Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (375)

Search Parameters:
Keywords = caffeoylquinic acid

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2301 KiB  
Article
Haustorium Formation and Specialized Metabolites Biosynthesis Using Co-Culture of Castilleja tenuiflora Benth. and Baccharis conferta Kunth
by Annel Lizeth Leyva-Peralta, José Luis Trejo-Espino, Guadalupe Salcedo-Morales, Daniel Tapia-Maruri, Virginia Medina-Pérez, Alma Rosa López-Laredo and Gabriela Trejo-Tapia
Biology 2025, 14(8), 990; https://doi.org/10.3390/biology14080990 (registering DOI) - 4 Aug 2025
Viewed by 51
Abstract
In this study, an in vitro co-culture system of Castilleja tenuiflora and its host, Baccharis conferta, was used, and the impact of their interaction on specialized metabolite content was analyzed. After 4 weeks of co-culture, haustoria formation was verified through environmental scanning [...] Read more.
In this study, an in vitro co-culture system of Castilleja tenuiflora and its host, Baccharis conferta, was used, and the impact of their interaction on specialized metabolite content was analyzed. After 4 weeks of co-culture, haustoria formation was verified through environmental scanning electron and confocal microscopy, confirming the successful establishment of the plant–plant interaction. Shoot height and biomass of the aerial part of the hemiparasite were not affected significantly by co-culture. However, root biomass increased by 53% compared to individually grown plants. Co-culture significantly reduced the host’s root length without negatively affecting its overall growth or survival. Phytochemical profile alterations were observed in both species. For C. tenuiflora, the lignans sesamin and eudesmin are proposed as differentially accumulated metabolites, while in B. conferta, the caffeoylquinic acid, 4,5-di-O-caffeoylquinic acid, and the flavonoid acacetin were expressed differently. The development and chemical profiles of B. conferta and C. tenuiflora change when they grow in a co-culture because of the host–parasite interaction. Here, we report the feasibility of using a hemiparasite–host system to investigate more profound research questions. Future biotechnological applications of this system include elucidating the genetic regulators involved in haustorium formation, as well as optimizing environmental and physiological conditions to enhance its biosynthetic capacity for the production of specialized metabolites with therapeutic value. Full article
(This article belongs to the Section Plant Science)
Show Figures

Graphical abstract

26 pages, 4036 KiB  
Article
Melatonin-Induced Modulation of Polyphenols and Glycolytic Pathways in Relation to Postharvest Quality of Blue Honeysuckle Fruits
by Jinli Qiao, Liangchuan Guo, Zhen Xiao, Junwei Huo, Xiaonan Sui, Fang Gao and Yan Zhang
Foods 2025, 14(15), 2646; https://doi.org/10.3390/foods14152646 - 28 Jul 2025
Viewed by 374
Abstract
The impact of exogenous melatonin treatment on the postharvest quality and storability of blue honeysuckle fruit was investigated. Fruits were immersed in melatonin solutions at concentrations of 0 (control), 0.01, 0.05, and 0.25 mM for 5 min and subsequently stored at –1 °C [...] Read more.
The impact of exogenous melatonin treatment on the postharvest quality and storability of blue honeysuckle fruit was investigated. Fruits were immersed in melatonin solutions at concentrations of 0 (control), 0.01, 0.05, and 0.25 mM for 5 min and subsequently stored at –1 °C for 63 d. Among all treatments, the combination of two-week storage without fruit puncturing and 0.05 mM melatonin application significantly delayed fruit softening and decay even at the initial stage of storage, while also increasing the concentration of phenolic compounds and enhancing antioxidant activity. During the later storage period (28–63 d), melatonin-treated fruits maintained higher levels of maltose, fructose, and sucrose, contributing to improved flavor retention. In contrast, both lower (0.01 mM) and higher (0.25 mM) concentrations were less effective or even detrimental to fruit quality. HPLC-ESI-QTOF-MS2 analysis revealed that 0.05 mM melatonin effectively preserved several functional phenolics, including p-coumaroylquinic acid, caffeoyl glucose, 5-O-caffeoylquinic acid, 3-O-caffeoylquinic acid, luteolin-7-O-glucoside, and hydroxytyrosol. Thus, 0.05 mM melatonin is effective in delaying senescence and maintaining the postharvest quality of blue honeysuckle fruit. Full article
Show Figures

