Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (22)

Search Parameters:
Keywords = canal seepage

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 4558 KiB  
Article
Optimizing Terminal Water Management in Irrigation District Using Water Balance and Genetic Algorithm
by Siyuan Zhao, Jing Chen, Dan Chen, Zhaohui Luo, Bo Bi, Lan Lin, Xinhao Du, Yuanyuan Liu and Qibing Xia
Agronomy 2024, 14(12), 2987; https://doi.org/10.3390/agronomy14122987 - 15 Dec 2024
Cited by 3 | Viewed by 1067
Abstract
Water delivery management in China’s irrigation districts has traditionally prioritized the main canal system, often overlooking the water-saving potential of the final canals and field irrigation, which offer substantial opportunities to enhance water use efficiency and conserve agricultural water resources. This study summarizes [...] Read more.
Water delivery management in China’s irrigation districts has traditionally prioritized the main canal system, often overlooking the water-saving potential of the final canals and field irrigation, which offer substantial opportunities to enhance water use efficiency and conserve agricultural water resources. This study summarizes and defines the integrated water management of final canals and field irrigation as terminal water management. An optimization method was developed to improve terminal water management, which includes optimizing irrigation quotas based on water balance and scheduling final canal water delivery to minimize seepage losses. A genetic algorithm was employed to solve the problem. The method was applied to the Hongjin irrigation district in Jiangsu Province, China. In 2020, paddy water management was observed, revealing that the irrigation amount for organic and traditional rice was 1113 mm and 956 mm, respectively. Conventional irrigation and water delivery practices have led to extensive drainage, significant rainwater wastage, and inefficient water use. The optimized irrigation quotas for organic and traditional rice resulted in water savings of 302.5 mm and 325.9 mm, respectively, compared to the 2020 monitored data. An irrigation event in early August during a 75% hydrological frequency year was selected as an example. With conventional scheduling, optimized final canal water delivery scheduling reduced the seepage losses from 6.3% to 4.6%, shortened the irrigation time from 17 h to 14 h, and stabilized canal flow rates. The proposed optimization method is a valuable tool for enhancing terminal water management and supporting better irrigation decisions in irrigation districts. Full article
Show Figures

Figure 1

25 pages, 4903 KiB  
Article
Optimization of Hybrid Fiber-Reinforced Concrete for Controlling Defects in Canal Lining
by Ali Rehman and Majid Ali
Materials 2024, 17(16), 4000; https://doi.org/10.3390/ma17164000 - 12 Aug 2024
Cited by 1 | Viewed by 1568
Abstract
Losses in irrigation canals occur during the process of water transportation. In irrigation conveyance water losses, seepage loss is the main contributor to total water loss. The most problematic factors are cracks and settlement of the lined canal in canal lining structures. Water [...] Read more.
Losses in irrigation canals occur during the process of water transportation. In irrigation conveyance water losses, seepage loss is the main contributor to total water loss. The most problematic factors are cracks and settlement of the lined canal in canal lining structures. Water loss occurs in earth channels, mainly due to erosion and the permeability of the material. The concrete, as it does not present cracks, will have a less impermeable layer. Usually, seepage loss comprises 20–30% of the total water loss, and it can be reduced to 15–20% with canal linings. By enhancing the flexure and split tensile strength of concrete, the rate of cracking in the canal lining can be controlled. Concrete’s split tensile strength is one of the most important factors in crack control. The behavior (compressive, flexural, and split tensile properties, water absorption, linear shrinkage mass loss, etc.) of hybrid polypropylene and jute fiber-reinforced concrete (HPJF-RC) for the application of canal linings was studied. In this experimental work, a total of nine mixes were made with different lengths and contents of hybrid polypropylene and jute fiber-reinforced concrete (HPJF-RC) and a control mix. The SEM analysis was performed to explore the hybrid fiber cracking mechanism and the bonding of fibers with the concrete. The crack arresting mechanism of the HPJF-RC will help to reduce water losses in concrete canal linings. With this modern material, the water losses in canal linings can be minimized. The results of this experimental work would be helpful as a reference for both industry experts and academic researchers interested in the advancement of HPJF-RC composites. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

