Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (99)

Search Parameters:
Keywords = cancer acidosis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1118 KiB  
Article
Targeting pH Inversion in Prostate Cancer Cells: A Role for Systems of Molecules of Vegetal Origin
by Lorena Urbanelli, Krizia Sagini, Federica Delo, Sandra Buratta, Jacopo Lucci, Valentino Mercati and Carla Emiliani
Int. J. Mol. Sci. 2025, 26(16), 7700; https://doi.org/10.3390/ijms26167700 - 8 Aug 2025
Viewed by 246
Abstract
Intracellular alkalosis and extracellular acidosis are two pathological features associated with malignant cells. They offer advantages in terms of invasiveness and proliferation. Extracellular acidification is the consequence of intracellular metabolic changes associated with a higher metabolic rate of cancer cells, potentially inducing dangerous [...] Read more.
Intracellular alkalosis and extracellular acidosis are two pathological features associated with malignant cells. They offer advantages in terms of invasiveness and proliferation. Extracellular acidification is the consequence of intracellular metabolic changes associated with a higher metabolic rate of cancer cells, potentially inducing dangerous intracellular acidification. To overcome this menace, malignant cells adapt themselves to export hydrogen ions. Therefore, it is reasonable that targeting intracellular alkalinization and extracellular acidification to prompt the reversal of such a pH gradient towards a condition comparable to normal, untransformed cells may represent a strategy helping to contrast malignant behavior. In the present study, we investigated in vitro, in prostate cancer cell models, the biological activity towards intracellular, extracellular and organelle pH of systems of molecules of vegetal origin. A few of these systems were shown to promote intracellular acidification in vitro, whereas others were shown to prevent extracellular acidification and promote lysosomal alkalinization in a cell type-dependent manner. This result clearly indicates that these systems may function as agents interfering with malignant cells inverted pH gradient. Further analysis would be necessary to unravel the cell type specificity of their effects, as well as their mechanism of action. Nevertheless, our proof-of-principle study provides evidence that such systems of molecules can be considered interesting agents in co-adjuvating anti-cancer therapies. Full article
Show Figures

Figure 1

33 pages, 1782 KiB  
Review
Synthalin, Buformin, Phenformin, and Metformin: A Century of Intestinal “Glucose Excretion” as Oral Antidiabetic Strategy in Overweight/Obese Patients
by Giuliano Pasquale Ramadori
Livers 2025, 5(3), 35; https://doi.org/10.3390/livers5030035 - 31 Jul 2025
Viewed by 289
Abstract
After the first release of synthalin B (dodecamethylenbiguanide) in 1928 and its later retraction in the 1940s in Germany, the retraction of phenformin (N-Phenethylbiguanide) and of Buformin in the USA (but not outside) because of the lethal complication of acidosis seemed to have [...] Read more.
After the first release of synthalin B (dodecamethylenbiguanide) in 1928 and its later retraction in the 1940s in Germany, the retraction of phenformin (N-Phenethylbiguanide) and of Buformin in the USA (but not outside) because of the lethal complication of acidosis seemed to have put an end to the era of the biguanides as oral antidiabetics. The strongly hygroscopic metformin (1-1-dimethylbiguanide), first synthesized 1922 and resuscitated as an oral antidiabetic (type 2 of the elderly) compound first released in 1959 in France and in other European countries, was used in the first large multicenter prospective long-term trial in England in the UKPDS (1977–1997). It was then released in the USA after a short-term prospective trial in healthy overweight “young” type 2 diabetics (mean age 53 years) in 1995 for oral treatment of type 2 diabetes. It was, however, prescribed to mostly multimorbid older patients (above 60–65 years of age). Metformin is now the most used oral drug for type 2 diabetes worldwide. While intravenous administration of biguanides does not have any glucose-lowering effect, their oral administration leads to enormous increase in their intestinal concentration (up to 300-fold compared to that measured in the blood), to reduced absorption of glucose from the diet, to increased excretion of glucose through the stool, and to decrease in insulin serum level through increased hepatic uptake and decreased production. Intravenously injected F18-labeled glucose in metformin-treated type 2 diabetics accumulates in the small and even more in the large intestine. The densitometry picture observed in metformin-treated overweight diabetics is like that observed in patients after bowel-cleansing or chronically taking different types of laxatives, where the accumulated radioactivity can even reach values observed in colon cancer. The glucose-lowering mechanism of action of metformin is therefore not only due to inhibition of glucose uptake in the small intestine but also to “attraction” of glucose from the hepatocyte into the intestine, possibly through the insulin-mediated uptake in the hepatocyte and its secretion into the bile. Furthermore, these compounds have also a diuretic effect (loss of sodium and water in the urine) Acute gastrointestinal side effects accompanied by fluid loss often lead to the drugs’ dose reduction and strongly limit adherence to therapy. Main long-term consequences are “chronic” dehydration, deficiency of vitamin B12 and of iron, and, as observed for all the biguanides, to “chronic” increase in fasting and postprandial lactate plasma level as a laboratory marker of a clinical condition characterized by hypotension, oliguria, adynamia, and evident lactic acidosis. Metformin is not different from the other biguanides: synthalin B, buformin, and phenformin. The mechanism of action of the biguanides as antihyperglycemic substances and their side effects are comparable if not even stronger (abdominal pain, nausea, vomiting, diarrhea, fluid loss) to those of laxatives. Full article
Show Figures