Figure 1

19 pages, 890 KiB  
Article
Characterization of SCOBY and Lactiplantibacillus plantarum ELB90 Fermented Coffee Kombucha from Different Coffee Sources
by Oznur Saroglu, Yagmur Gulce Irmak, Rusen Metin Yildirim and Ayse Karadag
Fermentation 2025, 11(8), 428; https://doi.org/10.3390/fermentation11080428 - 25 Jul 2025
Viewed by 436
Abstract
Coffee kombucha beverages were developed by fermenting various coffee substrates, including instant coffee (I), coffee brews of ground coffee beans (G), and additional spent coffee added ground coffee (GSC) using either SCOBY (S) or Lactiplantibacillus plantarum ELB90 (L), or a combination of both [...] Read more.
Coffee kombucha beverages were developed by fermenting various coffee substrates, including instant coffee (I), coffee brews of ground coffee beans (G), and additional spent coffee added ground coffee (GSC) using either SCOBY (S) or Lactiplantibacillus plantarum ELB90 (L), or a combination of both (SL). The combined SL inoculation did not synergistically enhance the growth of acetic and lactic acid bacteria, nor did it increase the acetic and lactic acid concentrations or improve retention of caffeoylquinic acids (CQA) compared to non-fermented controls stored for the incubation period (7 days). Samples fermented with L better preserved the total CQAs during incubation, notably increasing 3-CQA and 4-CQA in L-fermented G and GSC samples by up to 40%, whereas 5-CQA showed a slight decrease (up to 8%) in L-fermented G and GSC samples. After one week, all fermented samples maintained stable levels of 3-CQA compared to the non-fermented SCG control, with significantly elevated 4-CQA. Caffeic acid was detected only in the bound fraction of beans, exhibiting similar concentrations in both fermented and non-fermented samples. SL-fermented coffees showed significant reductions in caffeine contents, except for I coffee substrate, and spent coffee grounds (SCG) filtered from the SL-fermented sample also had significantly lower caffeine content. Panelists preferred coffee kombucha beverages inoculated with S over those fermented with L, which were rated least appealing. The study concludes that fermentation with specific inoculation cultures could mitigate the degradation of coffee phenolic compounds during storage and facilitate the production of beverages with lower caffeine content, potentially enhancing both functional properties and consumer acceptability. Full article
(This article belongs to the Section Fermentation for Food and Beverages)
Show Figures

Figure 1

17 pages, 5515 KiB  
Article
Hypoglycemic Effects of Silphium perfoliatum L. In Vitro and In Vivo and Its Active Composition Identification by UPLC-Triple-TOF-MS/MS
by Guoying Zhang, Liying Liu, Wenjing Jia, Luya Wang, Jihong Tao, Wei Zhang, Huilan Yue, Dejun Zhang and Xiaohui Zhao
Pharmaceuticals 2025, 18(8), 1087; https://doi.org/10.3390/ph18081087 - 23 Jul 2025
Viewed by 255
Abstract
Background: Reducing postprandial blood glucose (PBG) is a crucial strategy for treating diabetes and minimizing the risk of complications. Developing efficient and safe α-glycosidase inhibitors from natural products to lower PBG has attracted much attention. Silphium perfoliatum L. (SP), a traditional herbal [...] Read more.
Background: Reducing postprandial blood glucose (PBG) is a crucial strategy for treating diabetes and minimizing the risk of complications. Developing efficient and safe α-glycosidase inhibitors from natural products to lower PBG has attracted much attention. Silphium perfoliatum L. (SP), a traditional herbal medicine of North American Indigenous tribes, has efficacy of treating metabolic diseases, but its hypoglycemic activity and bioactive components have not been fully studied. Methods: In vitro α-glucosidase inhibition and in vivo sucrose/maltose/starch tolerance assays were performed to assess the hypoglycemic effects of SP extracts, and UPLC-Triple-TOF-MS/MS analysis was used to tentatively identify its chemical structure composition. In vitro enzyme inhibition and molecular docking were used to verify the effective ingredients. Results: In vitro hypoglycemic activities of four extracts of SP (SP-10/SP-40/SP-60/SP-C) showed that SP-10 exhibited strong α-glucosidase (sucrase and maltase) inhibitory effects with IC50 of 67.81 μg/mL and 62.99 μg/mL, respectively. Carbohydrate tolerance assays demonstrated that SP-10 could significantly reduce the PBG levels of diabetic mice, with a significant hypoglycemic effect at a dosage of 20 mg/kg. A total of 26 constituents, including 11 caffeoylquinic acids (CQAs) and 15 flavonol glycosides, were tentatively identified by mainly analyzing secondary MS fragmentation. Moreover, three CQAs rich in SP-10, namely chlorogenic acid (CGA), neochlorogenic acid (NCGA), and cryptochlorogenic acid (CCGA), may be the main hypoglycemic substances, as evidenced by their inhibitory effects on sucrase and maltase. Conclusions: The α-glucosidase inhibitory effects of SP extract both in vitro and in vivo and its active ingredients were systematically studied for the first time. Results indicated that SP extract, rich in CQAs, had significant hypoglycemic activity, supporting the considerable potential of SP as hypoglycemic functional food or cost-effective therapeutic agents for diabetes treatment. Full article
(This article belongs to the Section Natural Products)
Show Figures

