Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (171)

Search Parameters:
Keywords = calcium phosphate nanoparticles

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 3265 KiB  
Article
Biofortified Calcium Phosphate Nanoparticles Elicit Secondary Metabolite Production in Carob Callus via Biosynthetic Pathway Activation
by Doaa E. Elsherif, Fatmah A. Safhi, Mai A. El-Esawy, Alaa T. Mohammed, Osama A. Alaziz, Prasanta K. Subudhi and Abdelghany S. Shaban
Plants 2025, 14(14), 2093; https://doi.org/10.3390/plants14142093 - 8 Jul 2025
Viewed by 337
Abstract
Plant callus cultures are a sustainable alternative for producing bioactive secondary metabolites, but their low yields limit industrial applications. Carob (Ceratonia siliqua L.) is rich in medicinally valuable compounds, yet conventional cultivation faces challenges. To address this, we use biofortified calcium phosphate [...] Read more.
Plant callus cultures are a sustainable alternative for producing bioactive secondary metabolites, but their low yields limit industrial applications. Carob (Ceratonia siliqua L.) is rich in medicinally valuable compounds, yet conventional cultivation faces challenges. To address this, we use biofortified calcium phosphate nanoparticles, which refer to CaP-NPs that have been enriched with bioactive compounds via green synthesis using Jania rubens extract, thereby enhancing their functional properties as elicitors in carob callus. CaP-NPs were green-synthesized using Jania rubens extract and applied to 7-week-old callus cultures at 0, 25, 50, and 75 mg/L concentrations. At the optimal concentration (50 mg/L), CaP-NPs increased callus fresh weight by 23.9% and dry weight by 35.1%. At 50 mg/L CaP-NPs, phenolic content increased by 95.7%, flavonoids by 34.4%, tannins by 131.8%, and terpenoids by 211.9% compared to controls. Total antioxidant capacity rose by 76.2%, while oxidative stress markers malondialdehyde (MDA) and hydrogen peroxide (H2O2) decreased by 34.8% and 14.1%, respectively. Gene expression analysis revealed upregulation of PAL (4-fold), CHI (3.15-fold), FLS (1.16-fold), MVK (8.3-fold), and TA (3.24-fold) at 50 mg/L CaP-NPs. Higher doses (75 mg/L) induced oxidative damage, demonstrating a hormetic threshold. These findings indicate that CaP-NPs effectively enhance secondary metabolite production in carob callus by modulating biosynthetic pathways and redox balance, offering a scalable, eco-friendly approach for pharmaceutical and nutraceutical applications. Full article
Show Figures

Figure 1

13 pages, 702 KiB  
Article
Foliar Treatments with Urea and Nano-Urea Modify the Nitrogen Profile of Monastrell Grapes and Wines
by María José Giménez-Bañón, Juan Daniel Moreno-Olivares, Juan Antonio Bleda-Sánchez, José Cayetano Gómez-Martínez, Ana Cebrián-Pérez, Belén Parra-Torrejón, Gloria Belén Ramírez-Rodríguez, José Manuel Delgado-López and Rocío Gil-Muñoz
Horticulturae 2025, 11(6), 570; https://doi.org/10.3390/horticulturae11060570 - 23 May 2025
Viewed by 454
Abstract
Foliar application of nitrogen can increase readily assimilable nitrogen in grapes without increasing vegetative growth and yield. Recently, nano-formulations have been used to achieve a controlled and precise release of agrochemicals, avoiding losses due to degradation and volatilisation that could cause environmental problems. [...] Read more.
Foliar application of nitrogen can increase readily assimilable nitrogen in grapes without increasing vegetative growth and yield. Recently, nano-formulations have been used to achieve a controlled and precise release of agrochemicals, avoiding losses due to degradation and volatilisation that could cause environmental problems. In this study, foliar urea treatments were applied to Monastrell grapevines in two different formats during three consecutive seasons. The treatments were administered at veraison and one week later, consisting of control, urea, and calcium phosphate nanoparticles doped with urea. The amino acids and ammonium contents were subsequently quantified in both grapes and resulting wines by HPLC-DAD. The results in the grapes depended on the season: in 2019, both treatments produced an increase in total nitrogen content; in 2020, only the nano-treatment caused it; in 2021, both treatments incremented nitrogen content. With regard to the effect on the wines, the results also depended on the season. Thus, in 2019 and 2020, there were increases in nitrogen content in the wines from the nano-treatments, in contrast to 2021 where the increase was in the urea treatment. In conclusion, both treatments can be used to prevent nitrogen deficiency in grapes and guarantee adequate fermentation development, with the additional economic and environmental advantages of nano-treatment due to the lower dosage. Full article
Show Figures

