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Abstract: The present study focused on the development and application of two computer numerical
models, namely, a seepage model developed using SEEP/W software and a groundwater model
developed using Visual MODFLOW software. The seepage model was applied to a 38 km length of
the tail reach of the Trimmu–Sidhnai (T-S) link canal passing through a severely waterlogged area
of 32,000 ha, with a water table within 0–1.5 m from the ground surface; this was to quantify the
canal seepage under the present condition (without any intervention) and with the interventions of
a concrete lining of the complete prism of the T-S link canal and concrete side protection of the T-S
link canal, with the canal bed unlined. The groundwater model evaluated the effectiveness of three
waterlogging management interventions, which included: (i) the rehabilitation of the 43 existing
drainage tube wells, (ii) the rehabilitation of the existing surface drains, and (iii) a combination of
the rehabilitation of the 43 existing drainage tube wells and the rehabilitation of the existing surface
drains. The seepage modeling revealed that the concrete lining intervention can reduce 50% of the
seepage of the T-S link canal, whereas the concrete side protection intervention can reduce only
21% of the canal seepage. The groundwater modeling revealed that the waterlogging management
intervention of the rehabilitation of the 43 drainage tube wells and surface drains can lower the
groundwater level from 139.2 to 138.3 m (0.9 m drop), resulting in the mitigation of waterlogging
in 45% (14,400 ha) of the severely waterlogged area. The present study recommends that complete
concrete lining of the T-S link canal has a huge potential to reduce seepage from the canal, and
the combination of the rehabilitation of the 43 drainage tube wells and surface drains also offers a
great potential for controlling waterlogging. This intervention can also be considered to mitigate
waterlogging from the severely waterlogged area. Cost-effectiveness analysis of the concrete lining
of the T-S link canal, the rehabilitation of the 43 existing drainage tube wells, and the rehabilitation
of the existing surface drains need to be performed for decision-making and selection of the most
cost-effective intervention for implementation. A study needs to be conducted for the development
and evaluation of economical and socio-technically feasible and acceptable preventive waterlogging
management interventions, including the improved management of irrigation systems, improved
irrigation management practices at the farm, improved conjunctive management of surface and
groundwater, and improved management of drainage systems at the primary, secondary, and tertiary
canal command levels.
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1. Introduction

Land becomes waterlogged when the groundwater table rises to such a level that the
soil pores become saturated with water by displacing the air. When water accumulates
in a specific area, the dissolved salts move to the upper horizon and form a white salty
layer, leading to soil salinity. The rise in the water table occurs due to improper irrigation
practices, a lack of adequate drainage, and seepage from the rivers and irrigation channels.
In many irrigated areas around the globe, rising water tables have led to waterlogging and
salinity problems. These problems devour the productive capacity of agricultural land,
causing huge economic losses.

The traditional methods used for the monitoring and evaluation of waterlogging and
salinity problems include soil surveys, questionnaires, and laboratory analyses. Currently,
numerical modeling is widely used for assessing and managing waterlogging problems.
Ref. [1] Conducted a modeling study for mapping soil salinity and sodicity using remote
sensing and geographic information systems (GIS) in Egypt. They also provided salinity
management techniques to ameliorate soil. The study revealed a high correlation between
the soil salinity and remote-sensing spectral indices SIA, SI3, VSSI, and SI9 (R2 = 0.90, 0.89,
0.87, and 0.83), respectively. They found that salt-affected soils in the study area cover
about 56% of cultivated land. Reference [2] applied the SEEP/W model to compare seepage
flow through homogeneous and non-homogeneous earthen dams. They concluded that
(i) SEEP/W could quantify the seepage under both the pervious and impervious condi-
tions through the homogenous and non-homogeneous earthen dams, and (ii) the seepage
characteristics were different in the homogeneous and non-homogeneous earthen dams
under the pervious and impervious conditions. Ref. [3] also used the SEEP/W model for
the investigation and management of seepage through earthen dams and canals. Ref. [4]
Investigated the spatial relationship of low-quality irrigation water and waterlogging in
arid and semiarid environments. The multi-decadal (1990–2020) time series Landsat images
and hadrochemical water analysis were employed within geographical information system
mapping (GIS) to understand the relationship between irrigation water, soil salinity, and
waterlogging in the western Nile Delta, Egypt. The study revealed a strong spatial relation-
ship between waterlogging and salinity of irrigation groundwater. Long-term irrigation
with high salinity groundwater led to increased soil salinity, low soil permeability, and
waterlogging. The study offered a time- and cost-efficient geospatial method for regional
monitoring of surface waterlogging and mitigation strategies for cropland degradation and
agricultural drainage water recycling that would benefit stakeholders and decision-makers.
Refs. [5,6] have used the MODFLOW model to investigate seepage, groundwater table be-
havior, and management. Ref. [7] Conducted numerical modelling study using MODFLOW
and MODPATH models to determine the causes and management of waterlogging problem
in El-Salhiya canal and surrounding El-Heseneya canal, East Delta, Egypt. They found
that leakage of surface water from canals (irrigation network) and drainage systems along
with excess irrigation water is a main reason for development of waterlogging problem in
the study area. MODFLOW results revealed that 2.5 m deep drains are the most effective
intervention for mitigation of waterlogging problem. Refs. [8,9] used the MODFLOW
model to investigate seepage, groundwater table behavior, and management.

