Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (681)

Search Parameters:
Keywords = burn index

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 958 KiB  
Article
Soil Heavy Metal Contamination in the Targuist Dumpsite, North Morocco: Ecological and Health Risk Assessments
by Kaouthar Andaloussi, Hafid Achtak, Abdeltif El Ouahrani, Jalal Kassout, Giovanni Vinti, Daniele Di Trapani, Gaspare Viviani, Hassnae Kouali, Mhammed Sisouane, Khadija Haboubi and Mostafa Stitou
Soil Syst. 2025, 9(3), 82; https://doi.org/10.3390/soilsystems9030082 - 22 Jul 2025
Viewed by 220
Abstract
This study aims to assess the ecological and human health risks associated with four heavy metals (Cd, Cr, Cu, and Zn) in the soil of a dumpsite in Targuist city, Morocco. In total, 16 surface soil samples were collected from the dumpsite and [...] Read more.
This study aims to assess the ecological and human health risks associated with four heavy metals (Cd, Cr, Cu, and Zn) in the soil of a dumpsite in Targuist city, Morocco. In total, 16 surface soil samples were collected from the dumpsite and its nearby areas following leaching drain flows. The pollution load index (PLI), geo-accumulation index (Igeo), and potential ecological risk index (RI) were subsequently determined. In addition, hazard quotient (HQ) and health index (HI) were used to assess the non-carcinogenic and carcinogenic risks associated with the soil heavy metal contents. The PLI indicated significant contamination by the studied heavy metals. On the other hand, the Igeo values suggested no Cr contamination, moderate contamination by Cu and Zn, and severe contamination by Cd. The RI indicated a dominant contribution from Cd, with minor contributions from Cu, Zn, and Cr accounting for 92.47, 5.44, 1.11, and 0.96%, respectively, to the potential ecological risk in the study area. The non-carcinogenic health risks associated with exposure of the nearby population to the soil heavy metals at the dumpsite and burned solid waste-derived air pollution were below the threshold value of 1 for both children and adults. Although carcinogenic risks were observed in the study area, they were acceptable for both children and adults according to the United States Environmental Protection Agency (USEPA). However, carcinogenic risks associated with Cr were unacceptable according to the Italian Legislation. Finally, strategies to mitigate the risks posed by the dumpsite were also discussed in this study. Full article
Show Figures

Figure 1

22 pages, 1971 KiB  
Article
Integrated Investigation of the Time Dynamics of Forest Fire Sequences in Basilicata Region (Southern Italy)
by Luciano Telesca and Rosa Lasaponara
Appl. Sci. 2025, 15(14), 7974; https://doi.org/10.3390/app15147974 - 17 Jul 2025
Viewed by 100
Abstract
The time fluctuations of forest fires occurring in Basilicata, a region situated in Southern Italy, between 2004 and 2023 were investigated using various analytical approaches. Analysis revealed a clustering of fire occurrences over time, as indicated by a significantly high coefficient of variation. [...] Read more.
The time fluctuations of forest fires occurring in Basilicata, a region situated in Southern Italy, between 2004 and 2023 were investigated using various analytical approaches. Analysis revealed a clustering of fire occurrences over time, as indicated by a significantly high coefficient of variation. This suggests that the fire sequence does not follow a Poisson distribution and instead exhibits a clustered structure, largely driven by the heightened frequency of events during the summer seasons. The analysis of monthly forest fire occurrences and total burned area indicates a significant correlation between the two. This correlation is reinforced by shared patterns, notably an annual cycle that appears to be influenced by meteorological factors, aligning with the yearly fluctuations in the region’s weather conditions typical of a Mediterranean climate. Furthermore, the relationship between the Standardized Precipitation Evapotranspiration Index (SPEI) and forest fires revealed that the accumulation period of the SPEI corresponds to the cycle length of the fires: longer cycles in fire occurrences align with higher accumulation periods in SPEI data. Full article
Show Figures