Figure 1

14 pages, 17905 KiB  
Article
The Evaluation of Degree of Monomer Conversion, Biaxial Flexural Strength, and Surface Mineral Precipitation of Orthodontic Adhesive Containing Sr-Bioactive Glass Nanoparticles, Calcium Phosphate, and Andrographolide
by Wirinrat Chaichana, Supachai Chanachai, Kanlaya Insee, Sutiwa Benjakul, Parichart Naruphontjirakul, Piyaphong Panpisut and Woranuch Chetpakdeechit
Materials 2025, 18(10), 2278; https://doi.org/10.3390/ma18102278 - 14 May 2025
Viewed by 517
Abstract
This study examined the degree of monomer conversion (DC) and mechanical properties of experimental orthodontic adhesives containing monocalcium phosphate monohydrate (MCPM), Sr-bioactive glass (Sr-BAG) nanoparticles, and andrographolide. Experimental adhesives were prepared with a 4:1 powder-to-liquid ratio, containing methacrylate monomers with varying formulations of [...] Read more.
This study examined the degree of monomer conversion (DC) and mechanical properties of experimental orthodontic adhesives containing monocalcium phosphate monohydrate (MCPM), Sr-bioactive glass (Sr-BAG) nanoparticles, and andrographolide. Experimental adhesives were prepared with a 4:1 powder-to-liquid ratio, containing methacrylate monomers with varying formulations of glass fillers and additives. DC was measured using ATR-FTIR (n = 5) with and without bracket placement under two curing protocols: conventional LED (1200 mW/cm2, 20 s) and high-intensity LED (3200 mW/cm2, 3 s). The biaxial flexural strength and modulus were tested after 4-week water immersion (n = 8). Transbond XT was used as the commercial comparison. Transbond XT exhibited higher DC (33–38%) than the experimental materials. Conventional LED curing produced higher DC than high-intensity LED, while bracket placement reduced DC by approximately 10% in the experimental materials but minimally affected Transbond XT. Transbond XT demonstrated a superior biaxial flexural strength (188 MPa) compared to the experimental adhesives (106–166 MPa, p < 0.05). However, the experimental formulations with low additive concentrations showed a comparable biaxial flexural modulus (5.0–5.5 GPa) to Transbond XT (5.6 GPa) (p > 0.05). Although the experimental adhesives exhibited lower DC and strength than the commercial product, their values still met the ISO standards, suggesting their potential clinical viability despite their modified compositions. Full article
(This article belongs to the Special Issue Advanced Materials for Oral Applications)
Show Figures

Figure 1

18 pages, 4987 KiB  
Article
Magnetically Actuated Microstructures with Programmable Degradation for Knee Cartilage Regeneration
by Geonhui Mun, Shirong Zheng and Gwangjun Go
Actuators 2025, 14(5), 232; https://doi.org/10.3390/act14050232 - 6 May 2025
Viewed by 564
Abstract
Degenerative joint diseases, such as osteoarthritis, are increasingly prevalent in aging populations, yet current treatments like stem cell injections face limitations in targeted delivery and efficacy. In this study, we proposed a biodegradable magnetically actuated microstructure for knee cartilage regeneration. The microstructure is [...] Read more.
Degenerative joint diseases, such as osteoarthritis, are increasingly prevalent in aging populations, yet current treatments like stem cell injections face limitations in targeted delivery and efficacy. In this study, we proposed a biodegradable magnetically actuated microstructure for knee cartilage regeneration. The microstructure is composed of calcium-crosslinked alginate hydrogel embedded with magnetic nanoparticles (MNPs), allowing for precise control using an external magnetic field generated by an electromagnetic actuation (EMA) system. Fabricated via a centrifugal micro-nozzle process, the microstructures exhibited tunable sizes and uniform morphology. The proposed microstructures were characterized for their morphological, chemical, and magnetic properties, and their biodegradability and targeting ability in a phosphate-buffered saline (PBS) environment were experimentally analyzed. Experimental results demonstrated that smaller microstructures degraded more rapidly and that fewer microstructures resulted in improved targeting accuracy. In contrast, microstructures clustered at the lesion site degraded more slowly, supporting sustained therapeutic release. These results suggest that the proposed system can enhance delivery precision, minimize off-target accumulation, and reduce inflammation risks associated with residual materials. The biodegradable magnetically actuated microstructures present a promising platform for minimally invasive and site-specific cartilage therapy. Full article
(This article belongs to the Special Issue Micro- and Nanorobotics for Biomedical Applications)
Show Figures