Ref. [10] Investigated the development of waterlogging in the cultivated and arable
areas in the Farafra and Baharia Oases closed drainage basins of Egypt using the remote
sensing and GIS techniques. The study revealed that the downward percolation of excess
irrigation water is limited by the development of subsurface hardpan saturating the upper
layer of soil with water. The seepage from the newly cultivated areas revealed the pattern
of buried alluvial channels, which are waterlogged. A large water pond has submerged the
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surrounding fields. The study suggested that the geomorphology of closed drainage basins
needs to be considered when planning for a new cultivation in dryland catchments to better
control waterlogging hazards. The drainage and seepage water can be conveyed through
the inactive alluvial channels into certain abandoned playas for evaporation. Ref. [11]
used the MODFLOW model to investigate seepage, groundwater table behavior, and
management. Ref. [12] conducted a drainage study in seven pilot areas of India under the
Indo-Dutch Network Project on “Research on the control of Waterlogging and Salinization
in Irrigated Agricultural Lands”. Key findings of this research included that (i) horizontal
subsurface drainage by pipe or open drains was proven to be a socio-technically feasible,
acceptable, and cost-effective technology to reclaim waterlogged and salinized lands, (ii)
surface drainage is essential to remove excess water from the land surface in the monsoon
season, (iii) integration of surface drainage with subsurface drainage is essential, and (iv)
restoration of the natural drainage capacity considerably reduces the need for or intensity
of subsurface drainage. Refs. [13,14] used the SEEP/W model for the investigation and
management of seepage through earthen dams and canals. Ref. [15] simulated the impact
of groundwater pumping on the Chenab River’s well field by applying the groundwater
model that includes Groundwater Vista with MODFLOW. They predicted future urban
water supply conditions considering six scenarios based on the groundwater pumping
system’s existing capacity for 2030.

Ref. [16] developed and applied an integrated approach to address the waterlogging
and salinity issues in the semi-arid regions of India, particularly the Haryana State of
India. The approach included both preventive and curative measures. The preventive
measures included the lining of the irrigation water conveyance system and its regular
maintenance; efficient on-farm management practices (high-efficiency irrigation methods,
including sprinkler, drip, and furrow); a reduction in canal water allowance during periods
of high supply, and the conjunctive use of canal and groundwater. The curative measures
included surface drainage, subsurface drainage (tubewell and horizontal tile drainage),
and bio-drainage. Refs. [17–19] mapped waterlogged and salinized areas in India by
employing LISS-III satellite imagery of pre-monsoon and post-monsoon seasons. They
found seasonally waterlogged areas of 454.96 ha (2.37%) and perennial waterlogged areas of
535.54 ha (2.79%) of the total command area. The study revealed only 0.46% of the command
area as saline land and the remaining 99.54% area as non-saline [20]. Refs. [21–24] have
used the SEEP/W model for the investigation and management of seepage through earthen
dams and canals.

Ref. [25] used the MODFLOW model to investigate seepage, groundwater table be-
havior, and management. Ref. [26] conducted a numerical modeling study using the
MODFLOW and MT3D models to investigate the groundwater levels and quality in the
command area of the Lower Chenab Canal, Pakistan. They found that almost half of the
aquifers of the study area had a marginal to harmful quality of groundwater. Ref. [27]
conducted a numerical groundwater modeling study using the Visual MODFLOW model
to quantify the seepage along the Haveli and Trimmu–Sidhnai link canals. He found
that the seepage rates in the successive Kharif and Rabi seasons were about 5 Mm3 and
10 Mm3 more than the previous Kharif and Rabi seasons in the Haveli and T-S link canals,
respectively. Refs. [28,29] used the SEEP/W model for the investigation and management
of seepage through earthen dams and canals.

