Optimized Irrigated Water Management Using Numerical Flow Modeling Coupled with Finite Element Model: A Case Study of Rechna Doab, Pakistan
Abstract
:1. Introduction
Study Area
2. Materials and Methods
2.1. Conceptualization Model
2.2. Development of Groundwater Flow Model
2.2.1. Boundary Conditions
2.2.2. Groundwater Model Selection
2.2.3. Model Discretization and Setup
2.2.4. Model Input Parameters
3. Results and Discussion
3.1. Model Calibration (Steady State)
3.2. Groundwater Velocity Contour
3.3. Modeled Hydraulic Conductivity
3.4. Sensitivity Analysis
3.5. Water Balance
4. Optimized Irrigation Model
4.1. Conceptualization
4.2. Simulated Draw Down
4.3. Comparative Analysis Using SEEP/W
4.4. Canal Water Optimization
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zheng, C.; Wang, P.P. MT3DMS: A Modular Three-Dimensional Multispecies Transport Model for Simulation of Advection, Dispersion and Chemical Reactions of Contaminants in Groundwater Systems. In Documentation and User’s Guide; Contract Report SERDP-99-1; US Army Corps of Engineers-Engineer Research and Development Center: Vicksburg, MS, USA, 1999. [Google Scholar]
- Domenico, P.A.; Schwartz, F.W. Physical and Chemical Hydrogeology; John Wiley & Sons: Hoboken, NJ, USA, 1998. [Google Scholar]
- McDonald, M.G.; Harbaugh, A.W. A Modular Three-Dimensional Finite-Difference Ground-Water Flow Model; US Geological Survey: Reston, VA, USA, 1988.
- Kinzelbach, W. Applied groundwater modeling—simulation of flow and advective transport. J. Hydrol. 1992, 140, 393–394. [Google Scholar] [CrossRef]
- Mercer, J. Applied groundwater modeling: Simulation to flow and advective transport. J. Contam. Hydrol. 1992, 10, 339–340. [Google Scholar] [CrossRef]
- Harbaugh, A.W. MODFLOW-2005, the US Geological Survey Modular Ground-Water Model: The Ground-Water Flow Process; US Department of the Interior, US Geological Survey: Reston, VA, USA, 2005; Volume 6. [CrossRef]
- Zhu, J.; Wang, Y.; Guo, H.; Zang, X.; Qin, T. Application of groundwater model to groundwater regulation in cangzhou area. E3s Web Conf. 2019, 79, 03014. [Google Scholar] [CrossRef]
- Harbaugh, A.W.; Banta, E.R.; Hill, M.C.; Mcdonald, M.G. MODFLOW-2000, the U.S. Geological Survey Modular Ground-Water Model-User Guide to Modularization Concepts and the Ground-Water Flow Process; Open-File Report; U.S. Geological Survey: Reston, VA, USA, 2000; p. 134.
