Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (544)

Search Parameters:
Keywords = campus buildings

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 258 KiB  
Article
Strategic Digital Change in Action: A Transferable Model for Teacher Competence Development
by Alberto A. Jiménez-Hidalgo, Linda Castañeda and María Dolores Lettelier
Educ. Sci. 2025, 15(8), 1018; https://doi.org/10.3390/educsci15081018 (registering DOI) - 7 Aug 2025
Abstract
This article presents a case of strategic and participatory institutional innovation in higher education, focused on developing teacher digital competence (TDC) as a key enabler of sustainable digital transformation. In response to the post-pandemic challenges faced by the National University of Cuyo (UNCuyo), [...] Read more.
This article presents a case of strategic and participatory institutional innovation in higher education, focused on developing teacher digital competence (TDC) as a key enabler of sustainable digital transformation. In response to the post-pandemic challenges faced by the National University of Cuyo (UNCuyo), a large and multi-campus public university in Argentina, the European CUTE methodology was adapted and implemented to align professional development with institutional planning. Grounded in the DigCompEdu framework, this action-oriented process moved beyond individual initiatives to create a coordinated, multi-level strategy involving educators, department leaders, and university authorities. Through a research-based design that included context analysis, participatory diagnosis, and co-designed interventions, the project built a shared understanding of digital teaching needs and institutional readiness. The implementation highlights how locally adapted frameworks, collaborative structures, and iterative decision-making can drive meaningful change across a complex university system. This case contributes to the international conversation on how higher education institutions can operationalize innovation at scale by investing in teacher competence, inclusive processes, and strategic alignment. Lessons learned from this experience are relevant for universities seeking to build institutional capacity for digital transformation in diverse educational contexts with potential downstream benefits for student learning and inclusion. Full article
(This article belongs to the Special Issue Higher Education Development and Technological Innovation)
35 pages, 6795 KiB  
Article
Thermal Analysis of Energy Efficiency Performance and Indoor Comfort in a LEED-Certified Campus Building in the United Arab Emirates
by Khushbu Mankani, Mutasim Nour and Hassam Nasarullah Chaudhry
Energies 2025, 18(15), 4155; https://doi.org/10.3390/en18154155 - 5 Aug 2025
Abstract
Enhancing the real-world performance of sustainably designed and certified green buildings remains a significant challenge, particularly in hot climates where efforts to improve thermal comfort often conflict with energy efficiency goals. In the United Arab Emirates (UAE), even newly constructed facilities with green [...] Read more.
Enhancing the real-world performance of sustainably designed and certified green buildings remains a significant challenge, particularly in hot climates where efforts to improve thermal comfort often conflict with energy efficiency goals. In the United Arab Emirates (UAE), even newly constructed facilities with green building certifications present opportunities for retrofitting and performance optimization. This study investigates the energy and thermal comfort performance of a LEED Gold-certified, mixed-use university campus in Dubai through a calibrated digital twin developed using IES thermal modelling software. The analysis evaluated existing sustainable design strategies alongside three retrofit energy conservation measures (ECMs): (1) improved building envelope U-values, (2) installation of additional daylight sensors, and (3) optimization of fan coil unit efficiency. Simulation results demonstrated that the three ECMs collectively achieved a total reduction of 15% in annual energy consumption. Thermal comfort was assessed using operative temperature distributions, Predicted Mean Vote (PMV), and Predicted Percentage of Dissatisfaction (PPD) metrics. While fan coil optimization yielded the highest energy savings, it led to less favorable comfort outcomes. In contrast, enhancing envelope U-values maintained indoor conditions consistently within ASHRAE-recommended comfort zones. To further support energy reduction and progress toward Net Zero targets, the study also evaluated the integration of a 228.87 kW rooftop solar photovoltaic (PV) system, which offset 8.09% of the campus’s annual energy demand. By applying data-driven thermal modelling to assess retrofit impacts on both energy performance and occupant comfort in a certified green building, this study addresses a critical gap in the literature and offers a replicable framework for advancing building performance in hot climate regions. Full article
(This article belongs to the Special Issue Energy Efficiency and Thermal Performance in Buildings)
Show Figures

