Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (338)

Search Parameters:
Keywords = bus service system

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1628 KiB  
Article
A Stackelberg Game-Based Joint Clearing Model for Pumped Storage Participation in Multi-Tier Electricity Markets
by Lingkang Zeng, Mutao Huang, Hao Xu, Zhongzhong Chen, Wanjing Li, Jingshu Zhang, Senlin Ran and Xingbang Chen
Processes 2025, 13(8), 2472; https://doi.org/10.3390/pr13082472 - 4 Aug 2025
Abstract
To address the limited flexibility of pumped storage power stations (PSPSs) under hierarchical clearing of energy and ancillary service markets, this study proposes a joint clearing mechanism for multi-level electricity markets. A bi-level optimization model based on the Stackelberg game is developed to [...] Read more.
To address the limited flexibility of pumped storage power stations (PSPSs) under hierarchical clearing of energy and ancillary service markets, this study proposes a joint clearing mechanism for multi-level electricity markets. A bi-level optimization model based on the Stackelberg game is developed to characterize the strategic interaction between PSPSs and the market operator. Simulation results on the IEEE 30-bus system demonstrate that the proposed mechanism captures the dynamics of nodal supply and demand, as well as time-varying network congestion. It guides PSPSs to operate more flexibly and economically. Additionally, the mechanism increases PSPS profitability, reduces system costs, and improves frequency regulation performance. This game-theoretic framework offers quantitative decision support for PSPS participation in multi-level spot markets and provides insights for optimal storage deployment and market mechanism improvement. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

27 pages, 3107 KiB  
Article
Modeling School Commuting Mode Choice Under Normal and Adverse Weather Conditions in Chiang Rai City
by Chanyanuch Pangderm, Tosporn Arreeras and Xiaoyan Jia
Future Transp. 2025, 5(3), 101; https://doi.org/10.3390/futuretransp5030101 - 1 Aug 2025
Viewed by 96
Abstract
This study investigates the factors influencing school trip mode choice among senior high school students in the Chiang Rai urban area, Chiang Rai, Thailand, under normal and adverse weather conditions. Utilizing data from 472 students across six extra-large urban schools, a Multinomial Logit [...] Read more.
This study investigates the factors influencing school trip mode choice among senior high school students in the Chiang Rai urban area, Chiang Rai, Thailand, under normal and adverse weather conditions. Utilizing data from 472 students across six extra-large urban schools, a Multinomial Logit (MNL) regression model was applied to examine the effects of socio-demographic attributes, household vehicle ownership, travel distance, and spatial variables on mode selection. The results revealed notable modal shifts during adverse weather, with motorcycle usage decreasing and private vehicle reliance increasing, while school bus usage remained stable, highlighting its role as a resilient transport option. Car ownership emerged as a strong enabler of modal flexibility, whereas students with limited access to private transport demonstrated reduced adaptability. Additionally, increased waiting and travel times during adverse conditions underscored infrastructure and service vulnerabilities, particularly for mid-distance travelers. The findings suggest an urgent need for transport policies that promote inclusive and climate-resilient mobility systems, particularly in the context of Chiang Rai, including expanded school bus services, improved first-mile connectivity, and enhanced pedestrian infrastructure. This study contributes to the literature by addressing environmental variability in school travel behavior and offers actionable insights for sustainable transport planning in secondary cities and border regions. Full article
Show Figures

Figure 1

24 pages, 6699 KiB  
Article
Protecting Power System Infrastructure Against Disruptive Agents Considering Demand Response
by Jesús M. López-Lezama, Nicolás Muñoz-Galeano, Sergio D. Saldarriaga-Zuluaga and Santiago Bustamante-Mesa
Computers 2025, 14(8), 308; https://doi.org/10.3390/computers14080308 - 30 Jul 2025
Viewed by 110
Abstract
Power system infrastructure is exposed to a range of threats, including both naturally occurring events and intentional attacks. Traditional vulnerability assessment models, typically based on the N-1 criterion, do not account for the intentionality of disruptive agents. This paper presents a game-theoretic approach [...] Read more.
Power system infrastructure is exposed to a range of threats, including both naturally occurring events and intentional attacks. Traditional vulnerability assessment models, typically based on the N-1 criterion, do not account for the intentionality of disruptive agents. This paper presents a game-theoretic approach to protecting power system infrastructure against deliberate attacks, taking into account the effects of demand response. The interaction between the disruptive agent and the system operator is modeled as a leader–follower Stackelberg game. The leader, positioned in the upper-level optimization problem, must decide which elements to render out of service, anticipating the reaction of the follower (the system operator), who occupies the lower-level problem. The Stackelberg game is reformulated as a bilevel optimization model and solved using a metaheuristic approach. To evaluate the applicability of the proposed method, a 24-bus test system was employed. The results demonstrate that integrating demand response significantly enhances system resilience, compelling the disruptive agent to adopt alternative attack strategies that lead to lower overall disruption. The proposed model serves as a valuable decision-support tool for system operators and planners seeking to improve the robustness and security of electrical networks against disruptive agents. Full article
Show Figures