Ref. [30] Investigated the groundwater table rise and its related problems at the Abu
Mena archaeological and cultural site and explored the reasons of water table rise. The
study revealed that groundwater table has risen considerably and reached the ground
surface causing the waterlogging problem. Waterlogging development occurred due to
inadequate sewerage, excessive irrigation and poor drainage systems. It was recommended
that waterlogging can be prevented, or at least mitigated, through improved management
of irrigation, drainage and sewage systems.

Present study aimed at performing numerical modelling for seepage and groundwa-
ter investigation using SEEP/W and MODFLOW models. SEEP/W model was used to
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quantify the seepage from the T-S link canal under the existing condition (without any
intervention) and under the interventions of concrete lining of complete prism of T-S link
canal and concrete side protection of T-S link canal keeping the canal bed unlined and.
MODFLOW was used to simulate the groundwater behavior in the area around the T-S
link canal under the interventions of rehabilitation of: existing 43 drainage tube wells,
existing surface drains and combination of existing 43 drainage tube wells and existing
surface drains.

2. Materials and Methods
2.1. Research Area Description

The present study was conducted for the area along the Trimmu-Sidhnai (T-S) link
canal (Figure 1). The study area located in Punjab, Pakistan is triangular in shape with
Trimmu barrage at the top, Chenab river in the west, Ravi river in the south and a narrow
belt of land along link canal, about 1.61 km wide in the east. The T-S link canal links river
Chenab with river Ravi with a design discharge capacity of 354 m3/s. The area along T-S
link canal is an irrigated agriculture land. The climate of the study area is hot and dry.
During summer, minimum and maximum temperature is 21 ◦C and 42.3 ◦C, respectively,
and in winter, minimum and maximum temperature is 4.5 ◦C and 28.7 ◦C, respectively.
The average annual rainfall is about 190 mm. The nearest Meteorological station is Multan.
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The seepage from unlined T-S link and damaged brick lining of Haveli canals, distribu-
taries and minors, watercourses, deep percolation from irrigated agriculture fields, rainfall
recharge and lateral groundwater inflow have caused waterlog in the study area. The situa-
tion further deteriorated, when 43 Salinity Control & Reclamation Project (SCARP) tube
wells installed on the left bank of T-S link canal and right bank of Haveli main canal became
inoperative along with poorly maintained surface drainage network. An area of 32,000 ha
located along the tail reach of the T-S link canal (shaded blue in Figure 1) is severely
waterlogged having groundwater table within 0–1.5 m from the ground surface [19].

2.2. Data Collection

Data required for the present study was collected from the Punjab Irrigation Depart-
ment, Punjab Directorate of Land Reclamation and National Engineering Services Pakistan
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(NESPAK). The collected data included: discharges of Rivers Chenab and Ravi, discharges
of T-S link canal and Haveli canal, discharges and commands of distributaries, discharges
of surface drains, discharges of public and private tube wells, groundwater table depths,
groundwater recharge and discharge, groundwater aquifer physical and hydraulic data
including aquifer thickness, horizontal hydraulic conductivity, vertical hydraulic conductiv-
ity, anisotropy ratio and specific yield. Data of 24 observation wells/piezometers installed
along the T-S link canal was collected from the International Waterlogging and Salinity
Research Institute (IWASRI) of Water and Power Development Authority (WAPDA) for the
six-year period (2011 to 2017).

2.3. Seepage Model Development

The seepage model was developed using the finite element SEEP/W software (de-
veloped in 2012 by GEOSLOPE International Ltd., Calgary, AB, Canada) to quantify the
seepage flux from the T-S link canal considering the steady state conditions. Seepage model
development consisted of setting the canal geometry, assigning the material properties; and
boundary conditions.

2.4. Canal Geometry

Canal geometry included: bed width, top width, bed level, depth of flow and full
supply level (FSL). In the present study, for T-S link canal, bed width of 76.2 m, top width
of 134.1 m, bed level of 141 m, FS flow depth of 3.8 m and FS level of 144.8 m [31] were
input in the SEEP/W model.

2.5. Material Properties

The main material properties included saturated hydraulic conductivity and anisotropy
ratio. In the present study, saturated hydraulic conductivity (Kx) of 0.000049 m/s and
saturated hydraulic conductivity (Ky) of 0.000012 m/s and anisotropic ratio of 0.25 were
used in the SEEP/W model [19].

