Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (15)

Search Parameters:
Keywords = bulk porous adsorbents

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 4214 KiB  
Article
Synthesis of Porous Polymers by Nucleophilic Substitution Reaction of Polyamines and Monochlorotriazinyl-β-Cyclodextrin and Application to Dye Adsorption
by Naofumi Naga, Risa Hiura and Tamaki Nakano
Materials 2025, 18(11), 2588; https://doi.org/10.3390/ma18112588 - 1 Jun 2025
Viewed by 548
Abstract
Network polymers with β-cyclodextrin moieties were prepared by nucleophilic substitution reactions between polyamines, linear polyethyleneimine (LPEI), polyallylamine (PAA), (ε-poly-L-lysine) (EPL), and monochlorotriazinyl-β-cyclodextrin (MCTCD) in methanol/water mixed solvent or water. The reactions under conditions of high material concentration (30 wt%) and a feed ratio [...] Read more.
Network polymers with β-cyclodextrin moieties were prepared by nucleophilic substitution reactions between polyamines, linear polyethyleneimine (LPEI), polyallylamine (PAA), (ε-poly-L-lysine) (EPL), and monochlorotriazinyl-β-cyclodextrin (MCTCD) in methanol/water mixed solvent or water. The reactions under conditions of high material concentration (30 wt%) and a feed ratio of [MCT]/[NH] = 0.5 (mol/mol) successfully yield porous polymers via reaction-induced phase separation. The molecular structure of the polyamines and reaction conditions strongly affected the morphology of the resulting porous polymers. The porous polymers were composed of connected particles, gathered (slightly connected) particles, and/or disordered bulky structures, with sizes of 10−9 m–10−8 m. An increase in the molecular weight of LPEI and PAA and the feed molar ratio of [MCT]/[NH] tended to decrease the particle size. Young’s moduli of the LPEI-MCTCD and PAA-MCTCD porous polymers increased with an increase in bulk density, which was derived from small particle sizes. The wide particle size distribution and disordered structure caused collapse by the compression under 50 N of pressure. An LPEI-MCTCD adsorbed methyl orange, methylene blue, and phenolphthalein through ionic interactions, π–π interaction, and/or β-cyclodextrin inclusion. Full article
Show Figures

Figure 1

11 pages, 4115 KiB  
Article
Porous Composite Polymers Composed of Polyethyleneimine and Cyclodextrins: Synthesis and Application as Adsorbents for an Organic Compound
by Naofumi Naga, Yuma Miyazaki and Tamaki Nakano
Separations 2025, 12(4), 94; https://doi.org/10.3390/separations12040094 - 10 Apr 2025
Cited by 1 | Viewed by 434
Abstract
Polyethyleneimine-based porous composites have been prepared by ring-opening polymerization of 2,2-bishydroxymethylbutanol-tris[3-(1-aziridinyl)propionate] (3AZ), a tri-aziridine compound, in water, in the presence of cyclodextrins (CDs), i.e., α-CD, γ-CD, methyl-β-cyclodextrin (Me-β-CD), monoacetyl-β-cyclodextrin (Ac-β-CD), and hydroxypropyl-β-cyclodextrin (HP-β-CD). The corresponding 3AZ-CD porous polymer composites were successfully obtained in [...] Read more.
Polyethyleneimine-based porous composites have been prepared by ring-opening polymerization of 2,2-bishydroxymethylbutanol-tris[3-(1-aziridinyl)propionate] (3AZ), a tri-aziridine compound, in water, in the presence of cyclodextrins (CDs), i.e., α-CD, γ-CD, methyl-β-cyclodextrin (Me-β-CD), monoacetyl-β-cyclodextrin (Ac-β-CD), and hydroxypropyl-β-cyclodextrin (HP-β-CD). The corresponding 3AZ-CD porous polymer composites were successfully obtained in most cases under a wide range of CD concentrations, 5–20 wt%, and reaction temperatures, 20–60 °C. The reaction system in the presence of Ac-β-CD preferentially yielded gels. The polymer composites were composed of connected particles with sizes of the order of 10−9 m. The particle sizes decreased with an increase in the CD concentration. Young’s moduli of the 3AZ-CD porous polymer composites tended to increase with an increase in bulk density. The 3AZ-CD porous polymer composites with Me-β-CD and HP-β-CD effectively adsorbed phenolphthalein in the solution. The adsorption value increased with increasing the CD content and rose to more than 600 mg/g of porous polymer composite. Full article
Show Figures