16 pages, 9424 KiB  
Article
Destabilization Mechanism and Stability Study of Collapsible Loess Canal Slopes in Cold and Arid Regions
by Haozhen Xu, Lingkai Zhang and Chong Shi
Appl. Sci. 2024, 14(11), 4518; https://doi.org/10.3390/app14114518 - 24 May 2024
Cited by 2 | Viewed by 1431
Abstract
The combination of seasonal shutdowns, water conveyance, cold, and drought can easily lead to the deterioration of the anti-seepage system and loess foundation of the canal, which contributes to the destruction of the slope. To reveal the failure mechanism of the collapsible loess [...] Read more.
The combination of seasonal shutdowns, water conveyance, cold, and drought can easily lead to the deterioration of the anti-seepage system and loess foundation of the canal, which contributes to the destruction of the slope. To reveal the failure mechanism of the collapsible loess canal slope, this paper is based on the results of laboratory tests and adopts numerical simulations to analyze the stability of the canal slope under different conditions. The results show that the shear strength indexes and elastic modulus E of loess decrease following an exponential pattern with the increase in wetting-drying and freezing-thawing (WD-FT) cycles. The height of the seepage overflow point yields little effect on the water level behind the impermeable membrane, whereas the height of the water level has a significant effect. In the operation period, the slope under any working conditions is in a relatively stable state. However, the slope with a water level of 4.5 m behind the impermeable membrane tends to be unstable after three WD-FT cycles during the shutdown period. By replacing the surface-degraded loess with sand gravel and picking a depth of 0.9–1.2 m, the slope will maintain a long-term stable state. Full article
(This article belongs to the Special Issue Advances in Failure Mechanism and Numerical Methods for Geomaterials)
Show Figures

Figure 1

16 pages, 3072 KiB  
Article
Optimal Allocation of Water Resources in Canal Systems Based on the Improved Grey Wolf Algorithm
by Qiuli Zheng, Chunfang Yue, Shengjiang Zhang, Chengbao Yao and Qin Zhang
Sustainability 2024, 16(9), 3635; https://doi.org/10.3390/su16093635 - 26 Apr 2024
Cited by 1 | Viewed by 1662
Abstract
Xinjiang is located in the arid region of northwestern China, and agriculture accounts for an absolute share of total water use. Resource-based, engineering, structural, and managed water shortages coexist. Therefore, it is of great significance to vigorously develop water conservation technology and improve [...] Read more.
Xinjiang is located in the arid region of northwestern China, and agriculture accounts for an absolute share of total water use. Resource-based, engineering, structural, and managed water shortages coexist. Therefore, it is of great significance to vigorously develop water conservation technology and improve the efficiency of water transmission and distribution in canal systems. This research aims at addressing the problems of difficult manual regulation and the overall optimization of the final canal system, low-water-resource utilization efficiency, and management efficiency. Taking the branch-double two-stage canal system of Dongfeng branch canal in Mangxiang, Jinghe irrigation district, as a case study, and the rotation irrigation group and irrigation duration as decision variables, canal distribution is modeled with the goal of minimizing seepage losses. The improved grey wolf algorithm combined with particle swarm optimization is used for the first time and compared with the traditional grey wolf algorithm, genetic particle swarm optimization fusion algorithm, and northern goshawk algorithm. The results show that (1) on the basis of meeting the water discharge capacity and water demand requirements of the canal system, the diversion time of the water distribution scheme obtained by using the improved grey wolf algorithm is shortened from 11 d to 8.91 d compared with the traditional empirical water distribution scheme. (2) The improved grey wolf algorithm converges to the optimal value within 10 generations compared to the remaining methods, and the total water leakage is reduced from 16.15 × 104 m3 to 11.75 × 104 m3. (3) The number of gate adjustments is reduced, and the canal gates are opened and closed at the same time within each rotational irrigation group. The grey wolf algorithm improved by its combination with particle swarm has stronger optimization ability and convergence, which can better meet the requirements of efficient water resource allocation in irrigation canal systems, as well as a high application value. Full article
(This article belongs to the Section Sustainable Agriculture)
Show Figures