Graphical abstract

19 pages, 262 KiB  
Article
“I Felt Like We Immediately Connected”: College Student Workers Describe High-Quality Supervisors
by Zachary W. Taylor, Sara K. Ray, Jodi Kaus, Tristia A. C. Kayser, Mario Villa, Karla Weber-Wandel and Phil Schuman
Trends High. Educ. 2025, 4(3), 41; https://doi.org/10.3390/higheredu4030041 - 30 Jul 2025
Viewed by 214
Abstract
As the labor market has tightened and businesses have increased their part-time and hourly wages, recruiting and retaining high-quality college students to work on campus in part-time and hourly roles has remained a stubbornly problematic issue. As a result, this study provides a [...] Read more.
As the labor market has tightened and businesses have increased their part-time and hourly wages, recruiting and retaining high-quality college students to work on campus in part-time and hourly roles has remained a stubbornly problematic issue. As a result, this study provides a unique perspective into the minds of student workers by leveraging NASPA/ACPA’s professional competency areas and Tull’s synergistic supervision as conceptual and theoretical frameworks to understand how a subset of college student workers view supervisors in recruiting and retaining them, as well as providing pre-professional development opportunities. Through semi-structured qualitative focus groups with 54 college students working as peer financial mentors within student affairs units, qualitative data suggest that student workers view supervisors as critical to their recruitment if the work is positioned as flexible and career-oriented. Moreover, student workers appreciated supervisors who promised and then delivered professional development during employment, preparing them for the workforce. Additionally, student workers want and need a supervisor who builds a professional relationship with them and who empowers them to develop a sense of confidence through their work. Implications for student affairs research, policy, and practice are addressed. Full article
21 pages, 1456 KiB  
Article
Life Cycle Assessment of Land Use Trade-Offs in Indoor Vertical Farming
by Ana C. Cavallo, Michael Parkes, Ricardo F. M. Teixeira and Serena Righi
Appl. Sci. 2025, 15(15), 8429; https://doi.org/10.3390/app15158429 - 29 Jul 2025
Viewed by 239
Abstract
Urban agriculture (UA) is emerging as a promising strategy for sustainable food production in response to growing environmental pressures. Indoor vertical farming (IVF), combining Controlled Environment Agriculture (CEA) with Building-Integrated Agriculture (BIA), enables efficient resource use and year-round crop cultivation in urban settings. [...] Read more.
Urban agriculture (UA) is emerging as a promising strategy for sustainable food production in response to growing environmental pressures. Indoor vertical farming (IVF), combining Controlled Environment Agriculture (CEA) with Building-Integrated Agriculture (BIA), enables efficient resource use and year-round crop cultivation in urban settings. This study assesses the environmental performance of a prospective IVF system located on a university campus in Portugal, focusing on the integration of photovoltaic (PV) energy as an alternative to the conventional electricity grid (GM). A Life Cycle Assessment (LCA) was conducted using the Environmental Footprint (EF) method and the LANCA model to account for land use and soil-related impacts. The PV-powered system demonstrated lower overall environmental impacts, with notable reductions across most impact categories, but important trade-offs with decreased soil quality. The LANCA results highlighted cultivation and packaging as key contributors to land occupation and transformation, while also revealing trade-offs associated with upstream material demands. By combining EF and LANCA, the study shows that IVF systems that are not soil-based can still impact soil quality indirectly. These findings contribute to a broader understanding of sustainability in urban farming and underscore the importance of multi-dimensional assessment approaches when evaluating emerging agricultural technologies. Full article
(This article belongs to the Special Issue Innovative Engineering Technologies for the Agri-Food Sector)
Show Figures