Figure 1

19 pages, 5374 KiB  
Article
Assembly of Chitosan/Caragana Fibers to Construct an Underwater Superelastic 2D Layer-Supported 3D Architecture for Rapid Congo Red Removal
by Ning Luo, Hanwen Ge, Xiangyu Liu, Qingdong He, Wenbo Wang, Wenyuan Ma and Fang Guo
Nanomaterials 2024, 14(18), 1510; https://doi.org/10.3390/nano14181510 - 17 Sep 2024
Cited by 1 | Viewed by 1120
Abstract
Developing environmentally friendly bulk materials capable of easily and thoroughly removing trace amounts of dye pollutants from water to rapidly obtain clean water has always been a goal pursued by researchers. Herein, a green material with a 3D architecture and with strong underwater [...] Read more.
Developing environmentally friendly bulk materials capable of easily and thoroughly removing trace amounts of dye pollutants from water to rapidly obtain clean water has always been a goal pursued by researchers. Herein, a green material with a 3D architecture and with strong underwater rebounding and fatigue resistance ability was prepared by means of the assembly of biopolymer chitosan (CS) and natural caraganate fibers (CKFs) under freezing conditions. The CKFs can randomly and uniformly distribute in the lamellar structure formed during the freezing process of CS and CKFs, playing a role similar to that of “steel bars” in concrete, thus providing longitudinal support for the 3D-architecture material. The 2D layers formed by CS and CKFs as the main basic units can provide the material with a higher strength. The 3D-architecture material can bear the compressive force of a weight underwater for multiple cycles, meeting the requirements for water purification. The underwater compression test shows that the 3D-architecture material can quickly rebound to its original shape after removing the stress. This 3D-architecture material can be used to purify dye-containing water. When its dosage is 3 g/L, the material can remove 99.65% of the Congo Red (CR) in a 50 mg/L dye solution. The adsorption performance of the 3D architecture adsorbent for CR removal in actual water samples (i.e., tap water, seawater) is superior than that of commercial activated carbon. Due to its porous block characteristics, this material can be used for the continuous and efficient treatment of wastewater containing trace amounts of CR dye to obtain pure clean water, meaning that it has great potential for the effective purification of dye wastewater. Full article
Show Figures