Figure 1

20 pages, 1676 KiB  
Article
Data-Driven Distributionally Robust Optimization for Solar-Powered EV Charging Under Spatiotemporal Uncertainty in Urban Distribution Networks
by Tianhao Wang, Xuejiao Zhang, Xiaolin Zheng, Jian Wang, Shiqian Ma, Jian Chen, Mengyu Liu and Wei Wei
Energies 2025, 18(15), 4001; https://doi.org/10.3390/en18154001 - 27 Jul 2025
Viewed by 369
Abstract
The rapid electrification of transportation and the proliferation of rooftop solar photovoltaics (PVs) in urban environments are reshaping the operational dynamics of power distribution networks. However, the inherent uncertainty in electric vehicle (EV) behavior—including arrival times, charging preferences, and state-of-charge—as well as spatially [...] Read more.
The rapid electrification of transportation and the proliferation of rooftop solar photovoltaics (PVs) in urban environments are reshaping the operational dynamics of power distribution networks. However, the inherent uncertainty in electric vehicle (EV) behavior—including arrival times, charging preferences, and state-of-charge—as well as spatially and temporally variable solar generation, presents a profound challenge to existing scheduling frameworks. This paper proposes a novel data-driven distributionally robust optimization (DDRO) framework for solar-powered EV charging coordination under spatiotemporal uncertainty. Leveraging empirical datasets of EV usage and solar irradiance from a smart city deployment, the framework constructs Wasserstein ambiguity sets around historical distributions, enabling worst-case-aware decision-making without requiring the assumption of probability laws. The problem is formulated as a two-stage optimization model. The first stage determines day-ahead charging schedules, solar utilization levels, and grid allocations across an urban-scale distribution feeder. The second stage models real-time recourse actions—such as dynamic curtailment or demand reshaping—after uncertainties are realized. Physical grid constraints are modeled using convexified LinDistFlow equations, while EV behavior is segmented into user classes with individualized uncertainty structures. The model is evaluated on a modified IEEE 123-bus feeder with 52 EV-PV nodes, using 15 min resolution over a 24 h horizon and 12 months of real-world data. Comparative results demonstrate that the proposed DDRO method reduces total operational costs by up to 15%, eliminates voltage violations entirely, and improves EV service satisfaction by more than 30% relative to deterministic and stochastic baselines. This work makes three primary contributions: it introduces a robust, tractable optimization architecture that captures spatiotemporal uncertainty using empirical Wasserstein sets; it integrates behavioral and physical modeling within a unified dispatch framework for urban energy-mobility systems; and it demonstrates the value of robust coordination in simultaneously improving grid resilience, renewable utilization, and EV user satisfaction. The results offer practical insights for city-scale planners seeking to enable the reliable and efficient electrification of mobility infrastructure under uncertainty. Full article
Show Figures