Figure 1

22 pages, 6552 KiB  
Article
Citrate-Stabilized Amorphous Calcium Phosphate Nanoparticles as an Effective Adsorbent for Defluorination
by Ruojiao Su, Miaomiao Wang, Yuwei Jiang, Shuang Zhang and Junjun Tan
Nanomaterials 2025, 15(8), 621; https://doi.org/10.3390/nano15080621 - 18 Apr 2025
Cited by 1 | Viewed by 574
Abstract
Amorphous calcium phosphate (ACP), one of the most important calcium–phosphorus compounds, is widely used in dentistry, orthopedics, and medicine, but is rarely reported for fluoride removal from water. In view of this, sodium citrate-stabilized amorphous calcium phosphate (Cit-ACP) and Cit-ACP calcinated at different [...] Read more.
Amorphous calcium phosphate (ACP), one of the most important calcium–phosphorus compounds, is widely used in dentistry, orthopedics, and medicine, but is rarely reported for fluoride removal from water. In view of this, sodium citrate-stabilized amorphous calcium phosphate (Cit-ACP) and Cit-ACP calcinated at different temperatures were successfully prepared for fluoride removal. The results showed that the adsorption data of the Cit-ACP sample could be well described by the Langmuir model, and the adsorption kinetic followed the pseudo-second-order model. The maximum adsorption capacity was 27.48 mg/g at pH 7.0 when the fluoride concentration is 100 mg/L. The thermodynamic parameters suggested that the adsorption of fluoride was a spontaneous endothermic process. The XRD, XPS, and Zeta potential analysis of the Cit-ACP sample before and after fluoride removal revealed that, owing to the core–shell structure of the Cit-ACP nanoparticles, the fluoride ions in solution and the calcium ions in shell layer of the Cit-ACP nanoparticles co-promoted the transformation of the core of the Cit-ACP nanoparticles into fluorapatite. Given the simplicity of its preparation and effectiveness of its fluoride removal properties, Cit-ACP would be a potentially economical, efficient, and biocompatible adsorbent for fluoride removal. Full article
(This article belongs to the Section Environmental Nanoscience and Nanotechnology)
Show Figures

Figure 1

20 pages, 2750 KiB  
Article
Influence of Nanoparticle Content and Cross-Linking Degree on Functional Attributes of Calcium Alginate-ZnO Nanocomposite Wound Dressings
by Sergio Henrique Toledo e Silva, Andrea Cristiane Krause Bierhalz and Ângela Maria Moraes
Membranes 2025, 15(4), 108; https://doi.org/10.3390/membranes15040108 - 1 Apr 2025
Viewed by 760
Abstract
Alginate-ZnO nanoparticles (ZnOnano) composite wound dressing membranes were prepared with two different ZnOnano concentrations (0.03 and 0.20 g ZnO/g sodium alginate) and cross-linked with two different calcium treatments (low and high Ca++concentration) to evaluate the influence of nanoparticle [...] Read more.
Alginate-ZnO nanoparticles (ZnOnano) composite wound dressing membranes were prepared with two different ZnOnano concentrations (0.03 and 0.20 g ZnO/g sodium alginate) and cross-linked with two different calcium treatments (low and high Ca++concentration) to evaluate the influence of nanoparticle content and cross-linking degree on membrane attributes. ZnOnano addition did not significantly alter the mechanical properties, water vapor permeability, swelling degree in water and the alginate amorphous nature of the nanocomposite membranes. The increase in cross-linking degree, on the other hand, altered the microstructure of the membranes, increased the tensile strength and reduced the water vapor permeability of the nanocomposite membranes. The presence of ZnOnano in alginate membranes granted them antibacterial activity in vitro against Pseudomonas aeruginosa and Staphylococcus aureus and substantially increased the absorption capacity in phosphate buffer and fetal bovine serum solutions, validating their potential use as wound dressings. Full article
(This article belongs to the Section Membrane Applications for Other Areas)
Show Figures