Figure 1

13 pages, 5219 KiB  
Article
Adsorbent-Embedded Polymeric Membranes for Efficient Dye-Water Treatment
by Junaid Saleem, Zubair Khalid Baig Moghal, Snigdhendubala Pradhan, Ahsan Hafeez, Mohammad Shoaib, Johaina Alahmad and Gordon McKay
Polymers 2024, 16(11), 1459; https://doi.org/10.3390/polym16111459 - 22 May 2024
Cited by 2 | Viewed by 1619
Abstract
Traditional bulk adsorbents, employed for the removal of dyes and metal ions, often face the drawback of requiring an additional filtration system to separate the filtrate from the adsorbent. In this study, we address this limitation by embedding the adsorbent into the polymer [...] Read more.
Traditional bulk adsorbents, employed for the removal of dyes and metal ions, often face the drawback of requiring an additional filtration system to separate the filtrate from the adsorbent. In this study, we address this limitation by embedding the adsorbent into the polymer matrix through a process involving dissolution–dispersion, spin-casting, and heat-stretching. Selective dissolution and dispersion facilitate the integration of the adsorbent into the polymer matrix. Meanwhile, spin-casting ensures the formation of a uniform and thin film structure, whereas heat-induced stretching produces a porous matrix with a reduced water contact angle. The adsorbent selectively captures dye molecules, while the porous structure contributes to water permeability. We utilized inexpensive and readily available materials, such as waste polyethylene and calcium carbonate, to fabricate membranes for the removal of methylene blue dye. The effects of various parameters, such as polymer-adsorbent ratio, initial dye concentration, and annealing temperature, were investigated. Equilibrium data were fitted to Langmuir, Freundlich, Temkin, and Dubinin–Radushkevich isotherms. The equilibrium data were best represented by the Langmuir isotherm, with maximum adsorption capacity of 35 mg/g and 43 mg/g at 25 °C and 45 °C, respectively. The membranes can be regenerated and recycled with a 97% dye removal efficiency. The study aims to present a template for adsorbent-embedded polymeric membranes for dye removal, in which adsorbent can be tailored to enhance adsorption capacity and efficiency. Full article
(This article belongs to the Special Issue Advanced Polymers for Wastewater Treatment and Toxicant Removal)
Show Figures

Figure 1

19 pages, 4721 KiB  
Article
Stimulating Mesoporous Characteristics of Activated Carbon through Pyrolysis of Compacted Hydroxyethyl Cellulose—A Showcase for H2S Removal
by Fuxiang Chen and Liang Hong
C 2024, 10(2), 43; https://doi.org/10.3390/c10020043 - 6 May 2024
Viewed by 2148
Abstract
Activated carbon (AC) serves as extensively researched adsorbents, with numerous established methods for their preparation. This study originated from the hypothesis that compressing a hydrocarbon substance to create a densely compacted pellet, known as pelletizing, would enhance the development of porous features of [...] Read more.
Activated carbon (AC) serves as extensively researched adsorbents, with numerous established methods for their preparation. This study originated from the hypothesis that compressing a hydrocarbon substance to create a densely compacted pellet, known as pelletizing, would enhance the development of porous features of the resulting AC. The anticipated enhancement is attributed to the rise in spatial proximity amidst HEC polymer chains within the bulk of the pellet, which facilitates aromatization both in extent and functionality. 2-Hydroxyethyl cellulose (HEC) pellets were prepared by adjusting the duration of load holding, aiming to increase the packing density of HEC polymer chains via creeping. The BET analysis of the resulting AC samples demonstrates the efficacy of compression on HEC pellets in enhancing their porous properties. The FE-SEM study revealed diverse AC surface morphologies that are associated with a set of specific pelletizing conditions. The 13C NMR spectroscopy for carbon skeletons, FT-IR spectroscopy for organic functionality, and XPS spectroscopy for surface composition collectively report the leverage of compression treatment before pyrolyzing HEC pellets. Furthermore, the assessment of hydrogen sulfide adsorption by the resulting AC samples revealed distinctive breakthrough curves, providing validation for the proposed compression effect. Full article
(This article belongs to the Section Carbon Materials and Carbon Allotropes)
Show Figures