2.6. Boundary Conditions

Canal head of 144.8 m and groundwater table depth of 1.5 m were assigned to the
model as boundary conditions. In order to carry out steady state analysis; canal head and
groundwater table depth were kept constant.

2.7. Seepage Model Application

The seepage model (SEEP/W) was applied to the T-S link canal to simulate seepage
fluxes under the existing condition (without any seepage control intervention) and under
the different seepage control interventions. Model evaluated the effectiveness of the
interventions of concrete lining of complete prism of T-S link canal and concrete side protection
keeping the bed of T-S link canal unlined, in controlling seepage from T-S link canal thereby
managing waterlogging in the area surrounding the T-S link canal.

2.8. Groundwater Model Development

The groundwater model for T-S link canal area was developed by using the modular
three-dimensional finite difference groundwater flow simulation software developed by
the United States Geological Survey. Development of groundwater model requires that
the model area be divided into sub-areas called cells. Each cell requires hydrogeological
data (aquifer thickness, hydraulic conductivity, specific yield, etc.) and hydrological data
(recharge from irrigation applications, seepage from canals, rivers, groundwater pumpage
and water table levels).

2.9. Model Domain and Grid Layout

In the present study, model grid covers an area of 0.27 million ha having 71,619 m
length and 38,285 m width. Using uniform spacing of 200 m (uniform cell size of 200 m ×
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200 m), model grid contained 358 rows and 192 columns. Model domain had 68,736 cells
out of which 59,197 cells were active and 9539 were non-active. Figure 2 presents the model
grid layout of the area modeled in the present study.
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2.10. Aquifer Thickness and Layering

Considering the aquifer thickness of 300 m and aquifer lithology, three-layer model
was developed with the bottom of aquifer at 300 m depth. First layer (layer 1) was 7 m
thick (from 0–7 m) containing minimum elevation of 135.5 m and maximum elevation of
147.5 m. Second layer (layer 2) was 23 m thick (from 7 to 30 m). Third layer (layer 3) was
270 m thick (from 30 to 300 m) as depicted in Figure 3.
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2.11. Aquifer Hydrogeological Parameters

Horizontal hydraulic conductivity, vertical hydraulic conductivity, specific yield and
specific storage used for layer1 included 35 m/day, 1.6 m/day, 12%, and 0.50 × 10−3 m−1,
respectively. Horizontal hydraulic conductivity, vertical hydraulic conductivity, spe-
cific yield and specific storage used for layer 2 were 86 m/day, 3.7 m/day, 20%, and
0.20 × 10−3 m−1, respectively. Horizontal hydraulic conductivity, vertical hydraulic con-
ductivity, specific yield and specific storage used for layer 3 were 98 m/day, 3.7 m/day,
20%, and 0.20 × 10−3 m−1, respectively [27].

2.12. Boundary Conditions

Constant head boundary (CHB) and general head boundary (GHB) packages were
assigned to the model domain. River package was assigned to both canals (T-S link and
Haveli canals) and rivers (Chenab and Ravi Rivers). Drain package was assigned to
the drainage network. Active and inactive cells were specified to the model. Ravi and
Chenab Rivers were taken as general head boundaries (GHB) of the model. The boundary
conditions of the model are shown in Figure 2. In the Northwest part of the model domain,
cells are marked as River Chenab in blue color. In the South part of the model domain,
cells are marked as River Ravi in blue color. The remaining West, East and North right
corners are marked as constant head boundary (CHB). In addition, Haveli main canal and
T-S link canal were given River package in the model domain. All the non-active cells
are marked with green color in the model domain. River packages are marked with blue
color in the model domain. Recharge package and evapotranspiration package were also
incorporated in the model boundary condition. Total evapotranspiration was taken as
1000 mm/year [19]. Total groundwater recharge is given in Table 1. Total recharge was
calculated as the sum of average weighted seepage from Haveli main canal and T-S link
canal, recharge from distributaries, water courses and irrigated fields, recharge from the
precipitation and groundwater inflow outflow [19].

Table 1. Recharge Flux to Groundwater Aquifer (Source: [19]).

Recharge Source Recharge Flux (mm/Year)

Average weighted seepage of T-S link per unit area 452.4

Average weighted seepage Haveli canal per unit area 34.29

Recharge from distributaries, watercourses and irrigated fields 205.2

Recharge from rainfall 42.4

Lateral groundwater inflow (=Regional groundwater net recharge
= inflow-outflow) 13.7

Total 747.9

2.13. Model Simulation Period/Stress Periods

Model simulations were made for six- year period covering from April, 2011 to March,
2017. Total simulation period was divided into 12 stress periods to represent Kharif
(summer) season and Rabi (winter) season. The stress period of Kharif season consisted
of 182 days covering months from April to September. The stress period of Rabi season
consisted of 183 days covering months from October to March.