Figure 1

18 pages, 5589 KiB  
Article
Novel Bioactive Resin Coating with Calcium Phosphate Nanoparticles for Antibacterial and Remineralization Abilities to Combat Tooth Root Caries
by Nader Almutairi, Abdullah Alhussein, Mohammad Alenizy, Ibrahim Ba-Armah, Heba Alqarni, Thomas W. Oates, Radi Masri, Gary D. Hack, Jirun Sun, Michael D. Weir and Hockin H. K. Xu
Int. J. Mol. Sci. 2025, 26(6), 2490; https://doi.org/10.3390/ijms26062490 - 11 Mar 2025
Viewed by 970
Abstract
Tooth root caries account for 10.1% of all dental caries in the USA. This study developed a multifunctional resin coating with calcium (Ca) and phosphate (P) ion release and antibacterial properties to combat root caries. The effects of nano-sized amorphous calcium phosphate (NACP) [...] Read more.
Tooth root caries account for 10.1% of all dental caries in the USA. This study developed a multifunctional resin coating with calcium (Ca) and phosphate (P) ion release and antibacterial properties to combat root caries. The effects of nano-sized amorphous calcium phosphate (NACP) and dimethylaminohexadecyl methacrylate (DMAHDM) on mechanical, physical, and antibacterial properties against Streptococcus mutans, and cytotoxicity on dental pulp stem cells and gingival fibroblasts were evaluated. A coating resin combining urethane dimethacrylate (UDMA), triethylene glycol divinylbenzyl ether (TEGDVBE), DMAHDM, and NACP was synthesized and compared with Seal&Protect and Vanish XT. Experimental groups (UV + 5% DMAHDM + 10%, 15%, and 20% NACP) showed flexural strength (70.9 ± 8.0 to 81.1 ± 6.0) MPa, significantly higher than Seal&Protect (48.2 ± 7.2) MPa (p < 0.05) and comparable to Vanish XT (70.2 ± 13.6) MPa, (p > 0.05). Elastic modulus (2.2 to 3.3) GPa was lower than Vanish XT (9.4 ± 1.1) GPa (p < 0.05). Experimental groups showed an 8 log CFU reduction, 96% reduction in metabolic activity and 87% in lactic acid production, and increased Ca (1.25 ± 0.03) mmol/L and P (0.8 ± 0.001) mmol/L release over 35 days. Cytotoxicity for experimental groups against dental pulp stem cells and human gingival fibroblast was low and matched those of commercial controls already used in clinic. The resin demonstrated potent antibacterial properties, high ion release, low cytotoxicity, and maintained physical and mechanical integrity, offering potential to prevent root caries formation and progression. Full article
(This article belongs to the Special Issue Molecular Advances in Anti-bacterial Polymers)
Show Figures