Graphical abstract

24 pages, 11093 KiB  
Article
Use of Carbonated Water as Kneading in Mortars Made with Recycled Aggregates
by David Suescum-Morales, José Ramón Jiménez and José María Fernández-Rodríguez
Materials 2022, 15(14), 4876; https://doi.org/10.3390/ma15144876 - 13 Jul 2022
Cited by 12 | Viewed by 2511
Abstract
The increased concern about climate change is revolutionising the building materials sector, making sustainability and environmental friendliness increasingly important. This study evaluates the feasibility of incorporating recycled masonry aggregate (construction and demolition waste) in porous cement-based materials using carbonated water in mixing followed [...] Read more.
The increased concern about climate change is revolutionising the building materials sector, making sustainability and environmental friendliness increasingly important. This study evaluates the feasibility of incorporating recycled masonry aggregate (construction and demolition waste) in porous cement-based materials using carbonated water in mixing followed (or not) by curing in a CO2 atmosphere. The use of carbonated water can be very revolutionary in cement-based materials, as it allows hydration and carbonation to occur simultaneously. Calcite and portlandite in the recycled masonry aggregate and act as a buffer for the low-pH carbonated water. Carbonated water produced better mechanical properties and increased accessible water porosity and dry bulk density. The same behaviour was observed with natural aggregates. Carbonated water results in an interlaced shape of carbonate ettringite (needles) and fills the microcracks in the recycled masonry aggregate. Curing in CO2 together with the use of carbonated water (concomitantly) is not beneficial. This study provides innovative solutions for a circular economy in the construction sector using carbonated water in mixing (adsorbing CO2), which is very revolutionary as it allows carbonation to be applied to in-situ products. Full article
Show Figures

Figure 1

17 pages, 7746 KiB  
Article
Biomass Fly Ash Self-Hardened Adsorbent Monoliths for Methylene Blue Removal from Aqueous Solutions
by Marinélia N. Capela, Francielly R. Cesconeto, Paula C. Pinto, Luís A. C. Tarelho, Maria P. Seabra and João A. Labrincha
Appl. Sci. 2022, 12(10), 5134; https://doi.org/10.3390/app12105134 - 19 May 2022
Cited by 7 | Viewed by 2136
Abstract
The use of methylene blue (MB) by several industries generates contaminated industrial wastewaters that must be purified before discharge into the environment. Its removal can be achieved by adsorption, and low-cost and easily available materials should be used as adsorbents. Biomass fly ash [...] Read more.
The use of methylene blue (MB) by several industries generates contaminated industrial wastewaters that must be purified before discharge into the environment. Its removal can be achieved by adsorption, and low-cost and easily available materials should be used as adsorbents. Biomass fly ash (BFA) generated from biomass combustion, for heat and power generation, is increasing worldwide since the process is considered CO2 neutral. However, most of the ash is still landfilled. This study aims to evaluate the valorisation of BFA as a low-cost porous bulk adsorbent for MB removal from wastewaters. The monoliths were obtained after 14 days of curing just after adding water and a porogenic agent (aluminium powder) to the BFA, using the self-hardening ability of this waste. The BFA was characterised for chemical (XRF) and mineralogical (XRD) composition, particle size distribution (laser diffraction-COULTER) and morphology (SEM). The monolith sample cured for 14 days was characterised for density, porosity (total and open), microstructure, compressive strength, and MB removal ability (batch tests). The results showed that the addition of aluminium powder (0.09 wt.%) promoted an increase in interconnected porosity and the MB removal efficiency reached 80% for the most porous samples. The equilibrium data for the adsorption process were well characterised by a type 2 Langmuir isotherm equation with a monolayer adsorption capacity (qmax) that ranged from 0.22 to 0.66 mg/g. Full article
Show Figures