Figure 1

14 pages, 971 KiB  
Article
High Voltage and Train-Surfing Injuries: A 30-Year Retrospective Analysis of High-Voltage Trauma and Its Impact on Cardiac Biomarkers
by Viktoria Koenig, Maximilian Monai, Alexandra Christ, Marita Windpassinger, Gerald C. Ihra, Alexandra Fochtmann-Frana and Julian Joestl
J. Clin. Med. 2025, 14(14), 4969; https://doi.org/10.3390/jcm14144969 - 14 Jul 2025
Viewed by 224
Abstract
Background: High-voltage electrical injuries (HVEIs) represent a complex and life-threatening entity, frequently involving multi-organ damage. While traditionally linked to occupational hazards, train surfing—riding on moving trains—and train climbing—scaling stationary carriages—have emerged as increasingly common causes among adolescents. Popularized via social media, these [...] Read more.
Background: High-voltage electrical injuries (HVEIs) represent a complex and life-threatening entity, frequently involving multi-organ damage. While traditionally linked to occupational hazards, train surfing—riding on moving trains—and train climbing—scaling stationary carriages—have emerged as increasingly common causes among adolescents. Popularized via social media, these behaviors expose individuals to the invisible danger of electric arcs from 15,000-volt railway lines, often resulting in extensive burns, cardiac complications, and severe trauma. This study presents a 30-year retrospective analysis comparing cardiac biomarkers and clinical outcomes in train-surfing injuries versus work-related HVEIs. Methods: All patients with confirmed high-voltage injury (≥1000 volts) admitted to a Level 1 burn center between 1994 and 2024 were retrospectively analyzed. Exclusion criteria comprised low-voltage trauma, suicide, incomplete records, and external treatment. Clinical and laboratory parameters—including total body surface area (TBSA), Abbreviated Burn Severity Index (ABSI), electrocardiogram (ECG) findings, intensive care unit (ICU) and hospital stay, mortality, and cardiac biomarkers (creatine kinase [CK], CK-MB, lactate dehydrogenase [LDH], aspartate transaminase [AST], troponin, and myoglobin)—were compared between the two cohorts. Results: Of 81 patients, 24 sustained train-surfing injuries and 57 were injured in occupational settings. Train surfers were significantly younger (mean 16.7 vs. 35.2 years, p = 0.008), presented with greater TBSA (49.9% vs. 17.9%, p = 0.008), higher ABSI scores (7.3 vs. 5.1, p = 0.008), longer ICU stays (53 vs. 17 days, p = 0.008), and higher mortality (20.8% vs. 3.5%). ECG abnormalities were observed in 51% of all cases, without significant group differences. However, all cardiac biomarkers were significantly elevated in train-surfing injuries at both 72 h and 10 days post-injury (p < 0.05), suggesting more pronounced cardiac and muscular damage. Conclusions: Train-surfing-related high-voltage injuries are associated with markedly more severe systemic and cardiac complications than occupational HVEIs. The significant biomarker elevation and critical care demands highlight the urgent need for targeted prevention, public awareness, and early cardiac monitoring in this high-risk adolescent population. Full article
(This article belongs to the Section Cardiovascular Medicine)
Show Figures

Figure 1

17 pages, 36560 KiB  
Article
Comparative Calculation of Spectral Indices for Post-Fire Changes Using UAV Visible/Thermal Infrared and JL1 Imagery in Jinyun Mountain, Chongqing, China
by Juncheng Zhu, Yijun Liu, Xiaocui Liang and Falin Liu
Forests 2025, 16(7), 1147; https://doi.org/10.3390/f16071147 - 11 Jul 2025
Viewed by 177
Abstract
This study used Jilin-1 satellite data and unmanned aerial vehicle (UAV)-collected visible-thermal infrared imagery to calculate twelve spectral indices and evaluate their effectiveness in distinguishing post-fire forest areas and identifying human-altered land-cover changes in Jinyun Mountain, Chongqing. The research goals included mapping wildfire [...] Read more.
This study used Jilin-1 satellite data and unmanned aerial vehicle (UAV)-collected visible-thermal infrared imagery to calculate twelve spectral indices and evaluate their effectiveness in distinguishing post-fire forest areas and identifying human-altered land-cover changes in Jinyun Mountain, Chongqing. The research goals included mapping wildfire impacts with M-statistic separability, measuring land-cover distinguishability through Jeffries–Matusita (JM) distance analysis, classifying land-cover types using the random forest (RF) algorithm, and verifying classification accuracy. Cumulative human disturbances—such as land clearing, replanting, and road construction—significantly blocked the natural recovery of burn scars, and during long-term human-assisted recovery periods over one year, the Red Green Blue Index (RGBI), Green Leaf Index (GLI), and Excess Green Index (EXG) showed high classification accuracy for six land-cover types: road, bare soil, deadwood, bamboo, broadleaf, and grass. Key accuracy measures showed producer accuracy (PA) > 0.8, user accuracy (UA) > 0.8, overall accuracy (OA) > 90%, and a kappa coefficient > 0.85. Validation results confirmed that visible-spectrum indices are good at distinguishing photosynthetic vegetation, thermal bands help identify artificial surfaces, and combined thermal-visible indices solve spectral confusion in deadwood recognition. Spectral indices provide high-precision quantitative evidence for monitoring post-fire land-cover changes, especially under human intervention, thus offering important data support for time-based modeling of post-fire forest recovery and improvement of ecological restoration plans. Full article
(This article belongs to the Special Issue Wildfire Behavior and the Effects of Climate Change in Forests)
Show Figures