2.14. Model Calibration

Out of 24 observation wells installed in the study area, data of 6 observations wells
were used to calibrate the model for the first six stress periods (April 2011 to March 2014).
In the calibration process, simulated groundwater levels (heads) were compared with the
observed groundwater levels (heads) by adjusting the hydrogeological parameters (Kh, Kv,
Sy and Ss) to the extent at which there was a close agreement between the simulated and
observed groundwater levels (heads). Model calibration curves are depicted in Figure 4.
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After model calibration, an error analysis was performed and values of statistical
parameters including Root Mean Square Error (RMSE), Coefficient of Determination (R2)
and Nash-Sutcliff Efficiency (NSE) were determined. RMSE gives the standard deviation
of the residuals. RMSE tells how concentrated data is around the best fit line. RMSE was
determined by using the following equation:

RMSE =

√
(X − Y)2

where
X = Simulated Values
Y = Observed Values
The bar above the squared differences indicates the mean of the squared differences [8].
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The Nash-Sutcliffe Efficiency (NSE) indicates how well the plot of observed versus
simulated data fits the line [18]. NSE was determined by using the following equation:

NSE =
∑ (Observed data − Simulated data)2

∑ (Observed data − Simulated data)2

The value of RMSE found after calibration was 0.499 which falls in the RMSE accept-
able range of 0–0.7 [12]. Therefore, this value of RMSE showed a close agreement between
the simulated and observed groundwater levels. The value of R2 found after calibration
was 0.87 which falls in the R2 acceptable range of, 0.7–1 [28] reflecting a good agreement
between the simulated and observed groundwater levels. The value of NSE found after
calibration was 0.65 which falls in the NSE acceptable range of 0.5–1 [17] reflecting a good
agreement between the simulated and observed groundwater levels The values of RMSE,
R2 and NSE of 0.499, 0.87 and 0.65, respectively, falling in their acceptable ranges indicated
that the model was calibrated reasonably well). Figure 5 shows the graph of simulated
and observed groundwater levels at the end of 6th stress period (March 2014). The solid
dark lines show the limit of ± 0.5–2 m (Source: Manual of MODFLOW PRO, US Geological
Survey (USGS), Denver, CO, USA), dotted line represents the best fit line and points show
observed and simulated groundwater levels. Figure 6 reveals that observed and simu-
lated groundwater levels fall within the limit of ±0.5–2 m reflecting that model has been
calibrated reasonably well.
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2.15. Model Validation

Model was validated for last six stress periods (April 2014 to March 2017) using the
data of 6 observations wells. The values of Root Mean Square Error (RMSE), Coefficient
of Determination (R2) and Nash Sutcliff Efficiency (NSE) was determined and checked
against their acceptable ranges. The value of RMSE was found 0.554, whereas acceptable
range for RMSE is 0–0.7 [12]. The value of R2 was found 0.844, whereas acceptable range
for R2 is 0.7–1 [12]. The value of NSE was found 0.56 whereas acceptable range for NSE is
0.5–1 [18]. The value of RMSE, R2 and NSE were found 0.554, 0.844 and 0.56, respectively,
which evidenced the validation of the model. Figure 6 shows the graph of simulated and
observed groundwater levels at the end of 6th stress period (March 2017). The solid yellow
and gray lines show the limit of ± 0.5–2 m, dotted line represents the best fit line and points
show observed and simulated groundwater levels. Figure 6 reveals that observed and
simulated groundwater levels fall within the limit of ± 0.5–2 m reflecting that model has
been validated.

2.16. Groundwater Model Application

The calibrated and validated groundwater model was applied to the study area to
simulate the groundwater levels under the interventions of (i) rehabilitation of existing
43 drainage tube wells, (ii) rehabilitation of existing surface drains, and (iii) combination
of rehabilitation of existing 43 drainage tube wells and existing surface drains thereby
evaluated the effectiveness of these interventions in controlling the waterlogging prob-
lem in the study area. Rehabilitation of existing 43 drainage tube wells and existing
surface drains as per their design features (making them to work at 100% efficiency) was
input in the model and groundwater level behavior was simulated considering these
interventions individually.
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3. Results and Discussion
3.1. Simulation of Existing Canal Seepage without Any Intervention