Figure 1

16 pages, 1939 KiB  
Review
Impact of Incorporating Nanoparticles to Adhesive Resin on the Demineralization of Enamel: A Systematic Review
by Naif Almosa
Dent. J. 2025, 13(3), 89; https://doi.org/10.3390/dj13030089 - 20 Feb 2025
Viewed by 1027
Abstract
Background/Objective: Many novel solutions for a range of dental problems are emerging as a result of the quick development of nanotechnology and nanocomplex synthetic techniques. The effectiveness, quality, and negative consequences of these advancements are occasionally debatable, though. This systematic review sought to [...] Read more.
Background/Objective: Many novel solutions for a range of dental problems are emerging as a result of the quick development of nanotechnology and nanocomplex synthetic techniques. The effectiveness, quality, and negative consequences of these advancements are occasionally debatable, though. This systematic review sought to better summarize the existing additions of nanoparticles to dental adhesive systems in order to improve their performance and properties, evaluate their quality, and examine the results that have been published. Materials and methods: The present systematic review was carried out according to PRISMA guidelines. The search was carried out on PubMed central, Cochrane collaboration, Science direct and Scopus scientific engines. Selected MeSH keywords (nanoparticles, adhesive resin, enamel demineralization) were used for data extraction. A total of 13 full-text original articles were included in the final analysis, and these articles were based on adding nanoparticles to the adhesive resin to evaluate their effects on enamel demineralization. Results: The literature search resulted in a total of 13 original studies/articles up until November 2024. The text articles comprised in vitro studies with robust inclusion and exclusion criteria. The review included various types of adhesives and nanoparticles, with amorphous calcium phosphate (ACP) being the most common. Other nanoparticles included polydopamine–Ag, bioactive glass, and silver. Most studies assessed the effects of nanoparticles on adhesive shear bond strength (SBS), microbial growth, and microhardness. Only three studies investigated the effects of nanoparticles on microhardness using Vickers tests. Conclusions: The review found that adding nanoparticles to orthodontic dental adhesives enhances their antibacterial and anticariogenic properties without affecting the shear bond strength. This could prevent enamel demineralization during orthodontic therapy. Future research could benefit from these positive properties, necessitating an interdisciplinary approach. Full article
Show Figures

Figure 1

12 pages, 2893 KiB  
Article
One-Step Fabrication of Water-Dispersible Calcium Phosphate Nanoparticles with Immobilized Lactoferrin for Intraoral Disinfection
by Maki Nakamura, Ayako Oyane, Tomoya Inose, Yukimi Kanemoto and Hirofumi Miyaji
Int. J. Mol. Sci. 2025, 26(2), 852; https://doi.org/10.3390/ijms26020852 - 20 Jan 2025
Cited by 1 | Viewed by 1237
Abstract
Lactoferrin is a highly safe antibacterial protein found in the human body and in foods. Calcium phosphate (CaP) nanoparticles with immobilized lactoferrin could therefore be useful as intraoral disinfectants for the prevention and treatment of dental infections because CaP is a mineral component [...] Read more.
Lactoferrin is a highly safe antibacterial protein found in the human body and in foods. Calcium phosphate (CaP) nanoparticles with immobilized lactoferrin could therefore be useful as intraoral disinfectants for the prevention and treatment of dental infections because CaP is a mineral component of human teeth. In this study, we fabricated CaP nanoparticles with co-immobilized lactoferrin and heparin using a simple one-step coprecipitation process. Heparin, a negatively charged polysaccharide, was used as both an immobilizing agent for lactoferrin and a particle-dispersing agent. The immobilization efficiency for lactoferrin in the CaP nanoparticles depended on the concentrations of both the lactoferrin and heparin in the reaction solution and was over 90% under optimal conditions. The nanoparticles had a hydrodynamic diameter of about 150–200 nm and could be well dispersed in water, owing to their relatively large negative zeta potential derived from heparin. They were found to exhibit antibacterial activity against Actinomyces naeslundii, which is involved in the initial formation of dental plaque that consequently leads to dental caries and periodontal disease. These results indicate the potential of the proposed nanoparticles as intraoral disinfectants. Full article
Show Figures