Graphical abstract

24 pages, 3171 KiB  
Article
Hydroclimatic Trends and Land Use Changes in the Continental Part of the Gambia River Basin: Implications for Water Resources
by Matty Kah, Cheikh Faye, Mamadou Lamine Mbaye, Nicaise Yalo and Lischeid Gunnar
Water 2025, 17(14), 2075; https://doi.org/10.3390/w17142075 - 11 Jul 2025
Viewed by 325
Abstract
Hydrological processes in river systems are changing due to climate variability and human activities, making it crucial to understand and quantify these changes for effective water resource management. This study examines long-term trends in hydroclimate variables (1990–2022) and land use/land cover (LULC) changes [...] Read more.
Hydrological processes in river systems are changing due to climate variability and human activities, making it crucial to understand and quantify these changes for effective water resource management. This study examines long-term trends in hydroclimate variables (1990–2022) and land use/land cover (LULC) changes (1988, 2002, and 2022) within the Continental Reach of the Gambia River Basin (CGRB). Trend analyses of the Standardized Precipitation-Evapotranspiration Index (SPEI) at 12-month and 24-month scales, along with river discharge at the Simenti station, reveal a shift from dry conditions to wetter phases post-2008, marked by significant increases in rainfall and discharge variability. LULC analysis revealed significant transformations in the basin. LULC analysis highlights significant transformations within the basin. Forest and savanna areas decreased by 20.57 and 4.48%, respectively, between 1988 and 2002, largely due to human activities such as agricultural expansion and deforestation for charcoal production. Post-2002, forest cover recovered from 32.36 to 36.27%, coinciding with the wetter conditions after 2008, suggesting that climatic shifts promoted vegetation regrowth. Spatial analysis further highlights an increase in bowe and steppe areas, especially in the north, indicating land degradation linked to human land use practices. Bowe areas, marked by impermeable laterite outcrops, and steppe areas with sparse herbaceous cover result from overgrazing and soil degradation, exacerbated by the region’s drier phases. A notable decrease in burned areas from 2.03 to 0.23% suggests improvements in fire management practices, reducing fire frequency, which is also supported by wetter conditions post-2008. Agricultural land and bare soils expanded by 14%, from 2.77 to 3.07%, primarily in the northern and central regions, likely driven by both population pressures and climatic shifts. Correlations between precipitation and land cover changes indicate that wetter conditions facilitated forest regrowth, while drier conditions exacerbated land degradation, with human activities such as deforestation and agricultural expansion potentially amplifying the impact of climatic shifts. These results demonstrate that while climatic shifts played a role in driving vegetation recovery, human activities were key in shaping land use patterns, impacting both precipitation and stream discharge, particularly due to agricultural practices and land degradation. Full article
(This article belongs to the Section Water and Climate Change)
Show Figures