Figure 1

27 pages, 16832 KiB  
Article
Effective Bus Travel Time Prediction System of Multiple Routes: Introducing PMLNet Based on MDARNN
by Jianmei Lei, Yulan Chen, Qingwen Han, Lingqiu Zeng and Guangyan He
Appl. Sci. 2025, 15(14), 8104; https://doi.org/10.3390/app15148104 - 21 Jul 2025
Viewed by 189
Abstract
Accurate bus travel time prediction is crucial for improving travel experience, especially in transfer journeys. This study introduces a novel multi-route bus travel time prediction system-based PMLNet, a partition and combination prediction framework, addressing the gap in accurate prediction models by incorporating macro [...] Read more.
Accurate bus travel time prediction is crucial for improving travel experience, especially in transfer journeys. This study introduces a novel multi-route bus travel time prediction system-based PMLNet, a partition and combination prediction framework, addressing the gap in accurate prediction models by incorporating macro and local impact factors. The system employs a pre-processing algorithm for constructing travel chains, partitions travel time into four components, utilizes LSTM along with the newly proposed MDARNN model for predicting each component, and applies four real-time traffic impact factors to calibrate the predictions of each component. Experimental validation on four bus routes demonstrates PMLNet’s superior performance, achieving mean absolute percentage errors (MAPE) as low as 2.91% and mean absolute errors (MAE) below 1.45 min, outperforming traditional models and various partitioned combination frameworks. These findings underscore PMLNet’s potential to significantly improve public transportation services by providing more accurate travel time predictions, ultimately enhancing the user experience in intelligent transportation systems. Full article
Show Figures

Figure 1

27 pages, 5427 KiB  
Article
Beyond Traditional Public Transport: A Cost–Benefit Analysis of First and Last-Mile AV Solutions in Periurban Environment
by Félix Carreyre, Tarek Chouaki, Nicolas Coulombel, Jaâfar Berrada, Laurent Bouillaut and Sebastian Hörl
Sustainability 2025, 17(14), 6282; https://doi.org/10.3390/su17146282 - 9 Jul 2025
Viewed by 353
Abstract
With the advent of Autonomous Vehicles (AV) technology, extensive research around the design of on-demand mobility systems powered by such vehicles is performed. An important part of these studies consists in the evaluation of the economic impact of such systems for involved stakeholders. [...] Read more.
With the advent of Autonomous Vehicles (AV) technology, extensive research around the design of on-demand mobility systems powered by such vehicles is performed. An important part of these studies consists in the evaluation of the economic impact of such systems for involved stakeholders. In this work, a cost–benefit analysis (CBA) is applied to the introduction of AV services in Paris-Saclay, an intercommunity, south of Paris, simulated through MATSim, an agent-based model capable of capturing complex travel behaviors and dynamic traffic interactions. AVs would be implemented as a feeder service, first- and last-mile service to public transit, allowing intermodal trips for travelers. The system is designed to target the challenges of public transport accessibility in periurban areas and high private car use, which the AV feeder service is designed to mitigate. To our knowledge, this study is one of the first CBA analyses of an intermodal AV system relying on an agent-based simulation. The introduction of AV in a periurban environment would generate more pressure on the road network (0.8% to 1.7% increase in VKT for all modes, and significant congestion around train stations) but would improve traveler utilities. The utility gains from the new AV users benefiting from a more comfortable mode offsets the longer travel times from private car users. A Stop-Based routing service generates less congestion than a Door-to-Door routing service, but the access/egress time counterbalances this gain. Finally, in a periurban environment where on-demand AV feeder service would be added to reduce the access and egress cost of public transit, the social impact would be nuanced for travelers (over 99% of gains captured by the 10% of most benefiting agents), but externality would increase. This would benefit some travelers but would also involve additional congestion. In that case, a Stop-Based routing on a constrained network (e.g., existing bus network) significantly improves economic viability and reduces infrastructure costs and would be less impacting than a Door-to-Door service. Full article
(This article belongs to the Section Sustainable Transportation)
Show Figures