Figure 1

28 pages, 1180 KiB  
Review
Oxidative and Glycolytic Metabolism: Their Reciprocal Regulation and Dysregulation in Cancer
by Marco Cordani, Cristiano Rumio, Giulio Bontempi, Raffaele Strippoli and Fabrizio Marcucci
Cells 2025, 14(15), 1177; https://doi.org/10.3390/cells14151177 - 30 Jul 2025
Viewed by 510
Abstract
Oxidative and glycolytic metabolism produce energy in the form of ATP and produce intermediates for biomass production. Oxidative metabolism predominates under normoxic conditions and in quiescent or slowly proliferating cells. On the other hand, under hypoxic or pseudohypoxic conditions and in rapidly proliferating [...] Read more.
Oxidative and glycolytic metabolism produce energy in the form of ATP and produce intermediates for biomass production. Oxidative metabolism predominates under normoxic conditions and in quiescent or slowly proliferating cells. On the other hand, under hypoxic or pseudohypoxic conditions and in rapidly proliferating cells, glycolysis becomes the predominant pathway. The balance between oxidative and glycolytic metabolism is finely tuned in physiological conditions and becomes dysregulated in many pathological conditions, most notably cancer. In this article we summarize the evidence that has been gathered over the last few years on the mechanisms underlying this balance and the consequences of their dysregulation. We discuss first the non-metabolic factors (mitochondria, cell cycle, cell type, tissue type), then molecules that are at the intersection between glycolytic and oxidative metabolism and those molecules that are inherent to oxidative or glycolytic metabolism that affect the equilibrium between the two energy-producing pathways. Eventually, we discuss pharmacologic or genetic means that allow manipulating this equilibrium. As will be seen, lactic acidosis has taken center stage in this field and lactate has been shown to fuel oxidative metabolism. This suggests that if glycolytic metabolism predominates, as has often been shown in cancer, mechanisms come into work that reestablish a metabolic heterogeneity. Thus, while one pathway may be predominant over the other, it seems as if fail-safe mechanisms are at work that avoid the possibility that it becomes the only energy-producing pathway. Eventually, we discuss possible therapeutic consequences that may derive from this expanding knowledge, in particular, as regards tumor therapy. Full article
Show Figures