- Wang, S.; Shao, J.; Song, X.; Zhang, Y.; Huo, Z.; Zhou, X. Application of MODFLOW and geographic information system to groundwater flow simulation in North China Plain, China. Environ. Geol. 2008, 55, 1449–1462. [Google Scholar] [CrossRef]
- Bailey, R.; Wible, T.; Arabi, M.; Records, R.; Ditty, J. Assessing regional-scale spatio-temporal patterns of groundwater–surface water interactions using a coupled swat-modflow model. Hydrol. Process. 2016, 30, 4420–4433. [Google Scholar] [CrossRef]
- Yifru, B.; Chung, I.; Kim, M.; Chang, S. Assessment of groundwater recharge in agro-urban watersheds using integrated swat-modflow model. Sustainability 2020, 12, 6593. [Google Scholar] [CrossRef]
- Bouaamlat, I.; Larabi, A.; Faouzi, M. Hydrogeological investigation of an oasis-system aquifer in arid southeastern Morocco by development of a groundwater flow model. Hydrogeol. J. 2016, 24, 1479. [Google Scholar] [CrossRef]
- Gebreyohannes, T.; De Smedt, F.; Walraevens, K.; Gebresilassie, S.; Hussien, A.; Hagos, M.; Amare, M.; Deckers, J.; Gebrehiwot, K. Regional groundwater flow modeling of the Geba basin, northern Ethiopia. Hydrogeol. J. 2017, 25, 639. [Google Scholar] [CrossRef]
- Ochoa, C.; Sierra, A.; Vives, L.; Zimmermann, E.; Bailey, R. Spatio-temporal patterns of the interaction between groundwater and surface water in plains. Hydrol. Process. 2020, 34, 1371–1392. [Google Scholar] [CrossRef]
- Yihdego, Y.; Reta, G.; Becht, R. Hydrological analysis as a technical tool to support strategic and economic development: A case study of lake navaisha, kenya. Water Environ. J. 2016, 30, 40–48. [Google Scholar] [CrossRef]
- Latif, M.; Tariq, J.A. Performance assessment of irrigation management transfer from government-managed to farmer-managed irrigation system: A case study. Irrig. Drain. 2009, 58, 275–286. [Google Scholar] [CrossRef]
- Siddiqui, I.H. Irrigation Canals: Planning, Design, Construction, and Maintenance; National Book Foundation: Islamabad, Pakistan, 1979. [Google Scholar]
- Deng, C.; Bailey, R.T. Assessing the Impact of Artificial Recharge Ponds on Hydrological Fluxes in an Irrigated Stream–Aquifer System. Hydrology 2022, 9, 91. [Google Scholar] [CrossRef]
- Ahmad, M.D. Estimation of Net Groundwater Use in Irrigated River Basins Using Geo-Information Techniques: A Case Study in Rechna Doab, Pakistan. Ph.D. Thesis, Wageningen University, Wageningen, The Netherlands, 2002. [Google Scholar]
- Khan, S.; Rana, T.; Gabriel, H.; Ullah, M.K. Hydrogeologic assessment of escalating groundwater exploitation in the Indus Basin, Pakistan. Hydrogeol. J. 2008, 16, 1635–1654. [Google Scholar] [CrossRef]
- Jehangir, W.A.; Qureshi, A.S.; Ali, N. Conjunctive Water Management in the Rechna Doab: An Overview of Resources and Issues; International Water Management Institute (IWMI): Lahore, Pakistan, 2002; Volume 48. [Google Scholar]
- Arslan, M.; Tauseef, M.; Gull, M.; Baqir, M.; Ahmad, I.; Ashraf, U.; Al-Tawabini, B.S. Unusual rainfall shift during monsoon period of 2010 in Pakistan: Flash flooding in Northern Pakistan and riverine flooding in Southern Pakistan. Afr. J. Environ. Sci. Technol. 2013, 7, 882–890. [Google Scholar]
- Khalid, P.; Sanaullah, M.; Sardar, M.J.; Iman, S. Estimating active storage of groundwater quality zones in alluvialdeposits of Faisalabad area, Rechna Doab, Pakistan. Arab. J. Geosci. 2019, 12, 206. [Google Scholar] [CrossRef]