Figure 1

20 pages, 1242 KiB  
Article
A Novel Algorithm for Recovering Out-of-Service Loads in Smart Distribution Systems Following Exposure to Cyber-Attacks
by Mohamed Goda, Mazen Abdel-Salam, Mohamed-Tharwat El-Mohandes and Ahmed Elnozahy
Electronics 2025, 14(13), 2641; https://doi.org/10.3390/electronics14132641 - 30 Jun 2025
Viewed by 197
Abstract
An algorithm is proposed to recover out-of-service loads (OOSLs) in smart distribution systems (SDSs) after exposure to cyber-attacks (CAs) resulting in interruptions of in-service loads (INSLs). The proposed algorithm is implemented in three steps. The first step is based on building the SDS [...] Read more.
An algorithm is proposed to recover out-of-service loads (OOSLs) in smart distribution systems (SDSs) after exposure to cyber-attacks (CAs) resulting in interruptions of in-service loads (INSLs). The proposed algorithm is implemented in three steps. The first step is based on building the SDS in matrix form to be data input to the proposed algorithm. The second step is concerned with classifying the SDS into three zones: the attacked zone, the primary neighbor zone, and the secondary neighbor zone. The third step is performing five maneuvering processes (MPs) to recover the OOSL without breaking the electric limitations (ELs). The ELs are related to the maximum branch current, the node voltage, the load priority, the radiality maintenance of the SDS, the minimum system total power loss, the instruction sequence of the automatic-communication-switches (ACS), and the minimum number of ACSs. The proposed algorithm was tested under a 70-bus SDS with four electric supply feeders. The proposed algorithm achieved supply recovery for all OOSLs with efficiency of 100% after the occurrence of a CA on a single or double ACS without breaking the ELs. The proposed algorithm succeeded in achieving supply recovery for 97.6%, 97.1%, and 96.4% of the OOSLs after the simultaneous occurrence of a CA on three, four, and five ACSs, respectively, without breaking the ELs. The advantages of the proposed algorithm are a lack of dependency on the system size, a short electric supply recovery time within the range of 190–199 ms, a lack of dependency on distributed generation (DG), and the achievement of self-healing in the SDS following a single and two simultaneous CAs, as well as almost achieving self-healing under exposure to three, four, and five simultaneous CAs. Full article
(This article belongs to the Special Issue Cybersecurity for Smart Power Systems and Transmission Networks)
Show Figures

Figure 1

21 pages, 955 KiB  
Article
Capacity of Zero-Emission Urban Public Transport
by Mirosław Czerliński and Patryk Pawłowski
Sustainability 2025, 17(13), 5835; https://doi.org/10.3390/su17135835 - 25 Jun 2025
Viewed by 477
Abstract
The article explores the capacity of zero-emission urban public transport (PT) and proposes a standardised method for calculating it across different PT corridors (bus, tram, metro and urban railway). As the European Union (EU) tightens regulations on emissions, targeting also PT, cities are [...] Read more.
The article explores the capacity of zero-emission urban public transport (PT) and proposes a standardised method for calculating it across different PT corridors (bus, tram, metro and urban railway). As the European Union (EU) tightens regulations on emissions, targeting also PT, cities are increasingly shifting to electric and hydrogen-powered vehicles. A significant challenge was the lack of a unified methodology to calculate the capacity of zero-emission vehicles, e.g., battery-powered buses carry fewer passengers than diesel ones due to weight restrictions. The article addresses this gap by creating capacity matrices for various vehicle types based on standardised assumptions. Vehicle capacity is calculated based on seating and standing space, with standing passenger space standardised to 0.2 m2/person (E Level of Service). A detailed rolling stock analysis shows how modern designs and floor layouts impact passenger space. Matrices were developed for each mode of transport, showing the number of transported passengers per hour depending on vehicle type and service frequency. The highest capacity is achieved by metro and urban railway systems (up to 95,000+ passengers/hour/direction), while buses offer the lowest (up to 7800 passengers/hour/direction). The authors recommend standardising calculation methods and integrating matrices into planning tools for urban PT corridors. Full article
(This article belongs to the Collection Transportation Planning and Public Transport)
Show Figures

Figure 1

22 pages, 2442 KiB  
Article
A Microcirculation Optimization Model for Public Transportation Networks in Low-Density Areas Considering Equity—A Case of Lanzhou
by Liyun Wang, Minan Yang, Xin Li and Yongsheng Qian
Sustainability 2025, 17(13), 5679; https://doi.org/10.3390/su17135679 - 20 Jun 2025
Viewed by 322
Abstract
With the increase in urban–rural disparities in China, rural public transportation systems in low-density areas face unique challenges, especially in the contexts of sparse population, complex topography, and uneven resource allocation; research on public transportation in low-density areas has had less attention compared [...] Read more.
With the increase in urban–rural disparities in China, rural public transportation systems in low-density areas face unique challenges, especially in the contexts of sparse population, complex topography, and uneven resource allocation; research on public transportation in low-density areas has had less attention compared to high-density urban areas. Therefore, how to solve the dilemma of public transportation service provision in low-density rural areas due to sparse population and long travel distances has become an urgent problem. In this paper, a dynamic optimization model based on a two-layer planning framework was constructed. The upper layer optimized the topology of multimodal transportation nodes through the Floyd shortest path algorithm to generate a composite network of trunk roads and feeder routes; the lower layer adopted an improved Logit discrete choice model, integrating the heterogeneous utility parameters, such as time cost, economic cost, and comfort, to simulate and realize the equilibrium allocation of stochastic users. It was found that the dynamic game mechanism based on the “path optimization–fairness measurement” can optimize the travel time, mode, route, and bus stop selection of rural residents. At the same time, the mechanism can realize the fair distribution of rural transportation network subjects (people–vehicles–roads). This provides a dynamic, multi-scenario macro policy reference basis for the optimization of a rural transportation network layout. Full article
Show Figures