Figure 1

34 pages, 3038 KiB  
Review
Not Just an Alternative Energy Source: Diverse Biological Functions of Ketone Bodies and Relevance of HMGCS2 to Health and Disease
by Varshini V. Suresh, Sathish Sivaprakasam, Yangzom D. Bhutia, Puttur D. Prasad, Muthusamy Thangaraju and Vadivel Ganapathy
Biomolecules 2025, 15(4), 580; https://doi.org/10.3390/biom15040580 - 14 Apr 2025
Viewed by 2926
Abstract
Ketogenesis, a mitochondrial metabolic pathway, occurs primarily in liver, but kidney, colon and retina are also capable of this pathway. It is activated during fasting and exercise, by “keto” diets, and in diabetes as well as during therapy with SGLT2 inhibitors. The principal [...] Read more.
Ketogenesis, a mitochondrial metabolic pathway, occurs primarily in liver, but kidney, colon and retina are also capable of this pathway. It is activated during fasting and exercise, by “keto” diets, and in diabetes as well as during therapy with SGLT2 inhibitors. The principal ketone body is β-hydroxybutyrate, a widely recognized alternative energy source for extrahepatic tissues (brain, heart, muscle, and kidney) when blood glucose is sparse or when glucose transport/metabolism is impaired. Recent studies have identified new functions for β-hydroxybutyrate: it serves as an agonist for the G-protein-coupled receptor GPR109A and also works as an epigenetic modifier. Ketone bodies protect against inflammation, cancer, and neurodegeneration. HMGCS2, as the rate-limiting enzyme, controls ketogenesis. Its expression and activity are regulated by transcriptional and post-translational mechanisms with glucagon, insulin, and glucocorticoids as the principal participants. Loss-of-function mutations occur in HMGCS2 in humans, resulting in a severe metabolic disease. These patients typically present within a year after birth with metabolic acidosis, hypoketotic hypoglycemia, hepatomegaly, steatotic liver damage, hyperammonemia, and neurological complications. Nothing is known about the long-term consequences of this disease. This review provides an up-to-date summary of the biological functions of ketone bodies with a special focus on HMGCS2 in health and disease. Full article
(This article belongs to the Special Issue Research on Fatty Acid Oxidation and Fatty Acid Oxidation Disorders)
Show Figures

Figure 1

24 pages, 3678 KiB  
Article
The Simultaneous Deletion of pH-Sensing Receptors GPR4 and OGR1 (GPR68) Ameliorates Colitis with Additive Effects on Multiple Parameters of Inflammation
by Federica Foti, Cordelia Schuler, Pedro A. Ruiz, Leonie Perren, Ermanno Malagola, Cheryl de Vallière, Klaus Seuwen, Martin Hausmann and Gerhard Rogler
Int. J. Mol. Sci. 2025, 26(4), 1552; https://doi.org/10.3390/ijms26041552 - 12 Feb 2025
Cited by 1 | Viewed by 1329
Abstract
G protein-coupled receptors (GPRs), including pro-inflammatory GPR4 and ovarian cancer GPR1 (OGR1/GPR68), are involved in the pH sensing of the extracellular space and have been implicated in inflammatory bowel disease (IBD). Previous data show that a loss of GPR4 or OGR1 independently is [...] Read more.
G protein-coupled receptors (GPRs), including pro-inflammatory GPR4 and ovarian cancer GPR1 (OGR1/GPR68), are involved in the pH sensing of the extracellular space and have been implicated in inflammatory bowel disease (IBD). Previous data show that a loss of GPR4 or OGR1 independently is associated with reduced intestinal inflammation in mouse models of experimental colitis. In the present manuscript, we investigated the impact of the simultaneous loss of GPR4 and OGR1 in animal models of IBD. To study the effects of combined loss of Gpr4 Ogr1 in IBD we used the well-established acute dextran sodium sulfate (DSS) and spontaneous Il10−/− murine colitis models. Disease severity was assessed using multiple clinical scores (e.g., body weight loss, disease activity score, murine endoscopic index of colitis severity (MEICS) and histological analyses). Real-time quantitative polymerase chain reaction (qPCR), Western blot, and flow cytometry were used to investigate changes in pro-inflammatory cytokines expression and immune cells infiltration. We found that a combined loss of GPR4 and OGR1 significantly reduces colon inflammation in IBD relative to single deficiencies as evidenced by reduced body weight loss, disease score, CD4/CD8 ratio, and Il1β, Il6, and Tnf in the colon. Similarly, in the II10 deficiency model, the inflammation was significantly ameliorated upon the simultaneous deletion of GPR4 and OGR1, evidenced by a reduction in the MEICS score, colon length, Tnf and Il1β measurements, and a decrease in the number of macrophages in the colon, as compared to single deletions. Importantly, hydroxyproline levels were decreased close to baseline in Il10−/− × Gpr4−/− × Ogr1−/− mice. Our findings demonstrate that the simultaneous loss of GRP4 and OGR1 functions exerts an additive effect on multiple parameters associated with colonic inflammation. These results further reinforce the hypothesis that chronic inflammatory acidosis is a driver of fibrosis and is dependent on GPR4 and OGR1 signaling. The inhibition of both GPR4 and OGR1 by pH-sensing receptor modulators may constitute as a potential therapeutic option for IBD, as both pH-sensing receptors appear to sustain inflammation by acting on complementary pro-inflammatory pathways. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