Graphical abstract

16 pages, 644 KiB  
Article
Isolation and Identification of Secondary Metabolites in Rheum tataricum L.fil. Growing in Kazakhstan and Surveying of Its Anticancer Potential
by Aiman A. Turgunbayeva, Nurgul A. Sultanova, Mohammad Saleh Hamad, Victor A. Savelyev, Elena I. Chernyak, Irina Yu. Bagryanskaya, Mikhail A. Pokrovsky, Andrey G. Pokrovsky, Nadezhda G. Gemejiyeva and Elvira E. Shults
Molecules 2025, 30(14), 2978; https://doi.org/10.3390/molecules30142978 - 15 Jul 2025
Viewed by 409
Abstract
Rheum tataricum L.fil., known for its high tolerance to drought, salinity, and nutritional deficiency, is the least studied species of wild rhubarb. Extract of roots and rhizomes of R. tataricum has been traditionally used for the treatment of different diseases such as liver, [...] Read more.
Rheum tataricum L.fil., known for its high tolerance to drought, salinity, and nutritional deficiency, is the least studied species of wild rhubarb. Extract of roots and rhizomes of R. tataricum has been traditionally used for the treatment of different diseases such as liver, kidney, womb, and bladder diseases and also relapsing fever. An ethanol extract of the roots of R. tataricum was prepared and further successively fractionated by extraction with tert-butyl methyl ether (TBME) and ethyl acetate (EtOAc). The obtained extract fractions were subjected to a series of chromatographic separations on silica gel for the isolation of its individual compounds. A total of 12 individual compounds, 2-O-β-D-glucopyranoside of R-(4-hydroxyphenyl)-2-butanol (rhododendrin) 1, gallic acid 2, 2-O-β-D-glucopyranoside of S-4-(4-hydroxyphenyl)-2-butanol (epi-rhododendrin) 3, their aglycones (-)-(2R)-rhododendrol 4 and (+)-(2S)-rhododendrol 5, gallotannin β-glucogallin 6, chlorogenic acids (3,5-di-O-caffeoylquinic acid 7 and 5-O-caffeoyl-3-O-(p-coumaroyl) quinic acid 8), 4-(4-hydroxyphenyl)-2-butanon (raspberry ketone) 9 and three stilbenes (rhaponticin 10, desoxyrhaponticin 11 and resveratroloside 12), were isolated and characterized. The structure of desoxyrhaponticin 11 was confirmed by X-ray diffraction analyses. The results of in vitro biological assays (the MTT test) showed that ethanol extract Rheum tataricum was non-toxic against the normal epithelial VERO cells. The isolated compounds 1, 4, 11 and 12 exhibited cytotoxicity against a cervical cancer cell line (CaSki), breast adenocarcinoma (MCF7) and glioblastoma cell line (SNB-19) at low micromolar concentrations. Polyhydroxystilbenes 11 and 12 showed the best potency against adenocarcinoma cells (GI50 = 7–8 μM). The inhibition activity towards cancer cells was comparable to those of the standard drug doxorubicin. The available from R. tataricum secondary metabolites may serve as new leads for the discovery of anticancer drugs. Full article
Show Figures