- Anjum, W.A.; Ahmad, S.R.; Sanaullah, M.; Majid, Z.; Mirza, K. Geographic Information System and Modelling Approach for Groundwater Systems of Rechna Doab, Pakistan. Pak. J. Sci. 2016, 68, 470–476. [Google Scholar]
- Ashraf, A. The Conjunctive Use of Groundwater Modelling and Geographic Information System (GIS) to Study the Water Resources of Upper Jhelum Scarp Area in Indus Basin. Ph.D. Thesis, Quaid-i-Azam University, Islamabad, Pakistan, 2008. [Google Scholar]
- Lachaal, F.; Mlayah, A.; Bédir, M.; Tarhouni, J.; Leduc, C. Implementation of a 3-D groundwater flow model in a semi-arid region using MODFLOW and GIS tools: The Zéramdine–Béni Hassen Miocene aquifer system (east-central Tunisia). Comput. Geosci. 2012, 48, 187–198. [Google Scholar] [CrossRef]
- Yang, Q.; Lun, W.; Fang, Y. Numerical modelling of three-dimensional groundwater flow in Tongliao (China). Procedia Eng. 2011, 24, 638–642. [Google Scholar] [CrossRef]
- Dong, Y.; Li, G.; Xu, H. An areal recharge and discharge simulating method for MODFLOW. Comput. Geosci. 2011, 42, 203–220. [Google Scholar] [CrossRef]
- Manghi, F.; Williams, D.; Safely, J.; Hamdi, M.R. Groundwater flow modelling of the Arlington basin to evaluate management strategies for expansion of the Arlington desalter water production. Water Resour. Manag. 2012, 26, 21–41. [Google Scholar] [CrossRef]
- Sedki, A.; Ouazar, D. Simulation-optimization modelling for sustainable groundwater development: A Moroccan coastal aquifer case study. Water Resour. Manag. 2011, 25, 2855–2875. [Google Scholar] [CrossRef]
- Xu, X.; Huang, G.; Qu, Z.; Pereira, L.S. Using MODFLOW and GIS to assess changes in groundwater dynamics in response to water saving measures in irrigation districts of the Upper Yellow River Basin. Water Resour. Manag. 2011, 25, 2035–2059. [Google Scholar] [CrossRef]
- Ngenzebuhoro, P.C.; Dassargues, A.; Bahaj, T.; Orban, P.; Kacimi, I.; Nahimana, L. Groundwater Flow Modeling: A Case Study of the Lower Rusizi Alluvial Plain Aquifer, North-Western Burundi. Water 2021, 13, 3376. [Google Scholar] [CrossRef]
- Awais, M.; Arshad, M.; Ahmad, S.R.; Nazeer, A.; Waqas, M.M.; Aziz, R.; Shakoor, A.; Rizwan, M.; Chauhdary, J.N.; Mehmood, Q. Simulation of Groundwater Flow Dynamics under Different Stresses Using MODFLOW in Rechna Doab, Pakistan. Sustainability 2023, 15, 661. [Google Scholar] [CrossRef]
- Anderson, M.P.; Woessner, W.W.; Hunt, R.J. Applied Groundwater Modelling: Simulation of Flow and Advective Transport; Academic Press: Cambridge, MA, USA, 2015. [Google Scholar]
- Mundorff, M.J.; Carrigan, P., Jr.; Steele, T.; Randall, A. Hydrologic Evaluation of Salinity Control and Reclamation Projects in the Indus Plain, Pakistan—A Summary; U.S. Government Publishing Office: Washington, DC, USA, 1976.
- Barnett, B. Australian Groundwater Modelling Guidelines; National Water Commission: Canberra, Australia, 2012; Volume 82, pp. 11–42. [Google Scholar]
- Rehman, G.; Jehangir, W.; Rehman, A.; Aslam, M.; Skogerboe, G. Principal Findings and Implications for Sustainable Irrigated Agriculture: Salinity Management Alternatives for the Rechna Doab, Punjab Pakistan, Volume I; Research Report No. R-21.1; International Irrigation Management Institute, International Irrigation Management Institute L.: Lahore, Pakistan, 1997; pp. 24–52. [Google Scholar]
- Lautz, L.K.; Siegel, D.I. Modelling surface and groundwater mixing in the hyporheic zone using MODFLOW and MT3D. Adv. Water Resour. 2006, 29, 1618–1633. [Google Scholar] [CrossRef]