Figure 1

28 pages, 12078 KiB  
Article
Water Budget for Lake Trafford, a Natural Subtropical Lake in South Florida: An Example of Enhanced Groundwater Influx in a Subtropical Lake Subsequent to Organic Sediment Dredging
by Serge Thomas, Mark A. Lucius, Jong-Yeop Kim, Edwin M. Everham, Dana L. Dettmar and Thomas M. Missimer
Water 2024, 16(8), 1188; https://doi.org/10.3390/w16081188 - 22 Apr 2024
Cited by 2 | Viewed by 2318
Abstract
A very detailed water budget analysis was conducted on Lake Trafford in South Florida. The inflow was dominated by surface water influx via five canals (61%), with groundwater influx constituting 12% and direct rainfall constituting 27%. Lake discharge was dominated by sheet flow [...] Read more.
A very detailed water budget analysis was conducted on Lake Trafford in South Florida. The inflow was dominated by surface water influx via five canals (61%), with groundwater influx constituting 12% and direct rainfall constituting 27%. Lake discharge was dominated by sheet flow (69%) and evapotranspiration (30.5%), with groundwater recharge of the hydraulically connected unconfined aquifer accounting for only 0.5%. The removal of 30 M tons (4.4 × 106 m3) of organic sediment impacted the groundwater influx, causing enhanced groundwater flow into the deeper parts of the lake and mixed flow along the banks, creating a rather unusual pattern. The large number of groundwater seepage meters used during this investigation led to a very reliable set of measurements with occasional failure of only a few meters. A distinctive relationship was found between the wet-season lake stage, heavy rainfall events, and pulses of exiting sheet flow from the lake. Estimation of the evapotranspiration loss using data collected from a weather station on the lake allowed the use of three different models, which, when averaged, produced results comparable to Lake Okeechobee (South Florida). A limitation of this investigation was the inability to directly measure sheet-flow discharges, which had to be estimated as a residual within the calculated water budget. Full article
(This article belongs to the Special Issue Research on Nutrient Dynamics in Lakes)
Show Figures

Figure 1

16 pages, 9185 KiB  
Article
Optimized Irrigated Water Management Using Numerical Flow Modeling Coupled with Finite Element Model: A Case Study of Rechna Doab, Pakistan
by Muhammad Sanaullah, Xiuquan Wang, Sajid Rashid Ahmad, Kamran Mirza, Muhammad Qasim Mahmood and Muhammad Kamran
Water 2023, 15(23), 4193; https://doi.org/10.3390/w15234193 - 4 Dec 2023
Cited by 4 | Viewed by 3659
Abstract
The fate of agriculture in Pakistan is predominantly concerned with excessive water mining threats to the subsurface water resources. The current study integrates the Visual MODFLOW-2000 application to estimate the water balance of an aquifer bounded by the Chenab River in the West [...] Read more.
The fate of agriculture in Pakistan is predominantly concerned with excessive water mining threats to the subsurface water resources. The current study integrates the Visual MODFLOW-2000 application to estimate the water balance of an aquifer bounded by the Chenab River in the West and the Ravi River in the East, which covers an area of about 2.98 million hectares. An assimilated method of groundwater flow is employed to characterize the flow dynamics of the Rechna Doab aquifer. The Digital Elevation Model (DEM) produced by the Shuttle Radar Topography Mission (SRTM) and a mesh of discretized cell size (2500 m) were incorporated into the model design. The conceptual model of the alluvial aquifer involves trifold vertical boundaries (an initial fold thickness set up to 150 m). The model input parameters are precipitation, seepage through irrigation, return flow, recharge, hydraulic conductivity and evapotranspiration. Empirical relations are established (at the basin scale) for the discharge input of irrigation canals. Model results confirm that groundwater flow follows the topographic configuration of the study area (i.e., northeast to southwest), and the seepage from irrigating canals and rainfall appeared to be the main source of groundwater recharge among various resources. The zone budget study under steady state simulation showed that the total direct recharge to the aquifer is calculated as 522,910 acre foot. The simulated water balance of the studied aquifer reflects more fluctuations in river leakage. The predictive optimized model reflects an adaptation of canal lining and installation of additional tube wells that will minimize canal seepage by 70% and lead to the reclamation of 37,000 acres of water-logged land for normal cropping. Full article
Show Figures