The seepage model quantified the existing seepage flux of 0.0113 m3/s/100 m of T-S
link canal under the water flow depth (full supply flow depth) of 3.8 m with groundwater
table depth of 1.5 m, the existing seepage flux of 0.0128 cumec/100 m of T-S link canal
under the water flow depth of 3.8 m with groundwater table depth of 2.3 m and the existing
seepage flux of 0.0053 m3/s/100 m of T-S link canal under the water flow depth of 2.4 m
with groundwater table depth of 1.5 m. Clearly, the higher water flow depth of 3.8 m with
greater groundwater table depth of 2.3 m resulted in the highest canal seepage flux of
0.0128 m3/s/100 m and the lower water flow depth of 2.4 m with lower groundwater table
depth of 1.5 m resulted in the lowest canal seepage flux of 0.0053 m3/s/100 m.

3.2. Evaluation of Concrete Lining Intervention

In the present study, 10 cm thick concrete lining of 38 km long tail reach of T-S link canal
was considered for evaluation of effectiveness in waterlogging control by seepage model.
Bed width of the canal was reduced from 76.2 m to 61.0 m keeping the existing values of
canal discharge and full supply flow depth of 311.4 cumec and 3.8 m, respectively. The
38 km long tail reach of T-S link canal was considered for lining because the severely water-
logged area of 32,000 ha is located along this reach which needs waterlogging management.

The seepage model evaluation of intervention of concrete lining of T-S link canal re-
sulted in canal seepage flux of 0.0057 cumec/100 m compared to existing (without concrete
lining) seepage flux of 0.0113 cumec/100 m under the water flow depth of 3.8 m with
groundwater table depth of 1.5 m reflecting 50% reduction in seepage flux with concrete lin-
ing of the T-S link canal. The canal seepage flux of 0.0071 cumec/100 m was obtained under
the water flow depth of 3.8 m with groundwater table depth of 2.3 m. The comparison of
0.0071 cumec/100 m seepage flux with existing seepage flux of 0.0128 cumec/100 m reflects
45% reduction in seepage flux with concrete lining of the T-S link canal. The seepage flux of
0.0032 cumec/100 m was obtained under the water flow depth of 2.4 m with groundwater
table depth of 1.5 m. The comparison of 0.0032 cumec/100 m seepage flux with existing
seepage flux of 0.0053 cumec/100 m reflects 40% reduction in seepage flux with concrete
lining of the T-S link canal. On overall basis, concrete lining intervention resulted in 40 to
50% reduction in seepage of the T-S link canal. Maximum seepage reduction of 50% was
obtained under the water flow depth of 3.8 m with groundwater table depth of 1.5 m which
is the prevalent scenario in the T-S link canal adjacent area.

3.3. Evaluation of Concrete Side Protection Intervention

Under the intervention of concrete side protection with brick toe wall, 10 cm thick
lining was considered for side protection to be rested on brick toe wall and canal bed
was considered unlined for the 38 km long tail reach of the T-S link canal. The seepage
flux of 0.0089 cumec/100 m (with concrete side protection) compared to existing (without
concrete side protection) seepage flux of 0.0113 cumec/100 m under the water flow depth of
3.8 m with groundwater table depth of 1.5 m reflected 21% reduction in seepage flux with
concrete side protection of the T-S link canal. The canal seepage flux of 0.0104 cumec/100 m
was obtained under the water flow depth of 3.8 m with groundwater table depth of 2.3 m.
The comparison of 0.0104 cumec/100 m seepage flux (with concrete side protection) with
existing seepage flux of 0.0128 cumec/100 m reflected 19% reduction in seepage flux with
concrete side protection of the T-S link canal. The seepage flux of 0.0047 cumec/100 m was
obtained under the water flow depth of 2.4 m with groundwater table depth of 1.5 m. The
comparison of 0.0047 cumec/100 m seepage flux with existing (without concrete lining)
seepage flux of 0.0053 cumec/100 m reflects 11% reduction in seepage flux with concrete
side protection of the T-S link canal. On overall basis, concrete side protection intervention
resulted in 11 to 21% reduction in seepage of the T-S link canal. Maximum seepage
reduction of 21% was obtained under the water flow depth of 3.8 m with groundwater
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table depth of 1.5 m which is the prevalent scenario in the T-S link canal and its adjacent
command area.

The comparison of maximum seepage reduction of 50% by concrete lining intervention
with maximum seepage reduction of 21% by concrete side protection intervention under the
full supply flow depth of 3.8 m with groundwater table depth of 1.5 m revealed that concrete
lining intervention is more effective in reducing canal seepage compared to concrete side
protection intervention. It implies that intervention of concrete lining of T-S link canal
could be considered for implementation for controlling canal seepage thereby for managing
waterlogging in the area adjacent to the T-S link canal.

