Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (255)

Search Parameters:
Keywords = bulk fluorescence

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3380 KiB  
Article
A Simple and Scalable Assay for Multiplexed Flow Cytometric Profiling of Surface Markers on Small Extracellular Vesicles
by Deborah Polignano, Valeria Barreca, Massimo Sanchez, Massimo Sargiacomo and Maria Luisa Fiani
Cells 2025, 14(13), 989; https://doi.org/10.3390/cells14130989 - 28 Jun 2025
Viewed by 413
Abstract
Extracellular vesicles (EVs), including small EVs (sEVs) such as exosomes, play crucial roles in intercellular communication and disease pathology. Their heterogeneous nature, shaped by cellular origin and activation state, requires precise and multiplexed profiling of surface markers for effective characterization. Despite recent advances, [...] Read more.
Extracellular vesicles (EVs), including small EVs (sEVs) such as exosomes, play crucial roles in intercellular communication and disease pathology. Their heterogeneous nature, shaped by cellular origin and activation state, requires precise and multiplexed profiling of surface markers for effective characterization. Despite recent advances, current analytical methods remain complex, costly, or inaccessible for routine laboratory use. Here, we present a simple and cost-effective flow cytometry-based assay for the multiplexed analysis of tetraspanin markers (CD63, CD81, CD9) on fluorescently labeled sEVs. Our method combines metabolic labeling with paraformaldehyde fixation and low-speed centrifugation using a benchtop centrifuge, enabling efficient removal of unbound antibodies and minimizing nonspecific signals while preserving vesicle integrity. Using either metabolically labeled exosomes or bulk sEVs stained with carboxyfluorescein succinimidyl ester (CFSE), we demonstrate robust recovery and accurate, semi-quantitative profiling of tetraspanin expression. The assay reveals substantial variability in tetraspanin distribution across different cell lines and does not require ultracentrifugation or immunocapture. Notably, this versatile and reproducible method supports high sEV recovery and is adaptable to additional protein markers. Its compatibility with standard laboratory equipment makes it a practical and scalable alternative to more complex techniques, expanding access to multiplex sEV analysis for both research and clinical applications. Full article
(This article belongs to the Special Issue Extracellular Vesicles as Biomarkers for Human Disease)
Show Figures

Figure 1

14 pages, 3936 KiB  
Article
Atums Green Conjugated Polymer Heterojunction Films as Blue-Sensitive Photodiodes
by Zahida Batool, Razieh Firouzihaji, Mariia Babiichuk, Aria Khalili, John C. Garcia, Jau-Young Cho, Preeti Gahtori, Lukas Eylert, Karthik Shankar, Sergey I. Vagin, Julianne Gibbs and Alkiviathes Meldrum
Polymers 2025, 17(13), 1770; https://doi.org/10.3390/polym17131770 - 26 Jun 2025
Viewed by 449
Abstract
Conjugated polymers (CPs) offer many attractive features for photodiodes and photovoltaics, including solution processability, ease of scale-up, light weight, low cost, and mechanical flexibility. CPs have a wide range of energy gaps; thus, the choice of the specific polymer determines the optimum operational [...] Read more.
Conjugated polymers (CPs) offer many attractive features for photodiodes and photovoltaics, including solution processability, ease of scale-up, light weight, low cost, and mechanical flexibility. CPs have a wide range of energy gaps; thus, the choice of the specific polymer determines the optimum operational wavelength range. However, there are relatively few CPs with a strong absorption in the blue region of the spectrum where the human eye is most sensitive (440 to 470 nm) and none with an energy gap at 2.75 eV (450 nm), which corresponds to the peak of the CIE-1931 z(λ) color-matching function and the dominant blue light emission wavelength in computer and smartphone displays. Blue-light detectors in this wavelength range are important for light hazard control, sky polarization studies, and for blue-light information devices, where 450 nm corresponds to the principal emission of GaN-based light sources. We report on a new CP called Atums Green (AG), which shows promising characteristics as a blue-light photodetection polymer optimized for exactly this range of wavelengths centered around 450 nm. We built and measured a simple photodetector made from spin-coated films of AG and showed that its photosensitivity can be improved by the addition of asphaltene, a low-cost carbonaceous waste product. Full article
(This article belongs to the Section Polymer Membranes and Films)
Show Figures