Figure 1

23 pages, 14775 KiB  
Article
Field Study to Evaluate Water Loss in the Irrigation Canals of Middle Egypt: A Case Study of the Al Maanna Canal and Its Branches, Assiut Governorate
by Mohamed A. Ashour, Mahmoud S. Abdel Nasser and Tarek S. Abu-Zaid
Limnol. Rev. 2023, 23(2), 70-92; https://doi.org/10.3390/limnolrev23020005 - 13 Aug 2023
Cited by 5 | Viewed by 2606
Abstract
Egyptian policymakers and researchers have been working to address the challenge of bridging the gap between limited water resources and the growing population’s needs for agricultural and food production. The National Great Project for Lining and Rehabilitation of All Open Canals of the [...] Read more.
Egyptian policymakers and researchers have been working to address the challenge of bridging the gap between limited water resources and the growing population’s needs for agricultural and food production. The National Great Project for Lining and Rehabilitation of All Open Canals of the Irrigation Network aims to reduce irrigation water losses through seepage, evaporation, and evapotranspiration. This study evaluated water losses from the Al Maanna canal network in the Assiut governorate, Middle Egypt, using empirical formulas and field ponding methods. The results show the Moleth–Worth formula was more compatible with field measurements, with estimated seepage losses of 2.07 and 2.20 million m3/month, respectively. Moreover, maximum evaporation and evapotranspiration losses were 0.086 and 1.133 million m3/month, respectively. Consequently, total water losses from the Al Maanna canal are estimated to be 3.42 million m3/month, accounting for 13.63% of the total discharge. After canal rehabilitation, evaporation and evapotranspiration losses significantly decreased, while seepage losses were lowered to 0.472 million m3/month, as estimated using the field ponding method. Hence, lining the Al Maanna canal network could reduce water losses by 84%, promoting lining processes that yield significant benefits such as moral, cultural, and environmental benefits. This approach outweighs implementation expenses and ensures a sustainable water supply. Full article
Show Figures

Figure 1

15 pages, 3716 KiB  
Article
The Analytical Solution of an Unsteady State Heat Transfer Model for the Confined Aquifer under the Influence of Water Temperature Variation in the River Channel
by Ting Wei, Yuezan Tao, Honglei Ren and Fei Lin
Water 2022, 14(22), 3698; https://doi.org/10.3390/w14223698 - 16 Nov 2022
Cited by 2 | Viewed by 2042
Abstract
The effect of water temperature variation in a river channel on groundwater temperature in the confined aquifer it cuts can be generalized to a one-dimensional thermal convection-conduction problem in which the boundary water temperature rises instantaneously and then remains constant. The basic equation [...] Read more.
The effect of water temperature variation in a river channel on groundwater temperature in the confined aquifer it cuts can be generalized to a one-dimensional thermal convection-conduction problem in which the boundary water temperature rises instantaneously and then remains constant. The basic equation of thermal transport for such a problem is the viscous Burgers equation, which is difficult to solve analytically. To solve this problem, the Cole–Hopf transform was used to convert the second-order nonlinear thermal convection-conduction equation into a heat conduction equation with exponential function-type boundary conditions. Considering the difficulty of calculating the inverse of the image function of the boundary function, the characteristics and properties of the Laplace transform were used to derive the theoretical solution of the model without relying on the transformation of the boundary function, and the analytical solution was obtained by substituting the boundary condition into the theoretical solution. The analytical solution was used to analyze the temperature response laws of aquifers to parameter variation. Subsequently, a 40-day numerical simulation was conducted to analyze the boundary influence range and the results from the analytical method were compared to those from the numerical method. The study shows that: (1) the greater the distance from the river canal and the lower the aquifer flow velocity, the slower the aquifer temperature changes; (2) the influence range of the river canal boundary increases from 18.19 m to 23.19 m at the end of simulation period as the groundwater seepage velocity v increases from 0.08 m/d to 0.12 m/d; (3) the relative errors of the analytical and numerical methods are mostly less than 5%, confirming the rationality of the analytical solution. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