Figure 1

15 pages, 4233 KiB  
Article
Iron-Loaded Carbon Aerogels Derived from Bamboo Cellulose Fibers as Efficient Adsorbents for Cr(VI) Removal
by Xiaolin Xue, Wei Yuan, Zhuo Zheng, Jian Zhang, Chenghong Ao, Jiangqi Zhao, Qunhao Wang, Wei Zhang and Canhui Lu
Polymers 2021, 13(24), 4338; https://doi.org/10.3390/polym13244338 - 11 Dec 2021
Cited by 14 | Viewed by 3271
Abstract
A unique iron/carbon aerogel (Fe/CA) was prepared via pyrolysis using ferric nitrate and bamboo cellulose fibers as the precursors, which could be used for high-efficiency removal of toxic Cr(VI) from wastewaters. Its composition and crystalline structures were characterized by FTIR, XPS, and XRD. [...] Read more.
A unique iron/carbon aerogel (Fe/CA) was prepared via pyrolysis using ferric nitrate and bamboo cellulose fibers as the precursors, which could be used for high-efficiency removal of toxic Cr(VI) from wastewaters. Its composition and crystalline structures were characterized by FTIR, XPS, and XRD. In SEM images, the aerogel was highly porous with abundant interconnected pores, and its carbon-fiber skeleton was evenly covered by iron particles. Such structures greatly promoted both adsorption and redox reaction of Cr(VI) and endowed Fe/CA with a superb adsorption capacity of Cr(VI) (182 mg/g) with a fast adsorption rate (only 8 min to reach adsorption equilibrium), which outperformed many other adsorbents. Furthermore, the adsorption kinetics and isotherms were also investigated. The experiment data could be much better fitted by the pseudo-second-order kinetics model with a high correlating coefficient, suggesting that the Cr(VI) adsorption of Fe/CA was a chemical adsorption process. Meanwhile, the Langmuir model was found to better describe the isotherm curves, which implied the possible monolayer adsorption mechanism. It is noteworthy that the aerogel adsorbent as a bulk material could be easily separated from the water after adsorption, showing high potential in real-world water treatment. Full article
Show Figures

Figure 1

13 pages, 4090 KiB  
Article
Highly Porous Hydroxyapatite/Graphene Oxide/Chitosan Beads as an Efficient Adsorbent for Dyes and Heavy Metal Ions Removal
by Nguyen Van Hoa, Nguyen Cong Minh, Hoang Ngoc Cuong, Pham Anh Dat, Pham Viet Nam, Pham Hau Thanh Viet, Pham Thi Dan Phuong and Trang Si Trung
Molecules 2021, 26(20), 6127; https://doi.org/10.3390/molecules26206127 - 11 Oct 2021
Cited by 33 | Viewed by 3988
Abstract
Dye and heavy metal contaminants are mainly aquatic pollutants. Although many materials and methods have been developed to remove these pollutants from water, effective and cheap materials and methods are still challenging. In this study, highly porous hydroxyapatite/graphene oxide/chitosan beads (HGC) were prepared [...] Read more.
Dye and heavy metal contaminants are mainly aquatic pollutants. Although many materials and methods have been developed to remove these pollutants from water, effective and cheap materials and methods are still challenging. In this study, highly porous hydroxyapatite/graphene oxide/chitosan beads (HGC) were prepared by a facile one-step method and investigated as efficient adsorbents. The prepared beads showed a high porosity and low bulk density. SEM images indicated that the hydroxyapatite (HA) nanoparticles and graphene oxide (GO) nanosheets were well dispersed on the CTS matrix. FT-IR spectra confirmed good incorporation of the three components. The adsorption behavior of the obtained beads to methylene blue (MB) and copper ions was investigated, including the effect of the contact time, pH medium, dye/metal ion initial concentration, and recycle ability. The HGC beads showed rapid adsorption, high capacity, and easy separation and reused due to the porous characteristics of GO sheets and HA nanoparticles as well as the rich negative charges of the chitosan (CTS) matrix. The maximum sorption capacities of the HGC beads were 99.00 and 256.41 mg g−1 for MB and copper ions removal, respectively. Full article
(This article belongs to the Special Issue Sol-Gel Composites and Aerogels)
Show Figures