Graphical abstract

20 pages, 4265 KiB  
Article
Molecular Docking and Drug-Likeness of Salicornia-Derived Phytochemicals Against HER Receptors
by Thiwanga N. Withana, Dinum Perera and Tharani D. Fernando
Curr. Issues Mol. Biol. 2025, 47(7), 495; https://doi.org/10.3390/cimb47070495 - 27 Jun 2025
Viewed by 421
Abstract
Cancer remains a major global public health concern, driving the need for innovative therapeutic agents with intensified efficacy and safety. Growth factor receptors (GFRs), often overexpressed in cancer cells and critical in regulating cell proliferation, survival, and tumor progression, represent key targets for [...] Read more.
Cancer remains a major global public health concern, driving the need for innovative therapeutic agents with intensified efficacy and safety. Growth factor receptors (GFRs), often overexpressed in cancer cells and critical in regulating cell proliferation, survival, and tumor progression, represent key targets for cancer therapy. Halophytic plants like Salicornia spp. are known for their diverse bioactive compounds with notable pharmacological properties. This study comprehensively evaluated the anti-cancer potentials of phytochemicals derived from Salicornia herbacea and Salicornia brachiata using molecular docking and ADME-Tox (absorption, distribution, metabolism, excretion, and toxicity) profiling. A total of 37 bioactive compounds from Salicornia spp. were screened against HER1, HER2, and HER4 receptors. Among them, 3,5-di-O-caffeoylquinic acid, 3-O-caffeoylquinic acid, myricetin, quercetin, stigmasterol, kaempferol, isorhamnetin, rhamnetin, and hesperitin featured strong predicted binding affinities to the HER1, HER2, and HER4 growth factor receptors, comparable to those of standard anti-cancer drugs such as gefitinib and dovitinib. Further pharmacokinetic assessments, including bioavailability and toxicity analyses, identified compounds with favorable drug-likeness properties and minimal toxicity risks, except for myricetin and quercetin. These findings underscore the potential of Salicornia-derived phytochemicals as promising candidates for the development of safe, novel, and effective anti-cancer agents targeting GFRs, contributing to the advances in precision oncology, pending further validation through in vitro and/or in vivo experiments. Full article
Show Figures

Figure 1

17 pages, 1001 KiB  
Article
The Effect of Freeze-Dried Cherry Pomace and Red Potato Pulp on the Content of Bioactive Substances in Pasta
by Dorota Gumul, Wiktor Berski, Eva Ivanišová, Joanna Oracz and Marek Kruczek
Int. J. Mol. Sci. 2025, 26(13), 6020; https://doi.org/10.3390/ijms26136020 - 23 Jun 2025
Viewed by 329
Abstract
Pasta, due to its convenience, follows bread as the most common cereal product in the human diet. Typical wheat pasta is a high-energy product, since it contains a large amount of starch; at the same time, it is characterized by a low content [...] Read more.
Pasta, due to its convenience, follows bread as the most common cereal product in the human diet. Typical wheat pasta is a high-energy product, since it contains a large amount of starch; at the same time, it is characterized by a low content of health-promoting ingredients, such as dietary fiber, minerals, vitamins, and polyphenols. Food industry by-products, or even waste, can be applied as a source of many bioactive substances, thus enriching pasta with bioactive ingredients. Two by-products, Cherry Pomace (CP) and Red Potato Pulp (RPP) were applied as health-promoting supplements for wheat pasta, at three levels (10, 20, and 30%). The antioxidant potential of the resulting pasta was examined (by DPPH, ABTS, FRAP, and FOMO methods), and the antioxidant’s content was also tested. The amount of polyphenols determined by HPLC was higher in the case of CP than in RPP, and the main ones were 5-O-Caffeoylquinic acid and Cyanidin 3-O-rutinoside in CP, whereas for RPP it was Pelargonidin 3-(4‴-p-coumaroylrutinoside)-5-glucoside. Fortified pasta samples were characterized by a higher content of total polyphenols and phenolic acids, flavonoids, flavanols, and anthocyanins. In pasta with a share of CP, some polyphenols were unstable during pasta production. Pasta with a share of CP was characterized by very high antioxidant activity due to a high level of phenolic acids and anthocyanins acting synergistically. It was also characterized by a higher content of phytosterols. A 30% addition of CP into pasta is considered the most beneficial in terms of increasing the health-promoting properties of such a product. Full article
(This article belongs to the Special Issue Recent Advances in Bioactive Compounds in Human Health)
Show Figures