3.4. Depth to Water Table (DTW)

As shown in Figure 7, simulated DTW varied form 0–20 m in the vicinty of the T-S
link canal command. On the right side of the T-S link canal, DTW varied from 0 to 4 m.
On the left side of the canal DTW varied from 4 to 20 m. Clearly, severely waterlogged
area (having DTW in the range of 0–1 m) shown by dark blue color in Figure 7 was found
in the right-side command of lower reach of T-S link canal. The simulated DTW values
in the range of 4–20 m did not reveal the waterlogged area on the left side of T-S link
canal command.
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3.5. Evaluation of Waterlogging Management Intervention 1: Rehabilitation of Existing 43
Drainage Tubewells

Rehabilitation of Existing 43 Drainage Tubewells (working with full efficiency) was consid-
ered as the first intervention for mitigation of waterlogging from the study area. Table 2
depicts detailed information (data) about the 43 drainage tubewells.
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Table 2. Data on 43 Drainage Tubewells (Source: [27]).

Item Value

Number of drainage wells 43

Number of 0.042 Cumec capacity wells 32

Number of 0.070 Cumec capacity wells 11

Parameters of 0.042 Cumec Tubewells:

Depth of drilling 49–55 m

Pump Housing case length 16–21 m

Pump Housing Case diameter 30 m

Slotted casing Length 30.5 m

Slot Casing Diameter 17.5 m

Parameters of 0.7 Cumec Tubewells:

Depth of drilling 49–64 m

Pump Housing case length 16–21 m

Pump Housing Case diameter 35.5 cm

Slotted casing Length 42.5 m

Slot Casing Diameter 20 cm

Figure 8 reveals the model results on evaluation of rehabilitation of 43 drainage
tubewells working with full efficiency. The comparison of model simulated results with
actual waterlogged area depicted a reduction of 0.2 m in the groundwater level providing a
relief of about 9% to the waterlogged area (2880 ha of 32,000 ha).
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3.6. Evaluation of Waterlogging Management Intervention 2: Rehabilitation of Existing
Surface Drains

Rehabilitation of Existing Surface Drainage Network (working with full efficiency) was
considered as the second intervention for mitigation of waterlogging from the study area.
Table 3 depicts detailed data about the surface drainage network rehabilitated to restore as
per design for working with full efficiency. Figure 9 shows the surface drainage network of
the study area.
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Table 3. Data on Rehabilitated Surface Drains (Source: [30]).

Main Drain Branch Drain Discharge
(Cumec)

Trimmu-Sidhnai-Mailsi-Bahawal
(TSMB) Drain

Ghagh Branch Drain 2.0

- Madi Sub-Drain 1.3

- Kaura Sub-Drain 0.6

- Basira Sub-Drain and Extension 1.1

- Forest Su
1.1- b-Drain and Extension

Dangra Branch Drain 0.4

Darkhana Branch Drain and Sub-Drain 2.7

Aroti Branch Drain 0.7

Total Discharge 9.9

Gojra Drain - 20.12

Figure 10 shows the results of model for rehabilitated existing drainage network
working with full efficiency. The comparison of model results with actual waterlogged area
revealed a reduction of about 0.45 m in water level providing a relief of about 19% to the
waterlogged area (6080 ha of 32,000 ha).
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3.7. Evaluation of Waterlogging Management Intervention 3: Combination of Rehabilitation of
Existing 43 Drainage Tube Wells and Rehabilitation of Existing Surface Drains

Combination of Rehabilitation of Existing 43 Drainage Tube wells (working with full efficiency)
and Rehabilitation of Existing Surface Drainage Network (working with full efficiency) was
considered as the third intervention for waterlogging management. Figure 11 reveals
the results of model for rehabilitation of 43 drainage tube wells and existing surface
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drainage network working with full efficiency. When the results were compared with
actual waterlogged area it was observed there was reduction of about 0.9 m in water level
providing a relief of about 45% to the waterlogged area (14,400 ha of 32,000 ha).
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3.8. Comparison of Effectiveness of Waterlogging Management Interventions