Figure 1

26 pages, 6348 KiB  
Article
Building Envelope Thermal Anomaly Detection Using an Integrated Vision-Based Technique and Semantic Segmentation
by Shayan Mirzabeigi, Ryan Razkenari and Paul Crovella
Buildings 2025, 15(15), 2672; https://doi.org/10.3390/buildings15152672 - 29 Jul 2025
Viewed by 329
Abstract
Infrared thermography is a common approach used in building inspection for identifying building envelope thermal anomalies that cause energy loss and occupant thermal discomfort. Detecting these anomalies is essential to improve the thermal performance of energy-inefficient buildings through energy retrofit design and correspondingly [...] Read more.
Infrared thermography is a common approach used in building inspection for identifying building envelope thermal anomalies that cause energy loss and occupant thermal discomfort. Detecting these anomalies is essential to improve the thermal performance of energy-inefficient buildings through energy retrofit design and correspondingly reduce operational energy costs and environmental impacts. A thermal bridge is an unwanted conductive heat transfer. On the other hand, an infiltration/exfiltration anomaly is an uncontrollable convective heat transfer, typically happening around windows and doors, but it can also be due to a defect that comprises a building envelope’s integrity. While the existing literature underscores the significance of automatic thermal anomaly identification and offers insights into automated methodologies, there is a notable gap in addressing an automated workflow that leverages building envelope component segmentation for enhanced detection accuracy. Consequently, an automatic thermal anomaly identification workflow from visible and thermal images was developed to test it, utilizing segmented building envelope information compared to a workflow without any semantic segmentation. Therefore, building envelope images (e.g., walls and windows) were segmented based on a U-Net architecture compared to a more conventional semantic segmentation approach. The results were discussed to better understand the importance of the availability of training data and for scaling the workflow. Then, thermal anomaly thresholds for different target domains were detected using probability distributions. Finally, thermal anomaly masks of those domains were computed. This study conducted a comprehensive examination of a campus building in Syracuse, New York, utilizing a drone-based data collection approach. The case study successfully detected diverse thermal anomalies associated with various envelope components. The proposed approach offers the potential for immediate and accurate in situ thermal anomaly detection in building inspections. Full article
Show Figures

Figure 1

23 pages, 5813 KiB  
Article
Integrated Lighting and Solar Shading Strategies for Energy Efficiency, Daylighting and User Comfort in a Library Design Proposal
by Egemen Kaymaz and Banu Manav
Buildings 2025, 15(15), 2669; https://doi.org/10.3390/buildings15152669 - 28 Jul 2025
Viewed by 197
Abstract
This research proposes an integrated lighting and solar shading strategy to improve energy efficiency and user comfort in a retrofit project in a temperate-humid climate. The study examines a future library addition to an existing faculty building in Bursa, featuring highly glazed façades [...] Read more.
This research proposes an integrated lighting and solar shading strategy to improve energy efficiency and user comfort in a retrofit project in a temperate-humid climate. The study examines a future library addition to an existing faculty building in Bursa, featuring highly glazed façades (77% southwest, 81% northeast window-to-wall ratio), an open-plan layout, and situated within an unobstructed low-rise campus environment. Trade-offs between daylight availability, heating, cooling, lighting energy use, and visual and thermal comfort are evaluated through integrated lighting (DIALux Evo), climate-based daylight (CBDM), and energy simulations (DesignBuilder, EnergyPlus, Radiance). Fifteen solar shading configurations—including brise soleil, overhangs, side fins, egg crates, and louvres—are evaluated alongside a daylight-responsive LED lighting system that meets BS EN 12464-1:2021. Compared to the reference case’s unshaded glazing, optimal design significantly improves building performance: a brise soleil with 0.4 m slats at 30° reduces annual primary energy use by 28.3% and operational carbon emissions by 29.1% and maintains thermal comfort per ASHRAE 55:2023 Category II (±0.7 PMV; PPD < 15%). Daylight performance achieves 91.5% UDI and 2.1% aSE, with integrated photovoltaics offsetting 129.7 kWh/m2 of grid energy. This integrated strategy elevates the building’s energy class under national benchmarks while addressing glare and overheating in the original design. Full article
(This article belongs to the Special Issue Lighting in Buildings—2nd Edition)
Show Figures