Figure 1

10 pages, 1569 KiB  
Article
Porosity of Rigid Dendrimers in Bulk: Interdendrimer Interactions and Functionality as Key Factors
by Olga Serenko, Kirill Skupov, Artem Bakirov, Nina Kuchkina, Zinaida Shifrina and Aziz Muzafarov
Nanomaterials 2021, 11(10), 2600; https://doi.org/10.3390/nano11102600 - 2 Oct 2021
Cited by 4 | Viewed by 1812
Abstract
The porous structure of second- and third-generation polyphenylene-type dendrimers was investigated by adsorption of N2, Ar, and CO2 gases, scanning electron microscopy and small-angle X-ray spectroscopy. Rigid dendrimers in bulk are microporous and demonstrate a molecular sieve effect. When using [...] Read more.
The porous structure of second- and third-generation polyphenylene-type dendrimers was investigated by adsorption of N2, Ar, and CO2 gases, scanning electron microscopy and small-angle X-ray spectroscopy. Rigid dendrimers in bulk are microporous and demonstrate a molecular sieve effect. When using CO2 as an adsorbate gas, the pore size varies from 0.6 to 0.9 nm. This is most likely due to the distances between dendrimer macromolecules or branches of neighboring dendrimers, whose packing is mostly realized due to intermolecular interactions, in particular, π–π interactions of aromatic fragments. Intermolecular interactions prevent the manifestation of the porosity potential inherent to the molecular 3D structure of third-generation dendrimers, while for the second generation, much higher porosity is observed. The maximum specific surface area for the second-generation dendrimers was 467 m2/g when measured by CO2 adsorption, indicating that shorter branches of these dendrimers do not provide dense packing. This implies that the possible universal method to create porous materials for all kinds of rigid dendrimers is by a placement of bulky substituents in their outer layer. Full article
(This article belongs to the Section Synthesis, Interfaces and Nanostructures)
Show Figures

Graphical abstract

11 pages, 1826 KiB  
Article
Adsorbing Volatile Organic Chemicals by Soluble Triazine-Based Dendrimers under Ambient Conditions with the Adsorption Capacity of Pyridine up to 946.2 mg/g
by Yao-Chih Lu, Chia-Yun Chien, Hsiu-Fu Hsu and Long-Li Lai
Molecules 2021, 26(16), 4862; https://doi.org/10.3390/molecules26164862 - 11 Aug 2021
Cited by 7 | Viewed by 1938
Abstract
Two triazine-based dendrimers with peripheral 1,3,5-triamidobenzene (1-3-5-TAB) functionality were prepared, and their void spaces in the bulk solid were investigated. We examined dendrimers of three core lengths and determined the one with the longest core exhibits the largest void space because the peripheral [...] Read more.
Two triazine-based dendrimers with peripheral 1,3,5-triamidobenzene (1-3-5-TAB) functionality were prepared, and their void spaces in the bulk solid were investigated. We examined dendrimers of three core lengths and determined the one with the longest core exhibits the largest void space because the peripheral amides were not imbedded in the internal space of each dendritic molecule. The new dendrimers as solids were observed to adsorb volatile organic chemicals efficiently. Importantly, because the dendrimers are soluble in organic solvents, the adsorbed VOCs can be quantified by 1H-NMR spectroscopy by choosing a chemical shift (δ) of dendrimers as the internal standard to exclude interfering impurity signals, a much simpler and more efficient protocol than the traditional GC technique for the VOC quantification. One dendrimer was found to adsorb 24 equivalents of pyridine, so its adsorption capacity is equivalent to 946.2 mg/g. This is a more than 2-fold increase than the reported values by other porous materials. Full article
(This article belongs to the Special Issue Dendrimers: From Synthesis to Applications)
Show Figures