Graphical abstract

23 pages, 1193 KiB  
Article
Application of Commercial Pectinase as a Biocatalyst During Self-Induced Anaerobic Fermentation of Coffee (Coffea arabica L. var. Typica)
by Marcelo Edvan dos Santos Silva, Rodrigo Lira de Oliveira, Marcilio Martins de Moraes, Claudio Augusto Gomes da Camara, Suzana Pedroza da Silva and Tatiana Souza Porto
Fermentation 2025, 11(7), 361; https://doi.org/10.3390/fermentation11070361 - 22 Jun 2025
Viewed by 655
Abstract
This study investigated the impact of enzyme treatment on the physicochemical parameters and volatile and bioactive composition of Arabica coffee beans during self-induced anaerobic fermentation (SIAF). The physicochemical parameters of the beans treated with the enzyme solution were monitored over a 120 h [...] Read more.
This study investigated the impact of enzyme treatment on the physicochemical parameters and volatile and bioactive composition of Arabica coffee beans during self-induced anaerobic fermentation (SIAF). The physicochemical parameters of the beans treated with the enzyme solution were monitored over a 120 h fermentation period. The results showed that increasing enzyme concentration reduced the levels of reducing sugars and phenolic compounds, leading to decrease in antioxidant activity. Pectin lyase activity was highest in beans treated with 10 U.·mL−1, while polygalacturonase activity fluctuated throughout fermentation. The highest caffeine content (722.09 ± 3.7 mg·100g−1) was found in beans treated with 5 U.mL−1 after 72 h of fermentation. In contrast, trigonelline (1028.75 ± 31.4 mg·100g−1) and 5-O-caffeoylquinic acid (5CQA) (423.46 ± 40.3 mg·100g−1) were more prominent in unfermented beans. Volatile formation showed a positive correlation with enzyme concentration, with beans treated with 10 U·mL−1 exhibiting a more diverse volatile profile in the first 24 h. These findings suggest that enzymatic treatment modulates coffee’s volatile and bioactive composition, enhancing levels of aromatic compounds that are directly linked to the sensory quality of the coffee beverage. Full article
(This article belongs to the Special Issue Microbiota and Metabolite Changes in Fermented Foods)
Show Figures

Figure 1

18 pages, 1097 KiB  
Article
Phytochemical Profiling of Residual Leaves from an Alpine Landrace of Globe Artichoke (Cynara scolymus L.)
by Marco Zuccolo, Angela Bassoli, Annamaria Giorgi, Luca Giupponi, Stefania Mazzini and Gigliola Borgonovo
Molecules 2025, 30(12), 2649; https://doi.org/10.3390/molecules30122649 - 19 Jun 2025
Viewed by 430
Abstract
The globe artichoke (Cynara cardunculus L. var. scolymus) is a Mediterranean crop valued for its edible capitula and bioactive compounds. Post-harvest residual leaves are among the main by-products of artichoke cultivation and remain largely underutilized. This study reports a comprehensive characterization [...] Read more.
The globe artichoke (Cynara cardunculus L. var. scolymus) is a Mediterranean crop valued for its edible capitula and bioactive compounds. Post-harvest residual leaves are among the main by-products of artichoke cultivation and remain largely underutilized. This study reports a comprehensive characterization of the residual leaves of Carciofo di Malegno, an Alpine artichoke landrace. Comparative analysis was conducted against leaves from two commercial cultivars and a commercial herbal tea product. HPLC analysis revealed that Carciofo di Malegno exhibited the lowest levels of secondary metabolites. Cynaropicrin content was 0.52 ± 0.03 mg/g, lower than in the commercial samples, while the phenolic compounds were below the quantification limit. Proximate analysis indicated a distinctive nutritional profile, with significantly higher ash (8.01 ± 0.04%) and crude fiber (35.75 ± 0.29%) contents compared to all reference samples. These findings highlight the potential of Carciofo di Malegno residual leaves as a sustainable source of nutrients for functional food and nutraceutical applications. Their low content of bitter sesquiterpene lactones may enhance palatability, supporting their valorisation within circular economy frameworks. Moreover, their use may contribute to the in situ conservation of this landrace, reinforcing the link between agrobiodiversity preservation and the sustainable exploitation of agricultural by-products. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Graphical abstract