- Aslam, M.; Arshad, M.; Singh, V.P.; Shahid, M.A. Hydrological Modeling of Aquifer’s Recharge and Discharge Potential by Coupling WetSpass and MODFLOW for the Chaj Doab, Pakistan. Sustainability 2022, 14, 4421. [Google Scholar] [CrossRef]
- PPSGDP. Punjab Private Sector Groundwater Development Project: Database for Groundwater Management in Kamalia-Pir Mehal Area of LCC Command Area in Rechna Doab; Technical report; Department IaP: Punjab, Pakistan, 1999; p. 37. [Google Scholar]
- Khan, S.; Rana, T.; Ullah, K.; Christen, E.; Nafees, M. Investigating Conjunctive Water Management Options Using a Dynamic Surface-Groundwater Modelling Approach: A Case Study of Rechna Doab; CSIRO Technical Report 35/03; CSIRO: Canberra, Australia, 2003. [Google Scholar]
- Aghlmand, R.; Abbasi, A. Application of MODFLOW with Boundary Conditions Analyses Based on Limited Available Observations: A Case Study of Birjand Plain in East Iran. Water 2019, 11, 1904. [Google Scholar] [CrossRef]
- Kijne, J.W. Water and Salinity Balances for Irrigated Agriculture in Pakistan; Research Report 6; IWMI: Colombo, Sri Lanka, 1996. [Google Scholar]
- Aribudiman, I.N.; Redana, I.W.; Harmayani, K.D.; Ciawi, Y. Seepage in soil from the difference of water viscosity using Geo-studio SEEP/W program. Int. Res. J. Eng. IT Sci. Res. 2019, 5, 15–26. [Google Scholar] [CrossRef]
- Gabriel, H.F. An Appraisal of Climate Urban Groundwater Management Options in a Stressed Aquifer System. Ph.D. Thesis, International Centre of Water for Food Security, School of Environmental Sciences, Faculty of Science, Charles Sturt University, Wagga, Australia, 2010. [Google Scholar]
- Punthakey, J.; RKhan, M.; Riaz, M.W.; Javed, M.; Zakir, G.; Usman, M.; Amin, M.; Niaz Ahmad, R.; Blackwell, J.; Culas, R.; et al. Assessment of Groundwater Resources for Rechna Doab, Pakistan: Final Report; Australian Centre for International Agricultural Research (ACIAR): Canberra, Australia, 2015.
Max. Residual | −23.856 m at 19–48A |
Min. Residual | 0.367 m at 8–54A |
Residual Mean | −1.924 (m) |
Abs. Residual Mean | 4.762 (m) |
No. of data points | 50 |
Root Mean square | 6.394 (m) |
Normalized RMS | 4.877 (%) |
Correlation factor | 0.982 |
Sr. No | Water Balance Components | In (Volume m3) | Out (Volume m3) |
---|---|---|---|
1 | Storage | 0 | 0 |
2 | Constant Head | 0 | 0 |
3 | River Leakage | 1.066 × 1010 | 5.616 × 1010 |
4 | Evapotranspiration | 0 | 8.386 × 109 |
5 | Recharge | 5.389 × 1010 | 0 |
Total | 6.455 × 1010 | 6.455 × 1010 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sanaullah, M.; Wang, X.; Ahmad, S.R.; Mirza, K.; Mahmood, M.Q.; Kamran, M. Optimized Irrigated Water Management Using Numerical Flow Modeling Coupled with Finite Element Model: A Case Study of Rechna Doab, Pakistan. Water 2023, 15, 4193. https://doi.org/10.3390/w15234193
Sanaullah M, Wang X, Ahmad SR, Mirza K, Mahmood MQ, Kamran M. Optimized Irrigated Water Management Using Numerical Flow Modeling Coupled with Finite Element Model: A Case Study of Rechna Doab, Pakistan. Water. 2023; 15(23):4193. https://doi.org/10.3390/w15234193
Chicago/Turabian StyleSanaullah, Muhammad, Xiuquan Wang, Sajid Rashid Ahmad, Kamran Mirza, Muhammad Qasim Mahmood, and Muhammad Kamran. 2023. "Optimized Irrigated Water Management Using Numerical Flow Modeling Coupled with Finite Element Model: A Case Study of Rechna Doab, Pakistan" Water 15, no. 23: 4193. https://doi.org/10.3390/w15234193