Figure 1

14 pages, 38692 KiB  
Article
Development of a Microscale Urban Airflow Modeling System Incorporating Buildings and Terrain
by Hyo-Been An and Seung-Bu Park
Atmosphere 2025, 16(8), 905; https://doi.org/10.3390/atmos16080905 - 25 Jul 2025
Viewed by 165
Abstract
We developed a microscale airflow modeling system with detailed building and terrain data to better understand the urban microclimate. Building shapes and heights, and terrain elevation data were integrated to construct a high-resolution urban surface geometry. The system, based on computational fluid dynamics [...] Read more.
We developed a microscale airflow modeling system with detailed building and terrain data to better understand the urban microclimate. Building shapes and heights, and terrain elevation data were integrated to construct a high-resolution urban surface geometry. The system, based on computational fluid dynamics using OpenFOAM, can resolve complex flow structures around built environments. Inflow boundary conditions were generated using logarithmic wind profiles derived from Automatic Weather System (AWS) observations under neutral stability. After validation with wind-tunnel data for a single block, the system was applied to airflow modeling around a university campus in Seoul using AWS data from four nearby stations. The results demonstrated that the system captured key flow characteristics such as channeling, wake, and recirculation induced by complex terrain and building configurations. In particular, easterly inflow cases with high-rise buildings on the leeward side of a mountain exhibited intensified wakes and internal recirculations, with elevated centers influenced by tall structures. This modeling framework, with further development, could support diverse urban applications for microclimate and air quality, facilitating urban resilience. Full article
(This article belongs to the Section Atmospheric Techniques, Instruments, and Modeling)
Show Figures

Figure 1

16 pages, 3325 KiB  
Article
Promoting Carbon Reduction in Universities Through Carbon Footprint Assessments: A Framework and Case Study of a University in Northeast China
by Zhijian Xiao, Shijiu Ma, Dehua Kou, Yu Zhang and Jianmin Gao
Energies 2025, 18(14), 3788; https://doi.org/10.3390/en18143788 - 17 Jul 2025
Viewed by 315
Abstract
To respond to the challenge of global climate change, universities should engage in carbon footprint research to identify effective strategies for mitigating greenhouse gas emissions. In this research, a comprehensive framework tailored for the study of carbon footprints in universities was constructed and [...] Read more.
To respond to the challenge of global climate change, universities should engage in carbon footprint research to identify effective strategies for mitigating greenhouse gas emissions. In this research, a comprehensive framework tailored for the study of carbon footprints in universities was constructed and used in a university in Northeast China for a case study, based on the GHG Protocol and emission factor methodology. The sources of GHG emissions at this university were identified by the GHG Protocol. Activity data were collected through questionnaire surveys and field visits. The results show that the university’s annual carbon footprint in 2022 stands at 172,473.77 t CO2-eq, with the contributions of Scope 1, 2, and 3 accounting for 2.35%, 64.69%, and 32.96%, respectively. Based on the carbon footprint quantification results, campus carbon reduction strategies were put forward from four perspectives: individual activities, building energy management, energy-loss reduction, and carbon sink, in order to enhance the sustainability of this university. An important difference between this work and previous studies is the explicit emphasis on the necessity of the indicative role of the carbon footprint in carbon reduction efforts. The case demonstrates the application of research framework and methods, providing methodologies and case references for future research on the carbon footprint of universities. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