19 pages, 4823 KiB  
Article
Seepage and Groundwater Numerical Modelling for Managing Waterlogging in the Vicinity of the Trimmu–Sidhnai Link Canal
by Muhammad Aslam, Muhammad Umer Shehzad, Ahsan Ali, Nazam Ali, Krisada Chaiyasan, Husnain Tahir, Panuwat Joyklad and Qudeer Hussain
Infrastructures 2022, 7(10), 144; https://doi.org/10.3390/infrastructures7100144 - 21 Oct 2022
Cited by 8 | Viewed by 2935
Abstract
The present study focused on the development and application of two computer numerical models, namely, a seepage model developed using SEEP/W software and a groundwater model developed using Visual MODFLOW software. The seepage model was applied to a 38 km length of the [...] Read more.
The present study focused on the development and application of two computer numerical models, namely, a seepage model developed using SEEP/W software and a groundwater model developed using Visual MODFLOW software. The seepage model was applied to a 38 km length of the tail reach of the Trimmu–Sidhnai (T-S) link canal passing through a severely waterlogged area of 32,000 ha, with a water table within 0–1.5 m from the ground surface; this was to quantify the canal seepage under the present condition (without any intervention) and with the interventions of a concrete lining of the complete prism of the T-S link canal and concrete side protection of the T-S link canal, with the canal bed unlined. The groundwater model evaluated the effectiveness of three waterlogging management interventions, which included: (i) the rehabilitation of the 43 existing drainage tube wells, (ii) the rehabilitation of the existing surface drains, and (iii) a combination of the rehabilitation of the 43 existing drainage tube wells and the rehabilitation of the existing surface drains. The seepage modeling revealed that the concrete lining intervention can reduce 50% of the seepage of the T-S link canal, whereas the concrete side protection intervention can reduce only 21% of the canal seepage. The groundwater modeling revealed that the waterlogging management intervention of the rehabilitation of the 43 drainage tube wells and surface drains can lower the groundwater level from 139.2 to 138.3 m (0.9 m drop), resulting in the mitigation of waterlogging in 45% (14,400 ha) of the severely waterlogged area. The present study recommends that complete concrete lining of the T-S link canal has a huge potential to reduce seepage from the canal, and the combination of the rehabilitation of the 43 drainage tube wells and surface drains also offers a great potential for controlling waterlogging. This intervention can also be considered to mitigate waterlogging from the severely waterlogged area. Cost-effectiveness analysis of the concrete lining of the T-S link canal, the rehabilitation of the 43 existing drainage tube wells, and the rehabilitation of the existing surface drains need to be performed for decision-making and selection of the most cost-effective intervention for implementation. A study needs to be conducted for the development and evaluation of economical and socio-technically feasible and acceptable preventive waterlogging management interventions, including the improved management of irrigation systems, improved irrigation management practices at the farm, improved conjunctive management of surface and groundwater, and improved management of drainage systems at the primary, secondary, and tertiary canal command levels. Full article
Show Figures