34 pages, 7313 KiB  
Review
Sodium Thiosulfate: An Innovative Multi-Target Repurposed Treatment Strategy for Late-Onset Alzheimer’s Disease
by Melvin R. Hayden and Neetu Tyagi
Pharmaceuticals 2024, 17(12), 1741; https://doi.org/10.3390/ph17121741 - 23 Dec 2024
Cited by 2 | Viewed by 2967
Abstract
Late-onset Alzheimer’s disease (LOAD) is a chronic, multifactorial, and progressive neurodegenerative disease that associates with aging and is highly prevalent in our older population (≥65 years of age). This hypothesis generating this narrative review will examine the important role for the use of [...] Read more.
Late-onset Alzheimer’s disease (LOAD) is a chronic, multifactorial, and progressive neurodegenerative disease that associates with aging and is highly prevalent in our older population (≥65 years of age). This hypothesis generating this narrative review will examine the important role for the use of sodium thiosulfate (STS) as a possible multi-targeting treatment option for LOAD. Sulfur is widely available in our environment and is responsible for forming organosulfur compounds that are known to be associated with a wide range of biological activities in the brain. STS is known to have (i) antioxidant and (ii) anti-inflammatory properties; (iii) chelation properties for calcium and the pro-oxidative cation metals such as iron and copper; (iv) donor properties for hydrogen sulfide production; (v) possible restorative properties for brain endothelial-cell-derived bioavailable nitric oxide. Thus, it becomes apparent that STS has the potential for neuroprotection and neuromodulation and may allow for an attenuation of the progressive nature of neurodegeneration and impaired cognition in LOAD. STS has been successfully used to prevent cisplatin oxidative-stress-induced ototoxicity in the treatment of head and neck and solid cancers, cyanide and arsenic poisoning, and fungal skin diseases. Most recently, intravenous STS has become part of the treatment plan for calciphylaxis globally due to vascular calcification and ischemia-induced skin necrosis and ulceration. Side effects have been minimal with reports of metabolic acidosis and increased anion gap; as with any drug treatment, there is also the possibility of allergic reactions, possible long-term osteoporosis from animal studies to date, and minor side-effects of nausea, headache, and rhinorrhea if infused too rapidly. While STS poorly penetrates the intact blood–brain barrier(s) (BBBs), it could readily penetrate BBBs that are dysfunctional and disrupted to deliver its neuroprotective and neuromodulating effects in addition to its ability to penetrate the blood–cerebrospinal fluid barrier of the choroid plexus. Novel strategies such as the future use of nano-technology may be helpful in allowing an increased entry of STS into the brain. Full article
(This article belongs to the Special Issue Novel Therapeutic Strategies for Alzheimer’s Disease Treatment)
Show Figures

Graphical abstract

15 pages, 4400 KiB  
Article
GPR68 Mediates Lung Endothelial Dysfunction Caused by Bacterial Inflammation and Tissue Acidification
by Pratap Karki, Yunbo Ke, Chenou Zhang, Kamoltip Promnares, Yue Li, Charles H. Williams, Charles C. Hong, Konstantin G. Birukov and Anna A. Birukova
Cells 2024, 13(24), 2125; https://doi.org/10.3390/cells13242125 - 22 Dec 2024
Viewed by 1575
Abstract
Tissue acidification resulting from dysregulated cellular bioenergetics accompanies various inflammatory states. GPR68, along with other members of proton-sensing G protein-coupled receptors, responds to extracellular acidification and has been implicated in chronic inflammation-related diseases such as ischemia, cancer, and colitis. The present study examined [...] Read more.
Tissue acidification resulting from dysregulated cellular bioenergetics accompanies various inflammatory states. GPR68, along with other members of proton-sensing G protein-coupled receptors, responds to extracellular acidification and has been implicated in chronic inflammation-related diseases such as ischemia, cancer, and colitis. The present study examined the role of extracellular acidification on human pulmonary endothelial cell (EC) permeability and inflammatory status per se and investigated potential synergistic effects of acidosis on endothelial dysfunction caused by bacterial lipopolysaccharide (LPS, Klebsiella pneumoniae). Results showed that medium acidification to pH 6.5 caused a delayed increase in EC permeability illustrated by a decrease in transendothelial electrical resistance and loss of continuous VE-cadherin immunostaining at cell junctions. Likewise, acidic pH induced endothelial inflammation reflected by increased mRNA and protein expression of EC adhesion molecules VCAM-1 and ICAM-1, upregulated mRNA transcripts of tumor necrosis factor-α, IL-6, IL-8, IL-1β, and CXCL5, and increased secretion of ICAM-1, IL-6, and IL-8 in culture medium monitored by ELISA. Among the GPCRs tested, acidic pH selectively increased mRNA and protein expression of GPR68, and only the GPR68-specific small molecule inhibitor OGM-8345 rescued acidosis-induced endothelial permeability and inflammation. Furthermore, acidic pH exacerbated LPS-induced endothelial permeability and inflammatory response in cultured lung macrovascular as well as microvascular endothelial cells. These effects were suppressed by OGM-8345 in both EC types. Altogether, these results suggest that GPR68 is a critical mediator of acidic pH-induced dysfunction of human pulmonary vascular endothelial cells and mediates the augmenting effect of tissue acidification on LPS-induced endothelial cell injury. Full article
(This article belongs to the Section Cell Microenvironment)
Show Figures