Figure 1

22 pages, 3031 KiB  
Article
Resilient Distribution System Reconfiguration Based on Genetic Algorithms Considering Load Margin and Contingencies
by Jorge Muñoz, Luis Tipán, Cristian Cuji and Manuel Jaramillo
Energies 2025, 18(11), 2889; https://doi.org/10.3390/en18112889 - 30 May 2025
Viewed by 583
Abstract
This paper addresses the challenge of restoring electrical service in distribution systems (DS) under contingency scenarios using a genetic algorithm (GA) implemented in MATLAB. The proposed methodology seeks to maximize restored load, considering operational constraints such as line loadability, voltage limits, and radial [...] Read more.
This paper addresses the challenge of restoring electrical service in distribution systems (DS) under contingency scenarios using a genetic algorithm (GA) implemented in MATLAB. The proposed methodology seeks to maximize restored load, considering operational constraints such as line loadability, voltage limits, and radial topology preservation. It is evaluated with simulations on the IEEE 34-bus test system under four contingency scenarios that consider the disconnection of specific branches. The algorithm’s ability to restore service is demonstrated by identifying optimal auxiliary line reconnections. The method maximizes restored load, achieving between 97% and 99% load reconnection, with an average of 98.8% across the four cases analyzed. Bus voltages remain above 0.95 pu and below the upper limit. Furthermore, test feeder results demonstrate that line loadability is mostly below 60% of the post-reconfiguration loadability. Full article
(This article belongs to the Special Issue Power System Planning and Implementation)
Show Figures

Figure 1

24 pages, 5283 KiB  
Article
Oilfield Microgrid-Oriented Supercapacitor-Battery Hybrid Energy Storage System with Series-Parallel Compensation Topology
by Lina Wang
Processes 2025, 13(6), 1689; https://doi.org/10.3390/pr13061689 - 28 May 2025
Viewed by 491
Abstract
This paper proposes a supercapacitor-battery hybrid energy storage scheme based on a series-parallel hybrid compensation structure and model predictive control to address the increasingly severe power quality issues in oilfield microgrids. By adopting the series-parallel hybrid structure, the voltage compensation depth can be [...] Read more.
This paper proposes a supercapacitor-battery hybrid energy storage scheme based on a series-parallel hybrid compensation structure and model predictive control to address the increasingly severe power quality issues in oilfield microgrids. By adopting the series-parallel hybrid structure, the voltage compensation depth can be properly improved. The model predictive control with a current inner loop is employed for current tracking, which enhances the response speed and control performance. Applying the proposed hybrid energy storage system in an oilfield DC microgrid, the fault-ride-through ability of renewable energy generators and the reliable power supply ability for oil pumping unit loads can be improved, the dynamic response characteristics of the system can be enhanced, and the service life of energy storage devices can be extended. This paper elaborates on the series-parallel compensation topology, operational principles, and control methodology of the supercapacitor-battery hybrid energy storage. A MATLAB/Simulink model of the oilfield DC microgrid employing the proposed scheme was established for verification. The results demonstrate that the proposed scheme can effectively isolate voltage sags/swells caused by upstream grid faults, maintaining DC bus voltage fluctuations within ±5%. It achieves peak shaving of oil pumping unit load demand, recovery of reverse power generation, stabilization of photovoltaic output, and reduction of power backflow. This study presents an advanced technical solution for enhancing power supply quality in high-penetration renewable energy microgrids with numerous sensitive and critical loads. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