Figure 1

23 pages, 5328 KiB  
Article
TSSA-NBR: A Burned Area Extraction Method Based on Time-Series Spectral Angle with Full Spectral Shape
by Dongyi Liu, Yonghua Qu, Xuewen Yang and Qi Zhao
Remote Sens. 2025, 17(13), 2283; https://doi.org/10.3390/rs17132283 - 3 Jul 2025
Viewed by 326
Abstract
Wildfires threaten ecosystems, biodiversity, and human livelihood while exacerbating climate change. Accurate identification and monitoring of burned areas (BA) are critical for effective post-fire recovery and management. Although satellite multi-spectral imagery offers a practical solution for BA monitoring, existing methods often prioritize specific [...] Read more.
Wildfires threaten ecosystems, biodiversity, and human livelihood while exacerbating climate change. Accurate identification and monitoring of burned areas (BA) are critical for effective post-fire recovery and management. Although satellite multi-spectral imagery offers a practical solution for BA monitoring, existing methods often prioritize specific spectral bands while neglecting full spectral shape information, which encapsulates overall spectral characteristics. This limitation compromises adaptability to diverse vegetation types and environmental conditions, particularly across varying spatial scales. To address these challenges, we propose the time-series spectral-angle-normalized burn index (TSSA-NBR). This unsupervised BA extraction method integrates normalized spectral angle and normalized burn ratio (NBR) to leverage full spectral shape and temporal features derived from Sentinel-2 time-series data. Seven globally distributed study areas with diverse climatic conditions and vegetation types were selected to evaluate the method’s adaptability and scalability. Evaluations compared Sentinel-2-derived BA with moderate-resolution products and high-resolution PlanetScope-derived BA, focusing on spatial scale and methodological performance. TSSA-NBR achieved a Dice Coefficient (DC) of 87.81%, with commission (CE) and omission errors (OE) of 8.52% and 15.58%, respectively, demonstrating robust performance across all regions. Across diverse land cover types, including forests, grasslands, and shrublands, TSSA-NBR exhibited high adaptability, with DC values ranging from 0.53 to 0.97, CE from 0.03 to 0.27, and OE from 0.02 to 0.61. The method effectively captured fire scars and outperformed band-specific and threshold-dependent approaches by integrating spectral shape features with fire indices, establishing a data-driven framework for BA detection. These results underscore its potential for fire monitoring and broader applications in detecting surface anomalies and environmental disturbances, advancing global ecological monitoring and management strategies. Full article
(This article belongs to the Section Ecological Remote Sensing)
Show Figures

Graphical abstract

38 pages, 12618 KiB  
Article
Comparative Analysis of dNBR, dNDVI, SVM Kernels, and ISODATA for Wildfire-Burned Area Mapping Using Sentinel-2 Imagery
by Sang-Hoon Lee, Myeong-Hwan Lee, Tae-Hoon Kang, Hyung-Rai Cho, Hong-Sik Yun and Seung-Jun Lee
Remote Sens. 2025, 17(13), 2196; https://doi.org/10.3390/rs17132196 - 25 Jun 2025
Viewed by 588
Abstract
Accurate and rapid delineation of wildfire-affected areas is essential in the era of climate-driven increases in fire frequency. This study compares and analyzes four techniques for identifying wildfire-affected areas using Sentinel-2 satellite imagery: (1) calibrated differenced Normalized Burn Ratio (dNBR); (2) differenced NDVI [...] Read more.
Accurate and rapid delineation of wildfire-affected areas is essential in the era of climate-driven increases in fire frequency. This study compares and analyzes four techniques for identifying wildfire-affected areas using Sentinel-2 satellite imagery: (1) calibrated differenced Normalized Burn Ratio (dNBR); (2) differenced NDVI (dNDVI) with empirically defined thresholds (0.04–0.18); (3) supervised SVM classifiers applying linear, polynomial, and RBF kernels; and (4) unsupervised ISODATA clustering. In particular, this study proposes an SVM-based classification method that goes beyond conventional index- and threshold-based approaches by directly using the SWIR, NIR, and RED band values of Sentinel-2 as input variables. It also examines the potential of the ISODATA method, which can rapidly classify affected areas without a training process and further assess burn severity through a two-step clustering procedure. The experimental results showed that SVM was able to effectively identify affected areas using only post-fire imagery, and that ISODATA enabled fast classification and severity analysis without training data. This study performed a wildfire damage analysis through a comparison of various techniques and presents a data-driven framework that can be utilized in future wildfire response and policy-oriented recovery support. Full article
(This article belongs to the Section Forest Remote Sensing)
Show Figures