18 pages, 847 KiB  
Article
New Terpenoids and Polyphenolic Profile of Carpesium cernuum L. of European Origin
by Janusz Malarz, Danuta Jantas, Klaudia Jakubowska, Ryszard Bugno, Anna K. Kiss and Anna Stojakowska
Molecules 2025, 30(12), 2506; https://doi.org/10.3390/molecules30122506 - 7 Jun 2025
Viewed by 597
Abstract
Carpesium cernuum L., the most widespread representative of the genus Carpesium, has been traditionally used in some regions of Asia as a remedy for various ailments or as a vegetable. Although the plant is distributed in Europe, there is no data on [...] Read more.
Carpesium cernuum L., the most widespread representative of the genus Carpesium, has been traditionally used in some regions of Asia as a remedy for various ailments or as a vegetable. Although the plant is distributed in Europe, there is no data on its medicinal use in this part of the world. The chemical composition of European Carpesium cernuum L. has remained unknown until now, except for the compositions of essential oils distilled from the roots and aerial parts of the plant. Polyphenolic profiles of hydroalcoholic extracts from C. cernuum were studied using the HPLC-MSn technique. The analysis revealed the presence of 24 hydroxycinnamates, which were dominated by caffeoylquinic and caffeoylhexaric acids. Moreover, fractionation of the chloroform extracts from the plant led to the isolation of three new compounds, 8α-angeloyloxy-4β-hydroxy-5β-(3-methylbutyryloxy)-9-oxo-germacran-6α,12-olide, 9β-angeloyloxy-4β,8α-dihydroxy-5β-(3-methylbutyryloxy)-3-oxo-germacran-6α,12-olide, and a dihydrobenzofuran derivative, together with twelve known compounds. 8-Hydroxy-9,10-diisobutyryloxythymol, a monoterpenoid thymol derivative from the roots of the plant, was evaluated for potential neuroprotective and cytotoxic activities using differentiated and undifferentiated SH-SY5Y neuroblastoma cells. At a concentration range of 1–10 μM, the compound provided partial (up to 50%) protection against H2O2-induced cell damage in the undifferentiated cells. At concentrations higher than 25 μM, the monoterpenoid significantly reduced the viability of the cells (IC50: 65.7 μM for the undifferentiated cells and 40.9 μM for the differentiated cells). Full article
(This article belongs to the Special Issue State-of-the-Art Analytical Methods for Natural Products)
Show Figures

Graphical abstract

19 pages, 2165 KiB  
Article
Phytochemical Profile and Antioxidant Properties of Invasive Plants Ailanthus altissima (Mill.) Swingle and Helianthus tuberosus L. in Istria Region, Croatia
by Mirela Uzelac Božac, Danijela Poljuha, Slavica Dudaš, Josipa Bilić, Ivana Šola, Maja Mikulič-Petkovšek and Barbara Sladonja
Antioxidants 2025, 14(6), 677; https://doi.org/10.3390/antiox14060677 - 3 Jun 2025
Viewed by 676
Abstract
Invasive alien plant species, while ecologically and economically problematic, represent an underutilized source of bioactive phytochemicals with promising phytopharmaceutical applications. This study investigates the LC-DAD-MS phenolic profiles of 70% ethanol and 80% methanol leaf and flower extracts of Ailanthus altissima (Mill.) Swingle and [...] Read more.
Invasive alien plant species, while ecologically and economically problematic, represent an underutilized source of bioactive phytochemicals with promising phytopharmaceutical applications. This study investigates the LC-DAD-MS phenolic profiles of 70% ethanol and 80% methanol leaf and flower extracts of Ailanthus altissima (Mill.) Swingle and Helianthus tuberosus L., collected in the Istria region of Croatia, alongside their antioxidant capacities using ABTS, DPPH, and FRAP assays. Both species exhibited high levels of flavonoids and phenolic acids, with consistently higher concentrations in leaf versus flower tissues and in ethanolic versus methanolic extracts. Strong correlations (r > 0.9) between total phenolics and antioxidant activity confirmed the functional significance of these compounds. With a targeted metabolomics approach, in A. altissima, 51 phenolics were identified in leaves and 47 in flowers, with ellagitannins predominating; vescalagin isomers reached 94 mg/g DW in leaves and 82 mg/g DW in flowers. H. tuberosus extracts contained 34 phenolics in leaves and 33 in flowers, with hydroxycinnamic acids and flavonols dominating; 5-caffeoylquinic acid was the principal compound (25 mg/g DW in leaves, 2 mg/g DW in flowers). The identified phytochemicals are known for their potent antioxidant, anti-inflammatory, anticancer, antimicrobial, and metabolic-regulating properties. Additionally, four leaf-specific compounds were identified in each species, indicating potential for targeted extraction. These findings advance the phytochemical characterization of invasive taxa and highlight their potential as sources of natural antioxidants for functional food and pharmaceutical development. Full article
(This article belongs to the Section Natural and Synthetic Antioxidants)
Show Figures