25 pages, 9056 KiB  
Article
Creating Digital Twins to Celebrate Commemorative Events in the Metaverse
by Vicente Jover and Silvia Sempere
Computers 2025, 14(7), 273; https://doi.org/10.3390/computers14070273 - 10 Jul 2025
Viewed by 632
Abstract
This paper explores the potential and implications arising from the convergence of virtual reality, the metaverse, and digital twins in translating a real-world commemorative event into a virtual environment. It emphasizes how such integration influences digital transformation processes, particularly in reshaping models of [...] Read more.
This paper explores the potential and implications arising from the convergence of virtual reality, the metaverse, and digital twins in translating a real-world commemorative event into a virtual environment. It emphasizes how such integration influences digital transformation processes, particularly in reshaping models of social interaction. Virtual reality is conceptualized as an immersive technology, enabling advanced multisensory experiences within persistent virtual spaces, such as the metaverse. Furthermore, this study delves into the concept of digital twins—high-fidelity virtual representations of physical systems, processes, and objects—highlighting their application in simulation, analysis, forecasting, prevention, and operational enhancement. In the context of virtual events, the convergence of these technologies is examined as a means to create interactive, adaptable, and scalable environments capable of accommodating diverse social groups and facilitating global accessibility. As a practical application, a digital twin of the Ferrándiz and Carbonell buildings—the most iconic architectural ensemble on the Alcoi campus—was developed to host a virtual event commemorating the 50th anniversary of the integration of the Alcoi School of Industrial Technical Engineering into the Universitat Politècnica de València in 1972. The virtual environment was subsequently evaluated by a sample of users, including students and faculty, to assess usability and functionality, and to identify areas for improvement. The digital twin achieved a score of 88.39 out of 100 on the System Usability Scale (SUS). The findings underscore the key opportunities and challenges associated with the adoption of these emerging technologies, particularly regarding their adaptability in reconfiguring digital environments for work, social interaction, and education. Using this case study as a foundation, this paper offers insights into the strategic role of the metaverse in extending environmental perception and its transformative potential for the future digital ecosystem through the implementation of digital twins. Full article
Show Figures

Figure 1

32 pages, 16988 KiB  
Article
From Photogrammetry to Virtual Reality: A Framework for Assessing Visual Fidelity in Structural Inspections
by Xiangxiong Kong, Terry F. Pettijohn and Hovhannes Torikyan
Sensors 2025, 25(14), 4296; https://doi.org/10.3390/s25144296 - 10 Jul 2025
Viewed by 884
Abstract
Civil structures carry significant service loads over long times but are prone to deterioration due to various natural impacts. Traditionally, these structures are inspected in situ by qualified engineers, a method that is high-cost, risky, time-consuming, and prone to error. Recently, researchers have [...] Read more.
Civil structures carry significant service loads over long times but are prone to deterioration due to various natural impacts. Traditionally, these structures are inspected in situ by qualified engineers, a method that is high-cost, risky, time-consuming, and prone to error. Recently, researchers have explored innovative practices by using virtual reality (VR) technologies as inspection platforms. Despite such efforts, a critical question remains: can VR models accurately reflect real-world structural conditions? This study presents a comprehensive framework for assessing the visual fidelity of VR models for structural inspection. To make it viable, we first introduce a novel workflow that integrates UAV-based photogrammetry, computer graphics, and web-based VR editing to establish interactive VR user interfaces. We then propose a visual fidelity assessment methodology that quantitatively evaluates the accuracy of the VR models through image alignment, histogram matching, and pixel-level deviation mapping between rendered images from the VR models and UAV-captured images under matched viewpoints. The proposed frameworks are validated using two case studies: a historic stone arch bridge and a campus steel building. Overall, this study contributes to the growing body of knowledge on VR-based structural inspections, providing a foundation for our peers for their further research in this field. Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Graphical abstract

18 pages, 5596 KiB  
Article
Transforming a Heritage Building into a Living Laboratory: A Case Study of Monitoring
by Carlos Naya, Sara Dorregaray-Oyaregui, Fernando Alonso, Juan Luis Roquette, Jose María Yoldi and César Martín-Gómez
Energies 2025, 18(14), 3622; https://doi.org/10.3390/en18143622 - 9 Jul 2025
Viewed by 260
Abstract
This paper investigates integrating a sensory data model for managing an existing 50-year-old building. A primary challenge in retrofitting older structures is the optimal deployment of high-quality sensors, systematic data acquisition, and subsequent data management. To address this, the study implemented a network [...] Read more.
This paper investigates integrating a sensory data model for managing an existing 50-year-old building. A primary challenge in retrofitting older structures is the optimal deployment of high-quality sensors, systematic data acquisition, and subsequent data management. To address this, the study implemented a network of over 50 sensors connected via 270 m of wired infrastructure, deliberately avoiding wireless transmission to ensure data reliability. This configuration generates 5568 data points daily, which are archived on a dedicated server. The data is planned for integration into the Campus Geographical Information System (GIS), enabling private and public access. A methodology was employed, involving the strategic placement of sensors based on building use patterns, continuous data monitoring, and iterative sensor performance evaluation. The findings from the study indicate that integrating sensory data through this structured approach significantly enhances building management capabilities. Specifically, the results demonstrate improved energy efficiency and environmental performance, which is particularly relevant for public and educational facilities. The research highlights that a data-driven, monitoring-based management system can optimize operational functions and inform future retrofitting strategies for aging buildings. Full article
(This article belongs to the Special Issue Energy Efficiency of the Buildings: 3rd Edition)
Show Figures