Graphical abstract

18 pages, 3702 KiB  
Article
Improved Biomineralization Using Cellulose Acetate/Magnetic Nanoparticles Composite Membranes
by Madalina Oprea, Andreea Madalina Pandele, Aurelia Cristina Nechifor, Adrian Ionut Nicoara, Iulian Vasile Antoniac, Augustin Semenescu, Stefan Ioan Voicu, Catalin Ionel Enachescu and Anca Maria Fratila
Polymers 2025, 17(2), 209; https://doi.org/10.3390/polym17020209 - 15 Jan 2025
Cited by 2 | Viewed by 1275
Abstract
Following implantation, infections, inflammatory reactions, corrosion, mismatches in the elastic modulus, stress shielding and excessive wear are the most frequent reasons for orthopedic implant failure. Natural polymer-based coatings showed especially good results in achieving better cell attachment, growth and tissue-implant integration, and it [...] Read more.
Following implantation, infections, inflammatory reactions, corrosion, mismatches in the elastic modulus, stress shielding and excessive wear are the most frequent reasons for orthopedic implant failure. Natural polymer-based coatings showed especially good results in achieving better cell attachment, growth and tissue-implant integration, and it was found that the inclusions of nanosized fillers in the coating structure improves biomineralization and consequently implant osseointegration, as the nanoparticles represent calcium phosphate nucleation centers and lead to the deposition of highly organized hydroxyapatite crystallites on the implant surface. In this study, magnetic nanoparticles synthesized by the co-precipitation method were used for the preparation of cellulose acetate composite coatings through the phase-inversion method. The biomineralization ability of the membranes was tested through the Taguchi method, and it was found that nanostructured hydroxyapatite was formed at the surface of the composite membrane (with a higher organization degree and purity, and a Ca/P percentage closer to the one seen with stoichiometric hydroxyapatite, compared to the one deposited on neat cellulose acetate). The results obtained indicate a potential new application for magnetic nanoparticles in the field of orthopedics. Full article
(This article belongs to the Special Issue Advanced Biodegradable Polymers for Biomedical Applications)
Show Figures

Figure 1

15 pages, 2990 KiB  
Article
A Novel Approach for In Vitro Testing and Hazard Evaluation of Nanoformulated RyR2-Targeting siRNA Drugs Using Human PBMCs
by Valeria Bettinsoli, Gloria Melzi, Angelica Crea, Lorenzo Degli Esposti, Michele Iafisco, Daniele Catalucci, Paolo Ciana and Emanuela Corsini
Life 2025, 15(1), 95; https://doi.org/10.3390/life15010095 - 14 Jan 2025
Viewed by 1648
Abstract
Nucleic acid (NA)-based drugs are promising therapeutics agents. Beyond efficacy, addressing safety concerns—particularly those specific to this class of drugs—is crucial. Here, we propose an in vitro approach to screen for potential adverse off-target effects of NA-based drugs. Human peripheral blood mononuclear cells [...] Read more.
Nucleic acid (NA)-based drugs are promising therapeutics agents. Beyond efficacy, addressing safety concerns—particularly those specific to this class of drugs—is crucial. Here, we propose an in vitro approach to screen for potential adverse off-target effects of NA-based drugs. Human peripheral blood mononuclear cells (PBMCs), purified from buffy coats of healthy donors, were used to investigate the ability of NA-drugs to trigger toxicity pathways and inappropriate immune stimulation. PBMCs were selected for their ability to represent potential human responses, given their likelihood of interacting with administered drugs. As proof of concept, a small interfering RNA (siRNA) targeting Ryanodine Receptor mRNA (RyR2) identified by the Italian National Center for Gene Therapy and Drugs based on RNA Technology as a potential therapeutic target for dominant catecholaminergic polymorphic ventricular tachycardia, was selected. This compound and its scramble were formulated within a calcium phosphate nanoparticle-based delivery system. Positive controls for four toxicity pathways were identified through literature review, each associated with a specific type of cellular stress: oxidative stress (tert-butyl hydroperoxide), mitochondrial stress (rotenone), endoplasmic reticulum stress (thapsigargin), and autophagy (rapamycin). These controls were used to define specific mRNA signatures triggered in PBMCs, which were subsequently used as indicators of off-target effects. To assess immune activation, the release of pro-inflammatory cytokines (interleukin-6, interleukin-8, tumor necrosis factor-α, and interferon-γ) was measured 24 h after exposure. The proposed approach provides a rapid and effective screening method for identifying potential unintended effects in a relevant human model, which also allows to address gender effects and variability in responses. Full article
(This article belongs to the Section Pharmaceutical Science)
Show Figures