Figure 1

18 pages, 5110 KiB  
Article
Curcumin and Its Potential to Target the Glycolytic Behavior of Lactate-Acclimated Prostate Carcinoma Cells with Docetaxel
by Dongsic Choi, Jun Gi Lee, Su-Hak Heo, Moon-Kyen Cho, Hae-Seon Nam, Sang-Han Lee and Yoon-Jin Lee
Nutrients 2024, 16(24), 4338; https://doi.org/10.3390/nu16244338 - 16 Dec 2024
Cited by 1 | Viewed by 1380
Abstract
Background: Dysregulated cellular metabolism is known to be associated with drug resistance in cancer treatment. Methods: In this study, we investigated the impact of cellular adaptation to lactic acidosis on intracellular energy metabolism and sensitivity to docetaxel in prostate carcinoma (PC) cells. The [...] Read more.
Background: Dysregulated cellular metabolism is known to be associated with drug resistance in cancer treatment. Methods: In this study, we investigated the impact of cellular adaptation to lactic acidosis on intracellular energy metabolism and sensitivity to docetaxel in prostate carcinoma (PC) cells. The effects of curcumin and the role of hexokinase 2 (HK2) in this process were also examined. Results: PC-3AcT and DU145AcT cells that preadapted to lactic acid displayed increased growth behavior, increased dependence on glycolysis, and reduced sensitivity to docetaxel compared to parental PC-3 and DU145 cells. Molecular analyses revealed activation of the c-Raf/MEK/ERK pathway, upregulation of cyclin D1, cyclin B1, and p-cdc2Thr161, and increased levels and activities of key regulatory enzymes in glycolysis, including HK2, in lactate-acclimated cells. HK2 knockdown resulted in decreased cell growth and glycolytic activity, decreased levels of complexes I–V in the mitochondrial electron transport chain, loss of mitochondrial membrane potential, and depletion of intracellular ATP, ultimately leading to cell death. In a xenograft animal model, curcumin combined with docetaxel reduced tumor size and weight, induced downregulation of glycolytic enzymes, and stimulated the upregulation of apoptotic and necroptotic proteins. This was consistent with the in vitro results from 2D monolayer and 3D spheroid cultures, suggesting that the efficacy of curcumin is not affected by docetaxel. Conclusions: Overall, our findings suggest that metabolic plasticity through enhanced glycolysis observed in lactate-acclimated PC cells may be one of the underlying causes of docetaxel resistance, and targeting glycolysis by curcumin may provide potential for drug development that could improve treatment outcomes in PC patients. Full article
(This article belongs to the Special Issue Effects of Plant Extracts on Human Health)
Show Figures