Figure 1

32 pages, 1881 KiB  
Article
LLM and Pattern Language Synthesis: A Hybrid Tool for Human-Centered Architectural Design
by Bruno Postle and Nikos A. Salingaros
Buildings 2025, 15(14), 2400; https://doi.org/10.3390/buildings15142400 - 9 Jul 2025
Viewed by 481
Abstract
This paper combines Christopher Alexander’s pattern language with generative AI into a hybrid design framework. The result is a narrative synthesis that can be useful for informed project design. Advanced large language models (LLMs) enable the real-time synthesis of design patterns, making complex [...] Read more.
This paper combines Christopher Alexander’s pattern language with generative AI into a hybrid design framework. The result is a narrative synthesis that can be useful for informed project design. Advanced large language models (LLMs) enable the real-time synthesis of design patterns, making complex architectural choices accessible and comprehensible to stakeholders without specialized architectural knowledge. A lightweight, web-based tool lets project teams rapidly assemble context-specific subsets of Alexander’s 253 patterns, reducing a traditionally unwieldy 1166-page corpus to a concise, shareable list. Demonstrated through a case study of a university department building, this method results in environments that are psychologically welcoming, fostering health, productivity, and emotional well-being. LLMs translate these curated patterns into vivid experiential narratives—complete with neuroscientifically informed ornamentation. LLMs produce representative images from the verbal narrative, revealing a surprisingly traditional design that was never input as a prompt. Two separate LLMs (for cross-checking) then predict the pattern-generated design to catalyze improved productivity as compared to a standard campus building. By bridging abstract design principles and concrete human experience, this approach democratizes architectural planning grounded on Alexander’s human-centered, participatory ethos. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

22 pages, 9762 KiB  
Article
A Map Information Collection Tool for a Pedestrian Navigation System Using Smartphone
by Kadek Suarjuna Batubulan, Nobuo Funabiki, Komang Candra Brata, I Nyoman Darma Kotama, Htoo Htoo Sandi Kyaw and Shintami Chusnul Hidayati
Information 2025, 16(7), 588; https://doi.org/10.3390/info16070588 - 8 Jul 2025
Viewed by 402
Abstract
Nowadays, a pedestrian navigation system using a smartphone has become popular as a useful tool to reach an unknown destination. When the destination is the office of a person, a detailed map information is necessary on the target area such as the room [...] Read more.
Nowadays, a pedestrian navigation system using a smartphone has become popular as a useful tool to reach an unknown destination. When the destination is the office of a person, a detailed map information is necessary on the target area such as the room number and location inside the building. The information can be collected from various sources including Google maps, websites for the building, and images of signs. In this paper, we propose a map information collection tool for a pedestrian navigation system. To improve the accuracy and completeness of information, it works with the four steps: (1) a user captures building and room images manually, (2) an OCR software using Google ML Kit v2 processes them to extract the sign information from images, (3) web scraping using Scrapy (v2.11.0) and crawling with Apache Nutch (v1.19) software collects additional details such as room numbers, facilities, and occupants from relevant websites, and (4) the collected data is stored in the database to be integrated with a pedestrian navigation system. For evaluations of the proposed tool, the map information was collected for 10 buildings at Okayama University, Japan, a representative environment combining complex indoor layouts (e.g., interconnected corridors, multi-floor facilities) and high pedestrian traffic, which are critical for testing real-world navigation challenges. The collected data is assessed in completeness and effectiveness. A university campus was selected as it presents a complex indoor and outdoor environment that can be ideal for testing pedestrian navigations in real-world scenarios. With the obtained map information, 10 users used the navigation system to successfully reach destinations. The System Usability Scale (SUS) results through a questionnaire confirms the high usability. Full article
(This article belongs to the Special Issue Feature Papers in Information in 2024–2025)
Show Figures