Figure 1

34 pages, 6385 KiB  
Review
Research Progress on Effects of Antifreeze Components, Nanoparticles and Pre-Curing on the Properties of Low-Temperature Curing Materials
by Xianhua Yao, Mingduo Wan, Yongsheng Zhu, Lihua Niu, Xiaoxiang Ji, Shengqiang Chen, Wei He and Linyan Han
Buildings 2025, 15(2), 223; https://doi.org/10.3390/buildings15020223 - 14 Jan 2025
Viewed by 1029
Abstract
There are long periods of winter construction in China’s eastern and western Alpine regions. The decreased construction temperature adversely affects the workability, mechanical properties, and durability of cement-based materials and alkali-activated materials. Under low-temperature curing conditions, the hydration reaction of these materials slows [...] Read more.
There are long periods of winter construction in China’s eastern and western Alpine regions. The decreased construction temperature adversely affects the workability, mechanical properties, and durability of cement-based materials and alkali-activated materials. Under low-temperature curing conditions, the hydration reaction of these materials slows down, resulting in limited strength development and reduced durability. In response to this problem, researchers have summarized three measures to improve performance: the use of anti-freezing components, nanoparticles, and pre-curing. The effects of anti-freezing components on the mechanical properties and micro-mechanism changes of Portland cement, sulphoaluminate cement, magnesium phosphate cement-based materials, and alkali-activated cementitious materials are organized. Additionally, the improvement of macro-micro properties in cement-based materials through mineral admixtures, nanoparticles, and hydrated calcium silicate seeds is summarized. The influence of pre-curing on the mechanical properties of cement-based materials is analyzed, focusing on the relationship between pre-curing time and the critical strength of frost resistance. Finally, existing research challenges are summarized, and future research directions are proposed, providing valuable references for the further development of materials and engineering applications. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

17 pages, 7747 KiB  
Article
Calcium Phosphate Nanoparticles Functionalized with a Cardio-Specific Peptide
by Federica Mancini, Lorenzo Degli Esposti, Alessio Adamiano, Jessica Modica, Daniele Catalucci, Dora Mehn, Otmar Geiss and Michele Iafisco
Nanomaterials 2025, 15(2), 94; https://doi.org/10.3390/nano15020094 - 9 Jan 2025
Viewed by 1319
Abstract
Cardiovascular diseases (CVDs) remain the leading cause of mortality worldwide, highliting the urgent need for new therapeutic strategies. Peptide-based therapies have demonstrated significant potential for treating CVDs; however, their clinical application is hindered by their limited stability in physiological fluids. To overcome this [...] Read more.
Cardiovascular diseases (CVDs) remain the leading cause of mortality worldwide, highliting the urgent need for new therapeutic strategies. Peptide-based therapies have demonstrated significant potential for treating CVDs; however, their clinical application is hindered by their limited stability in physiological fluids. To overcome this challenge, an effective drug delivery system is essential to protect and efficiently transport peptides to their intended targets. This study introduces two distinct strategies for loading a cardio-specific mimetic peptide (MP), previously designed to modulate L-type calcium channel function in cardiomyocytes, onto calcium phosphate nanoparticles (CaP NPs). MP-loaded CaP NPs were prepared by two different wet precipitation syntheses, one of which involved the use of sodium polyacrylate as a templating agent. Characterization of MP-loaded CaP NPs showed that their crystallinity, size, surface charge, and morphology could be tuned by adjusting the synthesis parameters. In vitro tests on cardiac cells confirmed that both types of MP-loaded CaP NPs are biocompatible with HL-1 cardiomyocytes and restored intracellular calcium flux under stressed conditions, highlighting their therapeutic potential. These results pave the way for further optimization of CaP NP formulations and suggest their potential as a viable nanomaterial for CVD treatment. Full article
Show Figures