Figure 1

22 pages, 3365 KiB  
Review
Emerging Role of Extracellular pH in Tumor Microenvironment as a Therapeutic Target for Cancer Immunotherapy
by Md Ataur Rahman, Mahesh Kumar Yadab and Meser M. Ali
Cells 2024, 13(22), 1924; https://doi.org/10.3390/cells13221924 - 20 Nov 2024
Cited by 15 | Viewed by 4264
Abstract
Identifying definitive biomarkers that predict clinical response and resistance to immunotherapy remains a critical challenge. One emerging factor is extracellular acidosis in the tumor microenvironment (TME), which significantly impairs immune cell function and contributes to immunotherapy failure. However, acidic conditions in the TME [...] Read more.
Identifying definitive biomarkers that predict clinical response and resistance to immunotherapy remains a critical challenge. One emerging factor is extracellular acidosis in the tumor microenvironment (TME), which significantly impairs immune cell function and contributes to immunotherapy failure. However, acidic conditions in the TME disrupt the interaction between cancer and immune cells, driving tumor-infiltrating T cells and NK cells into an inactivated, anergic state. Simultaneously, acidosis promotes the recruitment and activation of immunosuppressive cells, such as myeloid-derived suppressor cells and regulatory T cells (Tregs). Notably, tumor acidity enhances exosome release from Tregs, further amplifying immunosuppression. Tumor acidity thus acts as a “protective shield,” neutralizing anti-tumor immune responses and transforming immune cells into pro-tumor allies. Therefore, targeting lactate metabolism has emerged as a promising strategy to overcome this barrier, with approaches including buffer agents to neutralize acidic pH and inhibitors to block lactate production or transport, thereby restoring immune cell efficacy in the TME. Recent discoveries have identified genes involved in extracellular pH (pHe) regulation, presenting new therapeutic targets. Moreover, ongoing research aims to elucidate the molecular mechanisms driving extracellular acidification and to develop treatments that modulate pH levels to enhance immunotherapy outcomes. Additionally, future clinical studies are crucial to validate the safety and efficacy of pHe-targeted therapies in cancer patients. Thus, this review explores the regulation of pHe in the TME and its potential role in improving cancer immunotherapy. Full article
(This article belongs to the Special Issue Progress in Cancer Immunotherapies)
Show Figures

Figure 1

9 pages, 591 KiB  
Commentary
LNC-ing Genetics in Mitochondrial Disease
by Rick Kamps and Emma Louise Robinson
Non-Coding RNA 2024, 10(6), 57; https://doi.org/10.3390/ncrna10060057 - 15 Nov 2024
Viewed by 1735
Abstract
Primary mitochondrial disease (MD) is a group of rare genetic diseases reported to have a prevalence of 1:5000 and is currently without a cure. This group of diseases includes mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes (MELAS), maternally inherited diabetes and deafness (MIDD), [...] Read more.
Primary mitochondrial disease (MD) is a group of rare genetic diseases reported to have a prevalence of 1:5000 and is currently without a cure. This group of diseases includes mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes (MELAS), maternally inherited diabetes and deafness (MIDD), Leber’s hereditary optic neuropathy (LHON), Leigh syndrome (LS), Kearns–Sayre syndrome (KSS), and myoclonic epilepsy and ragged-red fiber disease (MERRF). Additionally, secondary mitochondrial dysfunction has been implicated in the most common current causes of mortality and morbidity, including cardiovascular disease (CVD) and cancer. Identifying key genetic contributors to both MD and secondary mitochondrial dysfunction may guide clinicians to assess the most effective treatment course and prognosis, as well as informing family members of any hereditary risk of disease transmission. Identifying underlying genetic causes of primary and secondary MD involves either genome sequencing (GS) or small targeted panel analysis of known disease-causing nuclear- or mitochondrial genes coding for mitochondria-related proteins. Due to advances in GS, the importance of long non-coding RNA (lncRNA) as functional contributors to the pathophysiology of MD is being unveiled. A limited number of studies have thus far reported the importance of lncRNAs in relation to MD causation and progression, and we are entering a new area of attention for clinical geneticists in specific rare malignancies. This commentary provides an overview of what is known about the role of lncRNAs as genetic and molecular contributors to disease pathophysiology and highlights an unmet need for a deeper understanding of mitochondrial dysfunction in serious human disease burdens. Full article
Show Figures