Figure 1

17 pages, 13269 KiB  
Article
Assessing the Impact of Artificial Recharge Ponds on Hydrological Fluxes in an Irrigated Stream–Aquifer System
by Chenda Deng and Ryan T. Bailey
Hydrology 2022, 9(5), 91; https://doi.org/10.3390/hydrology9050091 - 19 May 2022
Cited by 5 | Viewed by 3956
Abstract
Artificial recharge ponds have been used increasingly in recent years to store water in underlying aquifers and modify baseline groundwater gradients or alter natural hydrologic fluxes and state variables in an aquifer system. The number of constructed ponds, their geographic spacing, and the [...] Read more.
Artificial recharge ponds have been used increasingly in recent years to store water in underlying aquifers and modify baseline groundwater gradients or alter natural hydrologic fluxes and state variables in an aquifer system. The number of constructed ponds, their geographic spacing, and the volume of water diverted to each pond can have a significant impact on baseline system hydrologic fluxes and state variables such as groundwater head, with the latter sometimes rising to cause waterlogging in cultivated areas. This study seeks to quantify the impact of recharge ponds on groundwater state variables (head, saturated thickness) and associated fluxes within an irrigated stream-aquifer system. We use a numerical modeling approach to assess the impact of a set of 40 recharge ponds in a 246 km2 region of the South Platte River Basin, Colorado on localized groundwater head, regional groundwater flow patterns, and groundwater interactions with the South Platte River. We then use this information to determine the overall influence of recharge ponds on the hydrologic system. A linked agroecosystem–groundwater (DayCent-MODFLOW) modeling system is used to simulate irrigation, crop evapotranspiration, deep percolation to the water table, groundwater pumping, seepage from irrigation canals, seepage from recharge ponds, groundwater flow, and groundwater–surface water interactions. The DayCent model simulates the plant–soil-water dynamics in the root zone and soil profile, while MODFLOW simulates the water balance in the aquifer system. After calibration and testing, the model is used in scenario analysis to quantify the hydrologic impact of recharge ponds. Results indicate that recharge ponds can raise groundwater levels by approximately 2.5 m in localized areas, but only 15 cm when averaged over the entire study region. Ponds also increase the rate of total groundwater discharge to the South Platte River by approximately 3%, due to an increase in groundwater hydraulic gradient, which generally offsets stream depletion caused by groundwater pumping. These results can assist with groundwater resource management in the study region, and generally provide valuable information for the interplay between pumping wells and recharge ponds, and their composite effect on groundwater–surface water interactions. In addition, the developed linked DayCent-MODFLOW modeling system presented herein can be used in any region for which recharge rates should be calculated on a per-field basis. Full article
(This article belongs to the Special Issue Groundwater Management)
Show Figures

Figure 1

24 pages, 25621 KiB  
Article
Spatial and Temporal Effects of Irrigation Canals Rehabilitation on the Land and Crop Yields, a Case Study: The Nile Delta, Egypt
by Sherien Abd-Elziz, Martina Zeleňáková, Branislav Kršák and Hany F. Abd-Elhamid
Water 2022, 14(5), 808; https://doi.org/10.3390/w14050808 - 4 Mar 2022
Cited by 13 | Viewed by 4940
Abstract
Shortage of surface water is considered an international problem that has even extended to countries that have rivers, in particular countries sharing the same river basins and downstream countries, such as Egypt. This issue requires intensive management of available water resources. Irrigation Canals [...] Read more.
Shortage of surface water is considered an international problem that has even extended to countries that have rivers, in particular countries sharing the same river basins and downstream countries, such as Egypt. This issue requires intensive management of available water resources. Irrigation Canals Rehabilitation (ICR) has become essential to protect surface water in irrigation canals from losses due to seepage. Egypt is one of the countries that has started using this technique. This paper aims to evaluate the impact of ICR using concrete on the land and on crop yields. The SEEP/W model is used in the current study to estimate changes in the groundwater table and moisture in the root zone. Three cases studies have been simulated and compared including unlined, lined, and lined canals with a drainage pipe. The methodology is applied to three canals in the Nile Delta: Sero, Dafan, and New-Aslogy. The results demonstrate that ICR has decreased the losses from canals which resulted in lowering the groundwater, where the case of lining gave a higher reduction than the case of lining with a drainage pipe. In addition, the water table underneath the embankment was lowered. Decreasing the groundwater table could help to protect the land from logging and increase crop yields, but it may reduce the recharging of groundwater aquifers. Such a study is highly recommended in arid regions to decrease water losses where many countries are suffering from water shortage. Full article
(This article belongs to the Special Issue Assessment and Management of Hydrological Risks Due to Climate Change)
Show Figures