Figure 1

14 pages, 1261 KiB  
Article
The Dirt Deposited on the Medium-Voltage Insulators Used in the Plasma Reactor and the Cylinder-Type Electrostatic Precipitator
by Gabriel Nicolae Popa
Appl. Sci. 2025, 15(13), 7103; https://doi.org/10.3390/app15137103 - 24 Jun 2025
Viewed by 187
Abstract
The plasma reactor and cylindrical-type electrostatic precipitator (PRESP), combined operation in one device, made in the metallic chimney of low-thermal power boilers (up to 50 kW) that burn wood, can be used in home applications. The discharge electrode is stretched and supported by [...] Read more.
The plasma reactor and cylindrical-type electrostatic precipitator (PRESP), combined operation in one device, made in the metallic chimney of low-thermal power boilers (up to 50 kW) that burn wood, can be used in home applications. The discharge electrode is stretched and supported by two groups of medium-voltage insulators. The sensitive elements of PRESP are medium-voltage insulators. This article analyses the design, use, and effect of dirty gases on the medium-voltage insulators that support the discharge electrode under real operating conditions for a PRESP installed in a 20 kW thermal power boiler that burns wood (there are no studies on the performance of PRESP). The electrical properties of the medium-voltage insulators (isolation resistance, dielectric absorption ratio, and polarisation index) and the chemical analysis of the dust layer deposited on the medium-voltage insulators are analysed. Of the two types of insulators analysed, a longer length of the electrical insulators determines a safer and better operation of PRESP. After a period of operation of the PRESP, the insulation resistance decreases by more than 10 times. The polarisation index (values greater than 1.1–1.2) provides better information (compared to the dielectric absorption ratio) on the insulation quality. Full article
(This article belongs to the Special Issue Advances in Electrical Insulation Systems)
Show Figures

Figure 1

21 pages, 9386 KiB  
Article
Comparative Analysis of Non-Negative Matrix Factorization in Fire Susceptibility Mapping: A Case Study of Semi-Mediterranean and Semi-Arid Regions
by Iraj Rahimi, Lia Duarte, Wafa Barkhoda and Ana Cláudia Teodoro
Land 2025, 14(7), 1334; https://doi.org/10.3390/land14071334 - 23 Jun 2025
Viewed by 414
Abstract
Semi-Mediterranean (SM) and semi-arid (SA) regions, exemplified by the Kurdo-Zagrosian forests in western Iran and northern Iraq, have experienced frequent wildfires in recent years. This study proposes a modified Non-Negative Matrix Factorization (NMF) method for detecting fire-prone areas using satellite-derived data in SM [...] Read more.
Semi-Mediterranean (SM) and semi-arid (SA) regions, exemplified by the Kurdo-Zagrosian forests in western Iran and northern Iraq, have experienced frequent wildfires in recent years. This study proposes a modified Non-Negative Matrix Factorization (NMF) method for detecting fire-prone areas using satellite-derived data in SM and SA forests. The performance of the proposed method was then compared with three other already proposed NMF methods: principal component analysis (PCA), K-means, and IsoData. NMF is a factorization method renowned for performing dimensionality reduction and feature extraction. It imposes non-negativity constraints on factor matrices, enhancing interpretability and suitability for analyzing real-world datasets. Sentinel-2 imagery, the Shuttle Radar Topography Mission (SRTM) Digital Elevation Model (DEM), and the Zagros Grass Index (ZGI) from 2020 were employed as inputs and validated against a post-2020 burned area derived from the Normalized Burned Ratio (NBR) index. The results demonstrate NMF’s effectiveness in identifying fire-prone areas across large geographic extents typical of SM and SA regions. The results also revealed that when the elevation was included, NMF_L1/2-Sparsity offered the best outcome among the used NMF methods. In contrast, the proposed NMF method provided the best results when only Sentinel-2 bands and ZGI were used. Full article
(This article belongs to the Section Land Use, Impact Assessment and Sustainability)
Show Figures