Figure 1

18 pages, 4790 KiB  
Article
Comparison of Surface-Bound and Free-Standing Variations of HKUST-1 MOFs: Effect of Activation and Ammonia Exposure on Morphology, Crystallinity, and Composition
by Brandon H. Bowser, Landon J. Brower, Monica L. Ohnsorg, Lauren K. Gentry, Christopher K. Beaudoin and Mary E. Anderson
Nanomaterials 2018, 8(9), 650; https://doi.org/10.3390/nano8090650 - 23 Aug 2018
Cited by 17 | Viewed by 6081
Abstract
Metal-organic frameworks (MOFs) are extremely porous, crystalline materials with high surface area for potential use in gas storage, sequestration, and separations. Toward incorporation into structures for these applications, this study compares three variations of surface-bound and free-standing HKUST-1 MOF structures: surface-anchored MOF (surMOF) [...] Read more.
Metal-organic frameworks (MOFs) are extremely porous, crystalline materials with high surface area for potential use in gas storage, sequestration, and separations. Toward incorporation into structures for these applications, this study compares three variations of surface-bound and free-standing HKUST-1 MOF structures: surface-anchored MOF (surMOF) thin film, drop-cast film, and bulk powder. Herein, effects of HKUST-1 ammonia interaction and framework activation, which is removal of guest molecules via heat, are investigated. Impact on morphology and crystal structure as a function of surface confinement and size variance are examined. Scanning probe microscopy, scanning electron microscopy, powder X-ray diffraction, Fourier-transform infrared spectroscopy, and energy dispersive X-ray spectroscopy monitor changes in morphology and crystal structure, track ammonia uptake, and examine elemental composition. After fabrication, ammonia uptake is observed for all MOF variations, but reveals dramatic morphological and crystal structure changes. However, activation of the framework was found to stabilize morphology. For activated surMOF films, findings demonstrate consistent morphology throughout uptake, removal, and recycling of ammonia over multiple exposures. To understand morphological effects, additional ammonia exposure experiments with controlled post-synthetic solvent adsorbates were conducted utilizing a HKUST-1 standard powder. These findings are foundational for determining the capabilities and limitation of MOF films and powders. Full article
(This article belongs to the Special Issue Design and Development of Nanostructured Thin Films)
Show Figures

Graphical abstract

23 pages, 7342 KiB  
Article
Gas Transport Model in Organic Shale Nanopores Considering Langmuir Slip Conditions and Diffusion: Pore Confinement, Real Gas, and Geomechanical Effects
by Liehui Zhang, Baochao Shan, Yulong Zhao, Jia Du, Jun Chen and Xiaoping Tao
Energies 2018, 11(1), 223; https://doi.org/10.3390/en11010223 - 17 Jan 2018
Cited by 32 | Viewed by 6110
Abstract
Nanopores are extremely developed and randomly distributed in shale gas reservoirs. Due to the rarefied conditions in shale strata, multiple gas transport mechanisms coexist and need further understanding. The commonly used slip models are mostly based on Maxwell slip boundary condition, which assumes [...] Read more.
Nanopores are extremely developed and randomly distributed in shale gas reservoirs. Due to the rarefied conditions in shale strata, multiple gas transport mechanisms coexist and need further understanding. The commonly used slip models are mostly based on Maxwell slip boundary condition, which assumes elastic collisions between gas molecules and solid surfaces. However, gas molecules do not rebound from solid surfaces elastically, but rather are adsorbed on them and then re-emitted after some time lag. A Langmuir slip permeability model was established by introducing Langmuir slip BC. Knudsen diffusion of bulk phase gas and surface diffusion of adsorbed gas were also coupled into our nanopore transport model. Considering the effects of real gas, stress dependence, thermodynamic phase changes due to pore confinement, surface roughness, gas molecular volume, and pore enlargement due to gas desorption during depressurization, a unified gas transport model in organic shale nanopores was established, which was then upscaled by coupling effective porosity and tortuosity to describe practical SGR properties. The bulk phase transport model, single capillary model, and upscaled porous media model were validated by data from experimental data, lattice Boltzmann method or model comparisons. Based on the new gas transport model, the equivalent permeability of different flow mechanisms as well as the flux proportion of each mechanism to total flow rate was investigated in different pore radius and pressure conditions. The study in this paper revealed special gas transport characteristics in shale nonopores and provided a robust foundation for accurate simulation of shale gas production. Full article
(This article belongs to the Special Issue Flow and Transport Properties of Unconventional Reservoirs)
Show Figures