Figure 1

13 pages, 2372 KiB  
Article
Sustainable Healthcare Infrastructure: Design-Phase Evaluation of LEED Certification and Energy Efficiency at Istanbul University’s Surgical Sciences Building
by Cemil Akçay and Mahmut Sarı
Buildings 2025, 15(14), 2385; https://doi.org/10.3390/buildings15142385 - 8 Jul 2025
Viewed by 317
Abstract
The rapid growth of the global population and associated increases in resource consumption have accelerated environmental degradation, making sustainable design and construction processes increasingly essential. The construction sector holds significant potential for reducing environmental impacts, especially through sustainability-focused certification systems such as LEED. [...] Read more.
The rapid growth of the global population and associated increases in resource consumption have accelerated environmental degradation, making sustainable design and construction processes increasingly essential. The construction sector holds significant potential for reducing environmental impacts, especially through sustainability-focused certification systems such as LEED. This study evaluates the projected energy efficiency and sustainability performance of the Surgical Sciences Building at Istanbul University’s Çapa Campus, which was designed with the goal of achieving LEED Gold certification. The assessment is based on design-phase data and conducted prior to construction. Energy performance analyses were carried out using DesignBuilder software, supported by the LEED Assessment Report and Energy Audit Report. According to simulation results, approximately 30% savings in energy consumption and water usage are expected. In addition, the process-oriented LEED approach is expected to result in a total CO2 emission savings of approximately 570 tonnes, while renewable energy systems are expected to meet approximately 13% of the building’s primary energy demand and reduce CO2 emissions by approximately 151 tonnes per year. Waste management strategies developed for both the construction and operational phases are aligned with LEED criteria and aim to achieve up to 80% recycling rates. The findings demonstrate that LEED certification, when employed as a process-oriented design and decision-making tool rather than a result-oriented label, can enable sustainable strategies to be integrated from the earliest stages of project development. Particularly for complex healthcare buildings, embedding LEED principles into the design process has strong potential to enhance environmental performance. Although based on a single case study, this research provides valuable insight into the broader applicability of LEED in diverse building types and geographic contexts. Full article
(This article belongs to the Special Issue Sustainability in Construction Project Management and Infrastructure)
Show Figures

Figure 1

25 pages, 5207 KiB  
Article
The Subjective and Objective Evaluation of the Efficacy of Public Spaces in University Complexes: A Case Study of the Center for Balance Architecture at Zhejiang University
by Linfeng Yao, Danshen Dong, Yuxi He and Jing Wang
Buildings 2025, 15(13), 2377; https://doi.org/10.3390/buildings15132377 - 7 Jul 2025
Viewed by 363
Abstract
This study aims to address the understudied evaluation of public space performance in renovated multi-functional university buildings, with a special focus on university complexes based on integrated industry–research–education models. While existing literature emphasizes outdoor campus environments, few studies have systematically assessed the internal [...] Read more.
This study aims to address the understudied evaluation of public space performance in renovated multi-functional university buildings, with a special focus on university complexes based on integrated industry–research–education models. While existing literature emphasizes outdoor campus environments, few studies have systematically assessed the internal public spaces that support interdisciplinary collaboration. Using the Center for Balanced Architecture at Zhejiang University as a case study, we employed a mixed-methods approach that combined Depthmap software for spatial integration and visual integration analyses with user satisfaction surveys. Our results reveal significant post-renovation improvements in spatial accessibility, particularly in terms of First Floor Plan connectivity. However, they also uncover persistent issues: despite high objective integration scores, user satisfaction with wayfinding systems remains low, pointing to a cognitive efficiency gap. Furthermore, disparities in satisfaction with acoustics, privacy, and social spaces across different user groups highlight the importance of balancing openness with individual needs. These findings provide empirical evidence to help optimize future renovation designs and enhance spatial experience and performance. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

Back to TopTop