Figure 1

15 pages, 3991 KiB  
Article
Development of Silylated Lignin-Based Intumescent Flame Retardants for Biodegradable Plastics
by Heesu Yoo, Jaemin Jo, Sung Jin Kim and Bonwook Koo
Polymers 2025, 17(13), 1727; https://doi.org/10.3390/polym17131727 - 20 Jun 2025
Viewed by 384
Abstract
The global market for flame-retardant materials is expected to grow steadily, from USD 7.0 billion in 2022 to USD 16.6 billion in 2030, driven by increasing demand for environment-friendly fire safety solutions in transportation, construction, and electronics. Polylactic acid (PLA), a biodegradable polymer [...] Read more.
The global market for flame-retardant materials is expected to grow steadily, from USD 7.0 billion in 2022 to USD 16.6 billion in 2030, driven by increasing demand for environment-friendly fire safety solutions in transportation, construction, and electronics. Polylactic acid (PLA), a biodegradable polymer which possesses excellent mechanical properties, is increasingly being considered for future mobility applications. However, it is characterized by high heat release and toxic smoke during combustion, which are significant drawbacks. In order to address this, the chemical modification of Kraft lignin was achieved through a phenolation and subsequent silylation with tetraethoxysilane, aiming to mitigate the degradation of PLA’s mechanical properties while utilizing its inherent char-forming ability. The modified lignins were combined with ammonium polyphosphate (APP) and melt-mixed with PLA using an injection-mixing molder to prepare test specimens. Analysis by FT-IR, NMR spectroscopy, and SEM-EDS confirmed successful grafting of phenolic and silane functionalities, and thermogravimetric analysis demonstrated enhanced thermal stability of the modified lignins compared to unmodified ones. Vertical burning tests and limiting oxygen index (LOI) measurements showed that the PLA/APP/SPKL composite material achieved a V-0 UL-94 rating and 31.95% LOI, demonstrating the highest level of flame retardancy. This compares to the LOI of neat PLA, 19 to 21%. Despite the enhancement in flame retardancy to the V-0 level, the decline in tensile strength was limited, and the composite retained comparable mechanical strength to PLA-APP composites with V-2 flame retardancy. The findings indicate that the combination of phenolation and silylation of lignin with APP, a flame-retardant material, offers a viable and sustainable methodology for the fabrication of PLA composites that exhibit both flame retardancy and mechanical strength. Full article
(This article belongs to the Special Issue Innovations in Bioplastic and Sustainable Plastics)
Show Figures

Figure 1

28 pages, 6791 KiB  
Article
Effects of Precipitation and Fire on Land Surface Phenology in the Brazilian Savannas (Cerrado)
by Monique Calderaro da Rocha Santos, Lênio Soares Galvão, Thales Sehn Korting and Grazieli Rodigheri
Remote Sens. 2025, 17(12), 2077; https://doi.org/10.3390/rs17122077 - 17 Jun 2025
Viewed by 423
Abstract
In protected areas of the Brazilian savannas (Cerrado), Land Surface Phenology (LSP) is influenced by both precipitation and fire, but the nature of these relationships remains unexplored. Here, we assessed the impacts of precipitation and fire on LSP metrics derived from the Normalized [...] Read more.
In protected areas of the Brazilian savannas (Cerrado), Land Surface Phenology (LSP) is influenced by both precipitation and fire, but the nature of these relationships remains unexplored. Here, we assessed the impacts of precipitation and fire on LSP metrics derived from the Normalized Difference Vegetation Index (NDVI) at Emas National Park (ENP). Using TIMESAT, along with the 250-m Moderate Resolution Imaging Spectroradiometer (MODIS) MOD13Q1 and 30-m Harmonized Landsat Sentinel (HLS) products, we investigated these effects in both grassland and woodland areas. To evaluate the effects of precipitation, we identified the driest and wettest seasonal cycles between 2002 and 2023 and analyzed the relationships between accumulated rainfall during the rainy season and each of the 13 TIMESAT metrics. To assess the effects of fire, three major events were examined: 1 September 2005 (affecting 45% of the park’s area), 12 August 2010 (90%), and 10 July 2021 (21%). The burned grassland area and the subsequent vegetation recovery following the 2021 event were analyzed in detail using a non-burned control site and LSP metrics extracted from the HLS product, covering both pre- and post-disturbance cycles. The results indicated that the metrics most positively correlated to precipitation were Amplitude (AMP), End of Season (EOS), Large and Small Seasonal Integrals (LSI and SSI), and Rate of Increase at the Beginning of the Season (RIBS). The highest correlation coefficients were found in woodland areas, which were less affected by fire disturbance than grassland areas. Similar trends were observed in the behavior of AMP, EOS, and SSI in response to both precipitation and fire, with fire exerting a stronger influence. By decoupling the fire effects from rainfall influence using the control site, we identified Base Level (BL), SSI, EOS, AMP, and Values at the End and Start of the Season (VES and VSS), as the metrics most sensitive to fire and subsequent vegetation recovery in burned areas. The effects of fire were evident for most metrics, both during the disturbance cycle and in the post-fire cycle. Our study underscores the importance of combining MODIS and HLS time series to understand vegetation phenology in the Cerrado. Full article
(This article belongs to the Section Environmental Remote Sensing)
Show Figures