Figure 1

17 pages, 11768 KiB  
Article
Prediction of the Long-Term Performance Based on the Seepage-Stress-Damage Coupling Theory: A Case in South-to-North Water Diversion Project in China
by Xinyong Xu, Wenjie Xu, Chenlong Xie and Mohd Yawar Ali Khan
Appl. Sci. 2021, 11(23), 11413; https://doi.org/10.3390/app112311413 - 2 Dec 2021
Cited by 4 | Viewed by 2189
Abstract
The South-to-North Water Diversion Project has been in operation since 2014, directly benefiting more than 79 million people in China. Thus, its service life and long-term performance have gained much attention from scholars. To predict its life and performance, this study used the [...] Read more.
The South-to-North Water Diversion Project has been in operation since 2014, directly benefiting more than 79 million people in China. Thus, its service life and long-term performance have gained much attention from scholars. To predict its life and performance, this study used the seepage/stress-damage coupling method. In addition, a seepage/stress-damage coupling theory was proposed and a finite element model of a deep excavated canal in the Xichuan Section of the South-to-North Water Diversion Project was established. The results showed that this canal subsided greatly in the first two years of operation, which can be confirmed by the monitoring data. It is predicted that, after 50 years of normal operation, the canal damage may start and spread from the water level, and reach 37.6%, but such damage will not affect its normal water delivery function. The purpose of this study is to provide guidance for the safe operation of the project. Full article
(This article belongs to the Special Issue Water Quality Modelling, Monitoring and Mitigation)
Show Figures

Figure 1

25 pages, 5526 KiB  
Article
Evaluation of Serviceability of Canal Lining Based on AHP–Simple Correlation Function Method–Cloud Model: A Case Study in Henan Province, China
by Qingfu Li, Huade Zhou, Qiang Ma and Linfang Lu
Sustainability 2021, 13(21), 12314; https://doi.org/10.3390/su132112314 - 8 Nov 2021
Cited by 14 | Viewed by 2763
Abstract
In the process of sustainable development within modern agriculture, in order to ensure that agricultural production has adequate water resources, canal lining (CL) is often used to transport water in order to reduce water seepage, thus promoting the sustainable utilization of water resources. [...] Read more.
In the process of sustainable development within modern agriculture, in order to ensure that agricultural production has adequate water resources, canal lining (CL) is often used to transport water in order to reduce water seepage, thus promoting the sustainable utilization of water resources. However, due to the influence of the terrain, environment, human factors and other factors, the CL often suffers a certain degree of damage. Therefore, it is necessary to evaluate the serviceability of the CL, so to realize the sustainable use of the CL strategy. Aiming at the weight assignment of CL evaluation indices that are subjective and not combined with actual index data, a weight calculation method based on the Analytic Hierarchy Process (AHP)–simple correlation function (SCF) method was proposed, and game theory was used to achieve combination weighting. For the evaluation indices with the characteristics of fuzziness and randomness, the cloud model (CM) was used to comprehensively consider these characteristics in order to realize the evaluation. Finally, a method to measure serviceability of CL based on AHP–SCF–CM was proposed. Taking a CL project in China as an example, this method was used to evaluate the serviceability of the CL. The evaluation result showed that the serviceability of the CL was poor, and the qualitative evaluation result was consistent with the actual damage condition of the project; meanwhile, a comparative study was performed in combination with the AHP–Entropy Weight (EW)–unascertained measurement theory (UMT). The quantitative evaluation results of the two methods displayed the same grade of serviceability, which verifies that the method proposed in this paper is more reasonable, objective and feasible from both qualitative and quantitative perspectives. Furthermore, the evaluation results lay the foundation for subsequent maintenance and fault prevention of the canal. Full article
(This article belongs to the Section Resources and Sustainable Utilization)
Show Figures

