by 22 | Viewed by 5765
Abstract
Submarine canyons are geomorphologic lineaments engraving the slope/outer shelf of continental margins. These features are often associated with significant geologic hazard when they develop close to densely populated coastal zones. The seafloor of Naples Bay is deeply cut by two incisions characterized by [...] Read more.
Submarine canyons are geomorphologic lineaments engraving the slope/outer shelf of continental margins. These features are often associated with significant geologic hazard when they develop close to densely populated coastal zones. The seafloor of Naples Bay is deeply cut by two incisions characterized by a dense network of gullies, namely the Dohrn and Magnaghi canyons, which develop from the shelf break of the Campania margin, down to the peripheral rise of the Eastern Tyrrhenian bathyal plain. Seismic-stratigraphic interpretation of multichannel seismic reflection profiles has shown that quaternary tectonics and recent to active volcanism have exerted a significant control on the morphological evolution and source-to sink depositional processes of the Dohrn and Magnaghi submarine canyons. The Dohrn canyon is characterized by relatively steep walls hundreds of meters high, which incise a Middle-Late Pleistocene prograding wedge, formed by clastic and volcaniclastic deposits associated with the paleo-Sarno river system during the Mid-Late Pleistocene. The formation of the Dohrn canyon predates the onset of the volcanic eruption of the Neapolitan Yellow Tuff (NYT), an ignimbrite deposit of ca. 15 ka that represents the bedrock on which the town of Napoli is built. Integrated stratigraphic analysis of high-resolution seismic profiles and marine gravity core data (C74_12) collected along the flanks of the eastern bifurcation of the head of Dohrn Canyon suggests that depositional processes along the canyon flanks are dominated by gravity flows (e.g., fine-grained turbidites, debris flows) and sediment mass transport associated with slope instability and failure. Full article
(This article belongs to the Section Geophysics)
Show Figures

Figure 1

26 pages, 38758 KiB  
Article
Hybrid Urban Canyon Pedestrian Navigation Scheme Combined PDR, GNSS and Beacon Based on Smartphone
by Junhua Ye, Yaxin Li, Huan Luo, Jingxian Wang, Wu Chen and Qin Zhang
Remote Sens. 2019, 11(18), 2174; https://doi.org/10.3390/rs11182174 - 18 Sep 2019
Cited by 19 | Viewed by 4718
Abstract
This study presents a comprehensive urban canyon pedestrian navigation scheme. This scheme combines smart phone internal MEMS sensors, GNSS and beacon observations together. Heading estimation is generally a key issue of the PDR algorithm. We design an orientation fusion algorithm to improve smart [...] Read more.
This study presents a comprehensive urban canyon pedestrian navigation scheme. This scheme combines smart phone internal MEMS sensors, GNSS and beacon observations together. Heading estimation is generally a key issue of the PDR algorithm. We design an orientation fusion algorithm to improve smart phone heading using MEMS measurements. Static and kinematic tests are performed, superiority of the improved heading algorithm is verified. We also present different heading processing solutions for comparison and analysis. Heading bias increases with time due to error accumulation and model inaccuracy. Thus, we develop a related heading calibration method based on beacons. This method can help correct smart phone headings continuously to decrease cumulative error. In addition to PDR, we also use GNSS and beacon measurements to integrate a fusion location. In the fusion procedure, we design related algorithms to adjust or limit the use of these different type observations to constrain large jumps in our Kalman filter model, thereby making the solution stable. Navigation experiments are performed in the streets of Mong Kok and Wanchai, which are typically the most crowded areas of Hong Kong, with narrow streets and many pedestrians, vehicles and tall buildings. The first experiment uses the strategy PDR + GNSS + beacon, in east–west orientation street, in which 10 m positioning error is improved from 30 % (smart phone internal GNSS) to 80 % and in south–north orientation street, in which 15 m positioning error is improved from 20 % (smart phone internal GNSS) to 80 % . The second experiment performs two long-distance tests without any beacons, in which the fusion scheme also has significant improvement, that is, 10 m positioning error is improved from 38 % to 60 % . Full article
Show Figures

Graphical abstract

25 pages, 7609 KiB  
Article
RTK with the Assistance of an IMU-Based Pedestrian Navigation Algorithm for Smartphones
by Zun Niu, Ping Nie, Lin Tao, Junren Sun and Bocheng Zhu
Sensors 2019, 19(14), 3228; https://doi.org/10.3390/s19143228 - 22 Jul 2019
Cited by 39 | Viewed by 6889
Abstract
Real-time kinematic (RTK) technique is widely used in modern society because of its high accuracy and real-time positioning. The appearance of Android P and the application of BCM47755 chipset make it possible to use single-frequency RTK and dual-frequency RTK on smartphones. The Xiaomi [...] Read more.
Real-time kinematic (RTK) technique is widely used in modern society because of its high accuracy and real-time positioning. The appearance of Android P and the application of BCM47755 chipset make it possible to use single-frequency RTK and dual-frequency RTK on smartphones. The Xiaomi Mi 8 is the first dual-frequency Global Navigation Satellite System (GNSS) smartphone equipped with BCM47755 chipset. However, the performance of RTK in urban areas is much poorer compared with its performance under the open sky because the satellite signals can be blocked by the buildings and trees. RTK can't provide the positioning results in some specific areas such as the urban canyons and the crossings under an overpass. This paper combines RTK with an IMU-based pedestrian navigation algorithm. We utilize attitude and heading reference system (AHRS) algorithm and zero velocity update (ZUPT) algorithm based on micro electro mechanical systems (MEMS) inertial measurement unit (IMU) in smartphones to assist RTK for the sake of improving positioning performance in urban areas. Some tests are carried out to verify the performance of RTK on the Xiaomi Mi 8 and we respectively assess the performances of RTK with and without the assistance of an IMU-based pedestrian navigation algorithm in urban areas. Results on actual tests show RTK with the assistance of an IMU-based pedestrian navigation algorithm is more robust and adaptable to complex environments than that without it. Full article
(This article belongs to the Section Remote Sensors)
Show Figures

Figure 1

Back to TopTop