Graphical abstract

13 pages, 2104 KiB  
Article
Hand Function Recovers to Near Normal in Patients with Deep Dermal Hand Burns Treated with Enzymatic Debridement: A Prospective Cohort Study
by Kelly Aranka Ayli Kwa, Annika Catherina Reuvers, Jorien Borst-van Breugel, Anouk Pijpe, Paul P. M. van Zuijlen, Roelf S. Breederveld and Annebeth Meij-de Vries
Eur. Burn J. 2025, 6(2), 36; https://doi.org/10.3390/ebj6020036 - 12 Jun 2025
Viewed by 400
Abstract
Short- and long-term hand function was evaluated in adult patients with deep dermal and full-thickness hand burns after treatment with enzymatic debridement (NexoBrid® MediWound Ltd., Yavne, Israel), assessing the results at discharge and 3, 6, and 12 months post-burn. This prospective cohort [...] Read more.
Short- and long-term hand function was evaluated in adult patients with deep dermal and full-thickness hand burns after treatment with enzymatic debridement (NexoBrid® MediWound Ltd., Yavne, Israel), assessing the results at discharge and 3, 6, and 12 months post-burn. This prospective cohort study was performed in the Burn Center in Beverwijk between March 2017 and December 2019. Hand function was assessed using Modified Kapandji Index scores, the Jebsen-Taylor Hand Function Test, and range of motion; scar quality using the Patient and Observer Scar Assessment Scale version 2.0; and quality of life using the Quick Disability Arm Shoulder Hand Questionnaire and the Canadian Occupational Performance Measure. Ten patients (14 hand burns) were included. The need for a skin graft after NexoBrid® was 86%, and 50% needed additional surgical excision before skin grafting. Digits 3 and 4 achieved near-to-normal total active motion, and at least 50% of the hands achieved a normal range within the Jebsen-Taylor Hand Function Test in four items at 12 months post-burn. Scar quality and quality of life improved significantly over time. The present study can be considered as a proof-of-concept study for future clinical trials on enzymatic debridement for hand burns. Full article
Show Figures

Figure 1

20 pages, 5980 KiB  
Article
Remote-Sensed Evidence of Fire Alleviating Forest Canopy Water Stress Under a Drying Climate
by Thai Son Le, Bernard Dell and Richard Harper
Remote Sens. 2025, 17(12), 1979; https://doi.org/10.3390/rs17121979 - 6 Jun 2025
Viewed by 506
Abstract
Fire is a distinctive factor in forest ecosystems. While uncontrolled wildfires can cause significant damage, prescribed burning is widely used as a management tool. However, despite the growing threat of forest water stress under climate change, there is a lack of concrete evidence [...] Read more.
Fire is a distinctive factor in forest ecosystems. While uncontrolled wildfires can cause significant damage, prescribed burning is widely used as a management tool. However, despite the growing threat of forest water stress under climate change, there is a lack of concrete evidence on the impact of fire on water stress in forest ecosystems. This study utilized Landsat time-series remote sensing data combined with the Infrared Canopy Dryness Index (ICDI) to monitor changes in canopy dryness patterns across the eucalyptus-dominated Northern Jarrah Forest of southwestern Australia. The forest was chosen due to its exposure to a changing climate characterized by decreasing rainfall and more frequent droughts, signs of water stress in otherwise drought-resilient trees, and its well-documented fire management history. Analysis of ICDI patterns over the period from 1988 to 2024 revealed a clear overall trend of increasing water stress, coinciding with a small overall decline in annual rainfall in the 10,000 km2 study area. Furthermore, by examining five prescribed burns and five wildfires, we found that NDVI-assessed canopy cover recovered rapidly in fire-affected areas, typically within one to three years, depending on fire severity. However, ICDI water stress levels were reduced for approximately 7–8 years following low-severity prescribed burns and more than 20 years after high-severity wildfires. These findings suggest the potential of prescribed burning as a tool to mitigate water stress in vulnerable forest landscapes, particularly in regions prone to drought and climate change. Additionally, the study underscores the effectiveness of the ICDI in monitoring forest water stress and its potential for broader applications in forest management and climate adaptation strategies. Full article
Show Figures