Figure 1

13 pages, 2150 KiB  
Article
Effect of a Mating Type Gene Editing in Lentinula edodes Using RNP/Nanoparticle Complex
by Minseek Kim, Minji Oh, Ji-Hoon Im, Eun-Ji Lee, Hojin Ryu, Hyeon-Su Ro and Youn-Lee Oh
J. Fungi 2024, 10(12), 866; https://doi.org/10.3390/jof10120866 - 13 Dec 2024
Viewed by 1221
Abstract
Gene editing using CRISPR/Cas9 is an innovative tool for developing new mushroom strains, offering a promising alternative to traditional breeding methods that are time-consuming and labor-intensive. However, plasmid-based gene editing presents several challenges, including the need for selecting appropriate promoters for Cas9 expression, [...] Read more.
Gene editing using CRISPR/Cas9 is an innovative tool for developing new mushroom strains, offering a promising alternative to traditional breeding methods that are time-consuming and labor-intensive. However, plasmid-based gene editing presents several challenges, including the need for selecting appropriate promoters for Cas9 expression, optimizing codons for the Cas9 gene, the unintended insertion of fragmented plasmid DNA into genomic DNA (gDNA), and regulatory concerns related to genetically modified organisms (GMOs). To address these issues, we utilized a Ribonucleoprotein (RNP) complex consisting of Cas9 and gRNA for gene editing to modify the A mating-type gene of Lentinula edodes. To overcome the challenges posed by the large size of the Cas9 protein, which limits its penetration through the protoplast membrane, and the susceptibility of sgRNA to degradation, we developed a nanoparticle complex using calcium phosphate and polyacrylic acid. This approach significantly improved gene editing efficiency. Consequently, we successfully edited the mating-controlling genes hd1 and hd2 in L. edodes and examined the effects of their disruption on mating. Disruption of the hd1 gene, which is known to influence mycelial growth, did not significantly affect growth or mating. In contrast, editing the hd2 gene disrupted mating with compatible partners, highlighting its critical role in the mating process. The RNP-based transformation technology presented here offers significant advancement over traditional plasmid-based methods, enhancing the efficiency of targeted gene modification while avoiding the insertion of foreign genetic material, thereby mitigating GMO-related regulatory concerns. Full article
(This article belongs to the Section Fungal Genomics, Genetics and Molecular Biology)
Show Figures

Figure 1

22 pages, 9002 KiB  
Article
Calcium Phosphate Nanoparticles as Carriers of Low and High Molecular Weight Compounds
by Ekaterina Popova, Victoria Tikhomirova, Assel Akhmetova, Irina Ilina, Natalia Kalinina, Michael Taliansky and Olga Kost
Int. J. Mol. Sci. 2024, 25(23), 12887; https://doi.org/10.3390/ijms252312887 - 29 Nov 2024
Cited by 2 | Viewed by 1106
Abstract
Nanoparticles could improve the bioavailability of active agents of various natures to human, animal, and plant tissues. In this work, we compared two methods on the synthesis of calcium phosphate nanoparticles (CaPs), differed by the synthesis temperature, pH, and concentration of the stabilizing [...] Read more.
Nanoparticles could improve the bioavailability of active agents of various natures to human, animal, and plant tissues. In this work, we compared two methods on the synthesis of calcium phosphate nanoparticles (CaPs), differed by the synthesis temperature, pH, and concentration of the stabilizing agent, and explored the possibilities of incorporation of a low-molecular-weight peptide analogue enalaprilat, the enzyme superoxide dismutase 1 (SOD1), as well as DNA and dsRNA into these particles, by coprecipitation and sorption. CaPs obtained with and without cooling demonstrated the highest inclusion efficiency for enalaprilat upon coprecipitation: 250 ± 10 μg/mg of CaPs and 340 ± 30 μg/mg of CaPs, respectively. Enalaprilat sorption on the preliminarily formed CaPs was much less effective. SOD1 was only able to coprecipitate with CaPs upon cooling, with SOD1 loading 6.6 ± 2 μg/mg of CaPs. For the incorporation of DNA, the superiority of the sorption method was demonstrated, allowing loading of up to 88 μg/mg of CaPs. The ability of CaPs to incorporate dsRNa by sorption was also demonstrated by electrophoresis and atomic force microscopy. These results could have important implications for the development of the roots for incorporating substances of different natures into CaPs for agricultural and medical applications. Full article
Show Figures

Graphical abstract

Back to TopTop