35 pages, 867 KiB  
Article
Optimization of Bus Dispatching in Public Transportation Through a Heuristic Approach Based on Passenger Demand Forecasting
by Javier Esteban Barrera Hernandez, Luis Enrique Tarazona Torres, Alejandra Tabares and David Álvarez-Martínez
Smart Cities 2025, 8(3), 87; https://doi.org/10.3390/smartcities8030087 - 26 May 2025
Viewed by 1366
Abstract
Accurate and adaptive bus dispatching is vital for medium-sized urban centers, where static schedules often fail to accommodate fluctuating passenger demand. In this work, we propose a dynamic heuristic that integrates machine learning-based demand forecasts into a discrete-time planning horizon, thereby enabling real-time [...] Read more.
Accurate and adaptive bus dispatching is vital for medium-sized urban centers, where static schedules often fail to accommodate fluctuating passenger demand. In this work, we propose a dynamic heuristic that integrates machine learning-based demand forecasts into a discrete-time planning horizon, thereby enabling real-time adjustments to dispatch decisions. Additionally, we introduce a tailored mathematical model—grounded in mixed-integer linear programming and space-time flows—that serves as a benchmark to evaluate our heuristic’s performance under the operational constraints typical of traditional public transportation systems in Colombian mid-sized cities. A key contribution of this research lies in combining predictive modeling (using Prophet for passenger demand) with operational optimization, ensuring that dispatch frequencies adapt promptly to varying ridership levels. We validated our approach using a real-world case study in Montería (Colombia), covering eight representative routes over a full day (5:00–21:00). Numerical experiments show that: 1. Our heuristic matches or surpasses 95% of the optimal solution’s operational utility on most routes, with an average gap of 4.7%, relative to the benchmark mathematical model. 2. It maintains high service levels—above 90% demand coverage on demanding corridors—and robust bus utilization, without incurring excessive operating costs. 3. It reduces computation times by up to 98% compared to the optimization model, making it practically viable for daily scheduling where solving large-scale models exactly can be prohibitively time-consuming. Overall, these results underscore the heuristic’s practical effectiveness in boosting profitability, optimizing resource use, and rapidly adapting to demand fluctuations. The proposed framework thus serves as a scalable and implementable tool for transportation operators seeking data-driven dispatch solutions that balance operational efficiency and service quality. Full article
Show Figures

Figure 1

27 pages, 3206 KiB  
Article
The Real-Time Distributed Control of Shared Energy Storage for Frequency Regulation and Renewable Energy Balancing
by Yuxuan Zhuang and Xin Fang
Sustainability 2025, 17(11), 4780; https://doi.org/10.3390/su17114780 - 22 May 2025
Cited by 2 | Viewed by 589
Abstract
With the increasing integration of renewable energy sources, distributed shared energy storage (DSES) systems play a critical role in enhancing power system flexibility, operational resilience, and energy sustainability. However, conventional scheduling methods often suffer from excessive communication burdens, limited scalability, and poor real-time [...] Read more.
With the increasing integration of renewable energy sources, distributed shared energy storage (DSES) systems play a critical role in enhancing power system flexibility, operational resilience, and energy sustainability. However, conventional scheduling methods often suffer from excessive communication burdens, limited scalability, and poor real-time responsiveness, especially when handling fast-changing frequency regulation signals and fluctuating renewable energy outputs. To address these challenges, this paper proposes a consensus-driven distributed online convex optimization method that enables a decentralized scheduling of energy storage units by leveraging the consensus algorithm for local decision-making while maintaining global consistency. Additionally, an adaptive event-triggered mechanism is designed to dynamically adjust the communication frequency based on system state variations, reducing redundant information exchange and ensuring convergence and stability in a fully distributed environment. Simulation results on the IEEE 14-bus test system show that the strategy reduces the communication load by 33–60% and improves the convergence speed by over 40% compared to baseline methods. It also demonstrates a strong adaptability to storage unit disconnection and reconnection. By enabling a fast and efficient response to grid services such as frequency regulation and renewable energy balancing, the proposed approach contributes to the development of intelligent and sustainable power systems. Full article
Show Figures