Figure 1

14 pages, 13138 KiB  
Article
Effect of Multiple Phosphorus-Nitrogen Flame Retardant on the Properties of PA66
by Haoyang Zhang, Jiyu He and Xiangmei Li
Polymers 2025, 17(11), 1537; https://doi.org/10.3390/polym17111537 - 31 May 2025
Cited by 1 | Viewed by 602
Abstract
PA66 is a widely used engineering plastic, but its flammability reduces safety during application. The 9,10-dihydro-9-oxa-10-phosphaphenanthrene 10-oxide (DOPO) and its derivatives are a class of flame retardants with excellent flame-retardant efficiency, which can significantly improve the flame retardancy of PA66. This work synthesized [...] Read more.
PA66 is a widely used engineering plastic, but its flammability reduces safety during application. The 9,10-dihydro-9-oxa-10-phosphaphenanthrene 10-oxide (DOPO) and its derivatives are a class of flame retardants with excellent flame-retardant efficiency, which can significantly improve the flame retardancy of PA66. This work synthesized a DOPO derivative flame retardant, DT, containing multiple P/N elements and comprehensively characterized its structure using FTIR and NMR. Flame-retardant PA66 materials were prepared by twin-screw extrusion blending with PA66, and their thermal stability, crystallization properties, flame retardancy, and mechanical properties were investigated. When the DT content reached 15%, the vertical burning classification test achieved the UL-94 V-0, and the limiting oxygen index (LOI) rose up 27.2%. In the cone calorimeter test, the peak of heat release rate (PHRR) and total heat release (THR) of the material decreased significantly, and a distinct char layer formed, increasing NH3 release and decreasing the C-H structure after combustion, improving PA66 flame-retardant properties. Full article
(This article belongs to the Section Innovation of Polymer Science and Technology)
Show Figures

Figure 1

14 pages, 4016 KiB  
Article
Green Fabrication of Phosphorus-Containing Chitosan Derivatives via One-Step Protonation for Multifunctional Flame-Retardant, Anti-Dripping, and Antibacterial Coatings on Polyester Fabrics
by Zhen-Guo Zhao, Yuan-Yuan Huang, Xin-Yu Tian and Yan-Peng Ni
Polymers 2025, 17(11), 1531; https://doi.org/10.3390/polym17111531 - 30 May 2025
Viewed by 433
Abstract
With the increasing urgency of petroleum resource scarcity and environmental challenges, the development of degradable bio-based flame retardants has become crucial for enhancing the fire safety of organic materials. In this work, a phosphorus-containing chitosan derivative (CS-PPOA) was synthesized via a one-step protonation [...] Read more.
With the increasing urgency of petroleum resource scarcity and environmental challenges, the development of degradable bio-based flame retardants has become crucial for enhancing the fire safety of organic materials. In this work, a phosphorus-containing chitosan derivative (CS-PPOA) was synthesized via a one-step protonation reaction between chitosan (CS) and phenylphosphinic acid (PPOA) under mild conditions. The resulting multifunctional flame-retardant coating was applied to polyester (PET) fabrics. Comprehensive characterization using FT-IR, XPS, and NMR confirmed the successful protonation of chitosan amino groups through electrostatic interactions, forming a stable ionic complex. The CS-PPOA solution exhibited excellent rheological properties and film-forming ability, producing films with over 80% optical transmittance and flexibility. Thermogravimetric analysis (TGA) revealed that CS-PPOA achieved char residue yields of 76.8% and 40.2% under nitrogen and air atmospheres, respectively, significantly surpassing those of acetic acid-protonated chitosan (CS-HAc). The limiting oxygen index (LOI) of CS-PPOA increased to 48.3%, and vertical burning tests demonstrated rapid self-extinguishing behavior. When applied to PET fabrics at a 15% loading, the LOI value improved from 20.3% (untreated fabric) to 27.8%, forming a dense char layer during combustion while completely suppressing melt dripping. Additionally, the coated fabric exhibited broad-spectrum antibacterial activity, achieving a 99.99% inhibition rate against Escherichia coli and Staphylococcus aureus. This study provides a novel strategy for the green and efficient preparation of multifunctional bio-based flame-retardant coatings. Full article
(This article belongs to the Special Issue Polymer-Based Coatings: Principles, Development and Applications)
Show Figures

Figure 1

Back to TopTop