Figure 1

15 pages, 1831 KiB  
Article
Protective Role of Polyphenols from Aronia Berry (Aronia melanocarpa) Against LPS-Induced Inflammation in Colon Cells and Macrophages
by Shareena Sreedharan, Vimal Nair, Prerna Bhargava and Luis Cisneros-Zevallos
Nutrients 2025, 17(10), 1652; https://doi.org/10.3390/nu17101652 - 12 May 2025
Viewed by 704
Abstract
Background: Aronia berry (Aronia melanocarpa) are native to North America, rich in polyphenols and antioxidants with the potential to promote human health through its anti-inflammatory properties. Methods: Through the chemical characterization of phenolic compounds from aronia berries, 11 distinct [...] Read more.
Background: Aronia berry (Aronia melanocarpa) are native to North America, rich in polyphenols and antioxidants with the potential to promote human health through its anti-inflammatory properties. Methods: Through the chemical characterization of phenolic compounds from aronia berries, 11 distinct polyphenols were identified. We investigated the anti-inflammatory activity of a methanolic/acetone/water extract from freeze-dried aronia berries in LPS-stimulated colonic and macrophage cell models. Results: In colon cells, aronia polyphenols suppressed pro-inflammatory gene expression (NFkβ, TNFα, IL-6, COX2) by reducing ROS generation while enhancing LXRα expression. In macrophages, these compounds decreased NO production through ROS attenuation. Notably, aronia extracts exhibited no cytotoxicity in either cell type across concentrations from 100 to 1000 μg/mL. The whole-berry methanolic extract contained substantial levels of phenolic compounds (including 3-O- and 5-O-caffeoylquinic acids, quercetin derivatives, and cyanidin derivatives) with high ORAC values, likely contributing to their observed multifaceted anti-inflammatory effects. Conclusions: These findings suggest that freeze-dried aronia berry (AroBerry®) may offer protection against low-grade inflammation, providing a foundation for future in vivo studies using murine models of inflammation-associated chronic diseases to establish appropriate dosage regimens. Full article
(This article belongs to the Special Issue Bioactive Ingredients in Plants Related to Human Health)
Show Figures

Graphical abstract

16 pages, 4205 KiB  
Article
The Impact of Thermal and Electrical Pretreatments and Antibrowning Solution on the Chlorogenic and Dicaffeoylquinic Acid Extraction Yield from Endive Roots
by Etienne Diemer, Morad Chadni, Irina Ioannou and Nabil Grimi
Molecules 2025, 30(10), 2091; https://doi.org/10.3390/molecules30102091 - 8 May 2025
Viewed by 2336
Abstract
Forced endive roots (FERs) contain beneficial antioxidant compounds such as chlorogenic acid (5-CQA) and dicaffeoylquinic acids (diCQAs). This study compared the extraction yields of 5-CQA and diCQAs using a biomass pressing method with various pretreatments, including pulsed electric field (PEF) and microwave (MW), [...] Read more.
Forced endive roots (FERs) contain beneficial antioxidant compounds such as chlorogenic acid (5-CQA) and dicaffeoylquinic acids (diCQAs). This study compared the extraction yields of 5-CQA and diCQAs using a biomass pressing method with various pretreatments, including pulsed electric field (PEF) and microwave (MW), against the solid–liquid extraction method (water, 90 °C, 30 min). The results indicated that the MW pretreatment achieved the highest yields, extracting 28 ± 2% of 5-CQA and 13 ± 1% of diCQAs, surpassing the solid–liquid method. Furthermore, the oxidative degradation of CQAs was studied, and it appeared that this reaction was enhanced by PEF pretreatment. An antibrowning solution (ABS) was successfully tested to reduce this oxidation and protect CQAs. An extraction process utilizing MW and PEF pretreatments combined with an ABS solution achieved yields of 65 ± 1% for diCQAs and 80 ± 5% for 5-CQA, significantly outperforming the solid–liquid extraction method. Full article
Show Figures