Figure 1

34 pages, 5896 KiB  
Article
Networked Multi-Agent Deep Reinforcement Learning Framework for the Provision of Ancillary Services in Hybrid Power Plants
by Muhammad Ikram, Daryoush Habibi and Asma Aziz
Energies 2025, 18(10), 2666; https://doi.org/10.3390/en18102666 - 21 May 2025
Viewed by 445
Abstract
Inverter-based resources (IBRs) are becoming more prominent due to the increasing penetration of renewable energy sources that reduce power system inertia, compromising power system stability and grid support services. At present, optimal coordination among generation technologies remains a significant challenge for frequency control [...] Read more.
Inverter-based resources (IBRs) are becoming more prominent due to the increasing penetration of renewable energy sources that reduce power system inertia, compromising power system stability and grid support services. At present, optimal coordination among generation technologies remains a significant challenge for frequency control services. This paper presents a novel networked multi-agent deep reinforcement learning (N—MADRL) scheme for optimal dispatch and frequency control services. First, we develop a model-free environment consisting of a photovoltaic (PV) plant, a wind plant (WP), and an energy storage system (ESS) plant. The proposed framework uses a combination of multi-agent actor-critic (MAAC) and soft actor-critic (SAC) schemes for optimal dispatch of active power, mitigating frequency deviations, aiding reserve capacity management, and improving energy balancing. Second, frequency stability and optimal dispatch are formulated in the N—MADRL framework using the physical constraints under a dynamic simulation environment. Third, a decentralised coordinated control scheme is implemented in the HPP environment using communication-resilient scenarios to address system vulnerabilities. Finally, the practicality of the N—MADRL approach is demonstrated in a Grid2Op dynamic simulation environment for optimal dispatch, energy reserve management, and frequency control. Results demonstrated on the IEEE 14 bus network show that compared to PPO and DDPG, N—MADRL achieves 42.10% and 61.40% higher efficiency for optimal dispatch, along with improvements of 68.30% and 74.48% in mitigating frequency deviations, respectively. The proposed approach outperforms existing methods under partially, fully, and randomly connected scenarios by effectively handling uncertainties, system intermittency, and communication resiliency. Full article
(This article belongs to the Collection Artificial Intelligence and Smart Energy)
Show Figures

Figure 1

35 pages, 1622 KiB  
Article
Enhancing Accessibility in Philippine Public Bus Systems: Addressing the Needs of Persons with Disabilities
by Ma. Janice J. Gumasing, Timothy Ray P. Del Castillo, Antoine Gabriel L. Palermo, Janred Thien G. Tabino and Josiah T. Gatchalian
Disabilities 2025, 5(2), 45; https://doi.org/10.3390/disabilities5020045 - 30 Apr 2025
Viewed by 3052
Abstract
This study examines strategies to enhance transport inclusivity and passenger satisfaction for persons with disabilities in public bus systems in the Philippines. Drawing on data collected through an online questionnaire from 396 persons with disabilities who responded across various regions in the country, [...] Read more.
This study examines strategies to enhance transport inclusivity and passenger satisfaction for persons with disabilities in public bus systems in the Philippines. Drawing on data collected through an online questionnaire from 396 persons with disabilities who responded across various regions in the country, this study investigates eight key factors affecting satisfaction: vehicle design, diverse seating options, sensory considerations, assistance services, safety measures, subsidies/discounts, accessibility, and communication and information quality. Structural equation modeling (SEM) was used to analyze the hypothesized relationships between these variables, passenger satisfaction, and intention to reuse public transport. The SEM results revealed that accessibility (β = 0.359, p = 0.005), vehicle design (β = 0.248, p < 0.001), diverse seating options (β = 0.485, p < 0.001), safety measures (β = 0.3867, p = 0.001), and subsidies/discounts (β = 0.447, p < 0.001) significantly influenced passenger satisfaction. In turn, satisfaction had a strong positive effect on the future intention to use public transport (β = 0.760, p < 0.001). However, sensory considerations (β = 0.163, p = 0.225), assistance (β = 0.133, p = 0.519), and communication and information quality (β = 0.171, p = 0.345) were not statistically significant. The model demonstrated a good fit (chi-square/df = 4.03; SRMR = 0.078; NFI = 0.956), supporting the robustness of the proposed framework. These findings suggest that design-centered improvements and subsidies/discounts are critical to inclusive transport experiences, while overreliance on assistance may not guarantee satisfaction. This study recommends promoting autonomy through universal design, enhancing digital and physical accessibility, and increasing public awareness. These insights are intended to guide policymakers and transit authorities in creating a more inclusive, equitable, and user-driven transportation system. Full article
(This article belongs to the Special Issue Transportation and Disabilities: Challenges and Opportunities)
Show Figures

Figure 1

Back to TopTop