Figure 1

14 pages, 3987 KiB  
Article
Numerical Canal Seepage Loss Evaluation for Different Lining and Crack Techniques in Arid and Semi-Arid Regions: A Case Study of the River Nile, Egypt
by Elsayed Elkamhawy, Martina Zelenakova and Ismail Abd-Elaty
Water 2021, 13(21), 3135; https://doi.org/10.3390/w13213135 - 7 Nov 2021
Cited by 26 | Viewed by 7798
Abstract
Owing to the potential negative impacts of climatic changes and the grand Ethiopian renaissance dam, water scarcity has become an urgent issue. Therefore, the Egyptian Ministry of Water Resources and Irrigation has started a national project of the lining and rehabilitation of canals, [...] Read more.
Owing to the potential negative impacts of climatic changes and the grand Ethiopian renaissance dam, water scarcity has become an urgent issue. Therefore, the Egyptian Ministry of Water Resources and Irrigation has started a national project of the lining and rehabilitation of canals, to reduce seepage losses and for efficient water resource management. This study presents a new approach for assessing three different lining and crack techniques for the Ismailia canal, the largest end of the river Nile, Egypt. A 2-D steady state seep/w numerical model was developed for the Ismailia canal section, in the stretch at 28.00–49.00 km. The amount of seepage was significantly dependent on the hydraulic characteristics of the liner material. The extraction from aquifers via wells also had a considerable impact on the seepage rate from the unlined canals; however, a lesser effect was present in the case of lined canals. The concrete liner revealed the highest efficiency, followed by the geomembrane liner, and then the bentonite liner; with almost 99%, 96%, and 54%, respectively, without extraction, and decreasing by 4% for bentonite and geomembrane liners during extraction; however, the concrete lining efficiency did not change considerably. Nevertheless, the efficiency dramatically decreased to 25%, regardless of the lining technique, in the case of deterioration of the liner material. The double effect of both deterioration of the liner material and extraction from the aquifer showed a 16% efficiency, irrespective of the utilized lining technique. Full article
(This article belongs to the Special Issue Assessment and Management of Flood Risk in Urban Areas)
Show Figures

Figure 1

14 pages, 1537 KiB  
Article
Multiple-Criteria Decision Analysis Using TOPSIS: Sustainable Approach to Technical and Economic Evaluation of Rocks for Lining Canals
by Mahrous A. M. Ali, Jong-Gwan Kim, Zakaria H. Awadallah, Ahmed M. Abdo and Abbas M. Hassan
Appl. Sci. 2021, 11(20), 9692; https://doi.org/10.3390/app11209692 - 18 Oct 2021
Cited by 7 | Viewed by 2569
Abstract
One of the crucial projects underway in Egypt is the lining of watercourses to withstand the outflow of water through their beds and flanks. Various materials have been used in this project, including limestone, sandstone, basalt, and dolomite, along with other building materials. [...] Read more.
One of the crucial projects underway in Egypt is the lining of watercourses to withstand the outflow of water through their beds and flanks. Various materials have been used in this project, including limestone, sandstone, basalt, and dolomite, along with other building materials. This study focused on the evaluation of rock characteristics to determine their suitability for the construction of a canal lining. All rock characteristics should be classified in terms of technical and economic concerns related to mining rock specifications, such as mechanical and physical properties, and evaluated according to their weights and ratings. As a rule of decision making, management stakeholders select the rock types. The primary purpose of canal linings is to reduce water loss due to seepage. Methodologically, we adopted the technique for order of preference by similarity to ideal solution (TOPSIS), and derived an improved TOPSIS method based on experimental testing. This study attempted the first application of TOPSIS to canal linings and relevant construction materials. The analysis shows that limestone L1 is the best rock-building material for canal linings in Upper Egypt. Limestone L1 has the shortest geometric distance from the positive ideal solution and the longest geometric distance from the negative ideal solution. The results provide decision makers with strategic indicators to select among different rock types based on the total points assigned to all rock specifications. Full article
Show Figures

Figure 1

Back to TopTop