Graphical abstract

19 pages, 3235 KiB  
Article
Metabolomics Combined with Photosynthetic Analysis Reveals Potential Mechanisms of Phenolic Compound Accumulation in Lonicera japonica Induced by Nitrate Nitrogen Supply
by Yiwen Cao, Yating Yang, Zhengwei Tan, Xihan Feng, Zhiyao Tian, Tianheng Liu, Yonghui Pan, Min Wang, Xiaoyu Su, Huizhen Liang and Shiwei Guo
Int. J. Mol. Sci. 2025, 26(9), 4464; https://doi.org/10.3390/ijms26094464 - 7 May 2025
Viewed by 555
Abstract
Mineral nutrition is of vital importance in plant growth and secondary metabolites accumulation, and thereby in the nutritional value of plants. In Lonicera japonica, a preference to nitrate (NO3−N) in comparison to ammonium (NH4+−N) was found [...] Read more.
Mineral nutrition is of vital importance in plant growth and secondary metabolites accumulation, and thereby in the nutritional value of plants. In Lonicera japonica, a preference to nitrate (NO3−N) in comparison to ammonium (NH4+−N) was found in our previous study, which can be revealed from the rapid growth rate of L. japonica under NO3−N. This study assessed whether a preference for nitrogen sources could invoke metabolic reprogramming and interrelationships between factors. NO3−fed plants exhibited substantial enhancement of carbon stimulation, which was strongly and positively correlated with mesophyll conductance. As a result, the elevated carbon flux by NO3 supplement was shuttled to phenolic metabolites synthesis, including flavones and caffeoylquinic acids compounds. Notably, the stimulation was triggered by changes in the NO3 and C/N ratio and was mediated by the induction of several enzymes in the phenylpropanoid pathway. On the contrary, NH4+ plants showed an increment in the content of nitrogen, carbohydrates, and amino acids (mainly a strong increase in citrulline and theanine). Within secondary metabolism, NH4+ may involve active lignin metabolism, showing a dramatic increment in hydroxy−ferulic acid and lignin content. This work provides significant insights regarding the mechanisms of L. japonica in response to diverse nitrogen regimes and effective strategies of nitrogen fertilizer input for L. japonica. Full article
Show Figures

Figure 1

27 pages, 2345 KiB  
Article
Can Provence Flora Offer Effective Alternatives to Widely Used Medicinal Plants? A Comparative Study of Antioxidant Activity and Chemical Composition Using Molecular Networking
by Clémentine Achard-Baccati, Elnur Garayev, Charifat Saïd Hassane, Célia Breaud, Eldar Garaev, Myriam Bertolotti, Fathi Mabrouki, Sok-Siya Bun-Llopet and Béatrice Baghdikian
Molecules 2025, 30(9), 2072; https://doi.org/10.3390/molecules30092072 - 7 May 2025
Viewed by 683
Abstract
This study compares the antioxidant properties and phytochemical profiles of three pairs of widely used medicinal plant species to their counterparts from Provence, France: Arnica montana with Pentanema montanum (formerly known as Inula montana), Helichrysum italicum with Helichrysum stoechas, and Satureja hortensis [...] Read more.
This study compares the antioxidant properties and phytochemical profiles of three pairs of widely used medicinal plant species to their counterparts from Provence, France: Arnica montana with Pentanema montanum (formerly known as Inula montana), Helichrysum italicum with Helichrysum stoechas, and Satureja hortensis with Satureja montana. Phytochemical composition has been investigated using UHPLC-HRMS/MS and molecular networking, revealing chemical profiles dominated by phenylpropanoids and flavonoids, with lignans, sesquiterpene lactones, or polyketides aside. Well-plate DPPH/ABTS assays were used to evaluate the antioxidant activity of extracts, and post-column assays were used to identify antioxidant compounds. The three Provence species demonstrated comparable or superior antioxidant activities to their counterparts, primarily attributed to phenolic compounds such as mono- and di-caffeoylquinic acids, quercetagetin-7-O-glucoside, and myricetin acetylhexoside. These findings show the potential of Provence species to be substituted for some overharvested medicinal plants. This research supports biodiversity conservation while promoting the integration of these local species into pharmaceutical, nutraceutical, cosmetic, and food industries. Full article
Show Figures

Figure 1

Back to TopTop