Figure 1

14 pages, 3377 KiB  
Article
Kinetic Analysis of the Uptake and Release of Fluorescein by Metal-Organic Framework Nanoparticles
by Tobias Preiß, Andreas Zimpel, Stefan Wuttke and Joachim O. Rädler
Materials 2017, 10(2), 216; https://doi.org/10.3390/ma10020216 - 22 Feb 2017
Cited by 26 | Viewed by 7262
Abstract
Metal-organic framework nanoparticles (MOF NPs) are promising guest-host materials with applications in separation, storage, catalysis, and drug delivery. However, on- and off-loading of guest molecules by porous MOF nanostructures are still poorly understood. Here we study uptake and release of fluorescein by two [...] Read more.
Metal-organic framework nanoparticles (MOF NPs) are promising guest-host materials with applications in separation, storage, catalysis, and drug delivery. However, on- and off-loading of guest molecules by porous MOF nanostructures are still poorly understood. Here we study uptake and release of fluorescein by two representative MOF NPs, MIL-100(Fe) and MIL-101(Cr). Suspensions of these MOF NPs exhibit well-defined size distributions and crystallinity, as verified by electron microscopy, dynamic light scattering, and X-ray diffraction. Using absorbance spectroscopy the equilibrium dissociation constants and maximum numbers of adsorbed fluorescein molecules per NP were determined. Time-resolved fluorescence studies reveal that rates of release and loading are pH dependent. The kinetics observed are compared to theoretical estimates that account for bulk diffusion into NPs, and retarded internal diffusion and adsorption rates. Our study shows that, rather than being simple volumetric carriers, MOF-NPs are dominated by internal surface properties. The findings will help to optimize payload levels and develop release strategies that exploit varying pH for drug delivery. Full article
(This article belongs to the Special Issue Metal Organic Framework Materials)
Show Figures

Graphical abstract

15 pages, 2655 KiB  
Article
Preparation of a Titania/X-Zeolite/Porous Glass Composite Photocatalyst Using Hydrothermal and Drop Coating Processes
by Atsuo Yasumori, Sayaka Yanagida and Jun Sawada
Molecules 2015, 20(2), 2349-2363; https://doi.org/10.3390/molecules20022349 - 30 Jan 2015
Cited by 14 | Viewed by 7831
Abstract
Combinations of TiO2 photocatalysts and various adsorbents have been widely studied for the adsorption and photocatalytic decomposition of gaseous pollutants such as volatile organic compounds (VOCs). Herein, a TiO2-zeolite-porous glass composite was prepared using melt-quenching and partial sintering, hydrothermal treatment, [...] Read more.
Combinations of TiO2 photocatalysts and various adsorbents have been widely studied for the adsorption and photocatalytic decomposition of gaseous pollutants such as volatile organic compounds (VOCs). Herein, a TiO2-zeolite-porous glass composite was prepared using melt-quenching and partial sintering, hydrothermal treatment, and drop coating for preparation of the porous glass support and X-zeolite and their combination with TiO2, respectively. The obtained composite comprised anatase phase TiO2, X-zeolite, and the porous glass support, which were combined at the micro to nanometer scales. The composite had a relatively high specific surface area of approximately 25 m2/g and exhibited a good adsorption capacity for 2-propanol. These data indicated that utilization of this particular phase-separated glass as the support was appropriate for the formation of the bulk photocatalyst-adsorbent composite. Importantly, the photocatalytic decomposition of adsorbed 2-propanol proceeded under UV light irradiation. The 2-propanol was oxidized to acetone and then trapped by the X-zeolite rather than being released to the atmosphere. Consequently, it was demonstrated that the micrometer-scaled combination of TiO2 and zeolite in the bulk form is very useful for achieving both the removal of gaseous organic pollutants and decreasing the emission of harmful intermediates. Full article
(This article belongs to the Special Issue Photocatalysis)
Show Figures

Figure 1

Back to TopTop