Figure 1

66 pages, 6931 KiB  
Review
Dichloroacetate for Cancer Treatment: Some Facts and Many Doubts
by Tomas Koltai and Larry Fliegel
Pharmaceuticals 2024, 17(6), 744; https://doi.org/10.3390/ph17060744 - 6 Jun 2024
Cited by 12 | Viewed by 10190
Abstract
Rarely has a chemical elicited as much controversy as dichloroacetate (DCA). DCA was initially considered a dangerous toxic industrial waste product, then a potential treatment for lactic acidosis. However, the main controversies started in 2008 when DCA was found to have anti-cancer effects [...] Read more.
Rarely has a chemical elicited as much controversy as dichloroacetate (DCA). DCA was initially considered a dangerous toxic industrial waste product, then a potential treatment for lactic acidosis. However, the main controversies started in 2008 when DCA was found to have anti-cancer effects on experimental animals. These publications showed contradictory results in vivo and in vitro such that a thorough consideration of this compound’s in cancer is merited. Despite 50 years of experimentation, DCA’s future in therapeutics is uncertain. Without adequate clinical trials and health authorities’ approval, DCA has been introduced in off-label cancer treatments in alternative medicine clinics in Canada, Germany, and other European countries. The lack of well-planned clinical trials and its use by people without medical training has discouraged consideration by the scientific community. There are few thorough clinical studies of DCA, and many publications are individual case reports. Case reports of DCA’s benefits against cancer have been increasing recently. Furthermore, it has been shown that DCA synergizes with conventional treatments and other repurposable drugs. Beyond the classic DCA target, pyruvate dehydrogenase kinase, new target molecules have also been recently discovered. These findings have renewed interest in DCA. This paper explores whether existing evidence justifies further research on DCA for cancer treatment and it explores the role DCA may play in it. Full article
(This article belongs to the Special Issue Adjuvant Therapies for Cancer Treatment)
Show Figures

Figure 1

28 pages, 875 KiB  
Review
Targeting Pivotal Hallmarks of Cancer for Enhanced Therapeutic Strategies in Triple-Negative Breast Cancer Treatment—In Vitro, In Vivo and Clinical Trials Literature Review
by Anna Szulc and Marta Woźniak
Cancers 2024, 16(8), 1483; https://doi.org/10.3390/cancers16081483 - 12 Apr 2024
Cited by 9 | Viewed by 3647
Abstract
This literature review provides a comprehensive overview of triple-negative breast cancer (TNBC) and explores innovative targeted therapies focused on specific hallmarks of cancer cells, aiming to revolutionize breast cancer treatment. TNBC, characterized by its lack of expression of estrogen receptor (ER), progesterone receptor [...] Read more.
This literature review provides a comprehensive overview of triple-negative breast cancer (TNBC) and explores innovative targeted therapies focused on specific hallmarks of cancer cells, aiming to revolutionize breast cancer treatment. TNBC, characterized by its lack of expression of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2), presents distinct features, categorizing these invasive breast tumors into various phenotypes delineated by key elements in molecular assays. This article delves into the latest advancements in therapeutic strategies targeting components of the tumor microenvironment and pivotal hallmarks of cancer: deregulating cellular metabolism and the Warburg effect, acidosis and hypoxia, the ability to metastasize and evade the immune system, aiming to enhance treatment efficacy while mitigating systemic toxicity. Insights from in vitro and in vivo studies and clinical trials underscore the promising effectiveness and elucidate the mechanisms of action of these novel therapeutic interventions for TNBC, particularly in cases refractory to conventional treatments. The integration of targeted therapies tailored to the molecular characteristics of TNBC holds significant potential for optimizing clinical outcomes and addressing the pressing need for more effective treatment options for this aggressive subtype of breast cancer. Full article
(This article belongs to the Special Issue Risk Factor Prediction, Diagnosis and Treatment of Breast Cancer)
Show Figures

Figure 1

25 pages, 1034 KiB  
Review
On the Importance of Acidity in Cancer Cells and Therapy
by Alaa Tafech and Angélique Stéphanou
Biology 2024, 13(4), 225; https://doi.org/10.3390/biology13040225 - 29 Mar 2024
Cited by 18 | Viewed by 6898
Abstract
Cancer cells are associated with high glycolytic activity, which results in acidification of the tumor microenvironment. The occurrence of this stressful condition fosters tumor aggressiveness, with the outcome of invasiveness and metastasis that are linked to a poor clinical prognosis. Acidosis can be [...] Read more.
Cancer cells are associated with high glycolytic activity, which results in acidification of the tumor microenvironment. The occurrence of this stressful condition fosters tumor aggressiveness, with the outcome of invasiveness and metastasis that are linked to a poor clinical prognosis. Acidosis can be both the cause or consequence of alterations in the functions and expressions of transporters involved in intracellular acidity regulation. This review aims to explore the origin of acidity in cancer cells and the various mechanisms existing in tumors to resist, survive, or thrive in the acidic environment. It highlights the difficulties in measuring the intracellular pH evolution that impedes our understanding of the many regulatory and feedback mechanisms. It finally presents the consequences of acidity on tumor development as well as the friend or foe role of acidity in therapy. Full article
(This article belongs to the Section Cancer Biology)
Show Figures