The average groundwater level in the study area without any intervention is about
139.2 m which is causing waterlogging problem. Model evaluation revealed water level low-
ering of 0.20 (from 139.2 to 139 m), 0.45 (from 139.2 to 138.75 m) and 0.90 m (from 139.2 to
138.3 m) under the intervention 1: Rehabilitation of Existing 43 Drainage Tube wells, in-
tervention 2: Rehabilitation of Existing Surface Drainage Network and intervention 3:
Combination of Rehabilitation of Existing 43 Drainage Tube wells and Rehabilitation of
Existing Surface Drainage Network, respectively (Figure 12). Clearly, intervention 3 (Com-
bination of Rehabilitation of Existing 43 Drainage Tube wells and Rehabilitation of Existing
Surface Drainage Network) looks more effective in controlling waterlogging because it
could lower groundwater level by 0.90 m which would result in waterlogging reduction in
45% area of severely waterlogged area.
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4. Conclusions and Recommendations
4.1. Conclusions

The main conclusions derived from the present study include:

• The seepage modeling using SEEP/W model revealed that waterlogging management
intervention of complete concrete lining of T-S link canal can reduce 50% of the seepage
(0.0113 cumec per 100 m) from the T-S link canal when flowing at its full supply flow
depth of 3.8 m.

• The seepage modelling using SEEP/W model revealed that waterlogging management
intervention of concrete side protection of T-S link canal can reduce 21% of the seepage
(0.0113 cumec per 100 m) from the T-S link canal when flowing at its full supply flow
depth of 3.8 m.

• Considering the effectiveness of the concrete lining and concrete side protection
of T-S link canal, comparison of these interventions revealed that concrete lining
intervention can reduce 50% of total seepage of the T-S link canal. The effectiveness
of this intervention in controlling seepage seems reasonably good (50% reduction in
seepage). The concrete side protection intervention does not seem very effective in
controlling seepage (only 21% reduction in seepage). Though concrete lining of T-S
link canal could be considered for implementation, cost-effectiveness analysis of this
intervention needs to be performed prior to its implementation.

• The groundwater numerical modeling using MODFLOW model revealed that the reha-
bilitated 43 drainage tube wells working with full efficiency could lower groundwater
level by about 0.2 m resulting in waterlogging mitigation from about 9% (2880 ha) of
the waterlogged area (32,000 ha).

• The groundwater modeling revealed that waterlogging management intervention of
rehabilitation of existing surface drains can lower the groundwater table by 0.45 m.
This intervention can mitigate waterlogging from about 19% (6080 ha) of the severely
waterlogged area.

• The groundwater modeling revealed that rehabilitated 43 drainage tube wells and
surface drains working with full efficiency can lower the groundwater table by 0.9 m.
This intervention can mitigate waterlogging from about 45% (14,400 ha) of the severely
waterlogged area.

• The comparison of the effectiveness of the interventions of rehabilitation of 43 drainage
tube wells, rehabilitation of surface drains and combination of rehabilitation of
43 drainage tube wells and surface drains revealed that combination of rehabilitation
of 43 drainage tube wells and surface drains intervention can reduce waterlogging in
the 45% area of the severely waterlogged area. The effectiveness of this intervention in
controlling waterlogging seems reasonably good.

4.2. Recommendations

The main recommendations emerged from the present study include:

• Complete concrete lining of T-S link canal intervention has a huge potential to reduce
seepage from the canal. This intervention could be considered for implementation to
mitigate waterlogging in the area adjacent to T-S link canal.

• The combination of rehabilitation of 43 drainage tube wells and surface drains inter-
vention also offers a great potential for controlling waterlogging. This intervention
can also be considered for implementation to mitigate waterlogging from the severely
waterlogged area.

• For effective and sustainable management of waterlogging in the vicinity of T-S link
canal, combination of interventions of concrete lining of T-S link canal, rehabilitation
of 43 drainage tube wells and rehabilitation of surface drains could be considered for
implementation.

• Cost-effectiveness analysis of the concrete lining of T-S link canal intervention, rehabil-
itation of existing 43 drainage tube wells intervention, and rehabilitation of existing
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surface drains intervention needs to be performed for decision-making and selection
of the most cost-effective intervention for implementation.

4.3. Areas for Future Research

A future line of research as preventive measures to control waterlogging and salinity
development in canal command areas may focus on the studies mentioned below.

• A study should be carried out to develop technically and economically effective
and sustainable management interventions for improved management of irrigation
systems, improved irrigation management practices at the farm, improved conjunctive
management of surface and groundwater, and improved management of drainage
systems at primary, secondary and tertiary canal command levels.

• A study should be conducted for evaluation of impact of improved management of
irrigation systems, improved irrigation management practices at the farm, improved
conjunctive management of surface and groundwater and improved management of
drainage systems on waterlogging in the canal commands.
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