Figure 1

22 pages, 2270 KiB  
Review
Functions and Therapeutic Use of Heat Shock Proteins in Hepatocellular Carcinoma
by Ramakrushna Paul, Smriti Shreya, Shweta Pandey, Srishti Shriya, Aya Abou Hammoud, Christophe F. Grosset and Buddhi Prakash Jain
Livers 2024, 4(1), 142-163; https://doi.org/10.3390/livers4010011 - 4 Mar 2024
Cited by 4 | Viewed by 3519
Abstract
Heat shock proteins are intracellular proteins expressed in prokaryotes and eukaryotes that help protect the cell from stress. They play an important role in regulating cell cycle and cell death, work as molecular chaperons during the folding of newly synthesized proteins, and also [...] Read more.
Heat shock proteins are intracellular proteins expressed in prokaryotes and eukaryotes that help protect the cell from stress. They play an important role in regulating cell cycle and cell death, work as molecular chaperons during the folding of newly synthesized proteins, and also in the degradation of misfolded proteins. They are not only produced under stress conditions like acidosis, energy depletion, and oxidative stress but are also continuously synthesized as a result of their housekeeping functions. There are different heat shock protein families based on their molecular weight, like HSP70, HSP90, HSP60, HSP27, HSP40, etc. Heat shock proteins are involved in many cancers, particularly hepatocellular carcinoma, the main primary tumor of the liver in adults. Their deregulations in hepatocellular carcinoma are associated with metastasis, angiogenesis, cell invasion, and cell proliferation and upregulated heat shock proteins can be used as either diagnostic or prognostic markers. Targeting heat shock proteins is a relevant strategy for the treatment of patients with liver cancer. In this review, we provide insights into heat shock proteins and heat shock protein-like proteins (clusterin) in the progression of hepatocellular carcinoma and their use as therapeutic targets. Full article
Show Figures

Figure 1

18 pages, 3014 KiB  
Article
L-DOS47 Elevates Pancreatic Cancer Tumor pH and Enhances Response to Immunotherapy
by Bruna Victorasso Jardim-Perassi, Pietro Irrera, Oluwaseyi E. Oluwatola, Dominique Abrahams, Veronica C. Estrella, Bryce Ordway, Samantha R. Byrne, Andrew A. Ojeda, Christopher J. Whelan, Jongphil Kim, Matthew S. Beatty, Sultan Damgaci-Erturk, Dario Livio Longo, Kim J. Gaspar, Gabrielle M. Siegers, Barbara A. Centeno, Justin Y. C. Lau, Shari A. Pilon-Thomas, Arig Ibrahim-Hashim and Robert J. Gillies
Biomedicines 2024, 12(2), 461; https://doi.org/10.3390/biomedicines12020461 - 19 Feb 2024
Cited by 5 | Viewed by 3512
Abstract
Acidosis is an important immunosuppressive mechanism that leads to tumor growth. Therefore, we investigated the neutralization of tumor acidity to improve immunotherapy response. L-DOS47, a new targeted urease immunoconjugate designed to neutralize tumor acidity, has been well tolerated in phase I/IIa trials. L-DOS47 [...] Read more.
Acidosis is an important immunosuppressive mechanism that leads to tumor growth. Therefore, we investigated the neutralization of tumor acidity to improve immunotherapy response. L-DOS47, a new targeted urease immunoconjugate designed to neutralize tumor acidity, has been well tolerated in phase I/IIa trials. L-DOS47 binds to CEACAM6, a cell-surface protein that is highly expressed in gastrointestinal cancers, allowing urease to cleave endogenous urea into two NH4+ and one CO2, thereby raising local pH. To test the synergetic effect of neutralizing tumor acidity with immunotherapy, we developed a pancreatic orthotopic murine tumor model (KPC961) expressing human CEACAM6. Using chemical exchange saturation transfer–magnetic resonance imaging (CEST-MRI) to measure the tumor extracellular pH (pHe), we confirmed that L-DOS47 raises the tumor pHe from 4 h to 96 h post injection in acidic tumors (average increase of 0.13 units). Additional studies showed that combining L-DOS47 with anti-PD1 significantly increases the efficacy of the anti-PD1 monotherapy, reducing tumor growth for up to 4 weeks. Full article
Show Figures

Figure 1

Back to TopTop