Graphical abstract

13 pages, 2357 KiB  
Article
Effect of Coal Gangue Powder Addition on Hydraulic Properties of Aeolian Sandy Soil and Plant Growth
by Xiaoyun Ding, Ruimin He, Zhenguo Xing, Haoyan Wei, Jiping Niu, Shi Chen and Min Li
Horticulturae 2025, 11(6), 634; https://doi.org/10.3390/horticulturae11060634 - 5 Jun 2025
Viewed by 442
Abstract
Coal gangue is a fine-grained mineral with nutrient content, which can be used as a potential soil amendment. Nevertheless, current research on using coal gangue to improve soil water and support plant growth is still insufficient. In this study, coal gangue powder (CGP) [...] Read more.
Coal gangue is a fine-grained mineral with nutrient content, which can be used as a potential soil amendment. Nevertheless, current research on using coal gangue to improve soil water and support plant growth is still insufficient. In this study, coal gangue powder (CGP) was added to aeolian sandy soil. We compared the soil hydraulic properties and plant growth of original aeolian sandy soil (CK) and different CGP application rates (10% and 20%). The results indicated that the application of CGP transformed the soil texture from sandy to loamy, significantly reduced soil bulk density and saturated hydraulic conductivity (Ks) values, altered the soil water characteristic curve, enhanced soil water-holding capacity, and increased plant-available water. Compared with the CK group, the emergence rate of alfalfa seeds increased from approximately 50% to over 70% after CGP application. During the growth process, CGP application significantly elevated the net photosynthetic rate, transpiration rate, and stomatal conductance of alfalfa leaves. Rapid fluorescence kinetics monitoring of leaves demonstrated that alfalfa treated with CGP had a higher efficiency in light energy utilization. However, the photosynthetic capacity of leaves did not improve as the CGP application rate increased from 10% to 20%, suggesting that excessive CGP addition did not continuously benefit plant gas exchange. In conclusion, CGP application can improve the soil hydraulic properties of aeolian sandy soil and support plant growth and development, which is conducive to reducing the accumulated amount of coal gangue, alleviating plant water stress, and promoting ecological restoration in arid mining areas. We recommend a 10% addition of coal gangue powder as the optimal amount for similar soils. Full article
(This article belongs to the Section Plant Nutrition)
Show Figures

Figure 1

17 pages, 1202 KiB  
Article
Influence of the Dissolution of Al- and Zn-Based Galvanic Anodes on the Composition of Calcareous Deposits
by Florent Batisse, Malo Duportal, Céline Rémazeilles, Alban Edouard, Ludovic Meuriot and Philippe Refait
J. Mar. Sci. Eng. 2025, 13(6), 1130; https://doi.org/10.3390/jmse13061130 - 5 Jun 2025
Viewed by 413
Abstract
The possible incorporation of Al and Zn issuing from galvanic anodes in the calcareous deposit forming on carbon steel surfaces subjected to cathodic protection was studied via three methodological approaches. The calcareous deposits were analyzed by X-ray diffraction for phase composition and X-ray [...] Read more.
The possible incorporation of Al and Zn issuing from galvanic anodes in the calcareous deposit forming on carbon steel surfaces subjected to cathodic protection was studied via three methodological approaches. The calcareous deposits were analyzed by X-ray diffraction for phase composition and X-ray fluorescence spectroscopy for chemical composition. First, a calcareous deposit formed on the steel pile of a seaport installation, sampled far (2 m) from the closest galvanic anode, was found to incorporate a small amount of the pollutants present in the seawater (Zn, Ti, Cu). An in situ experiment performed at another seaport focused on the calcareous deposit formed on steel surfaces close to the anode. In this case, a small amount of Zn directly issuing from the anode was incorporated in the deposit. This amount remained low as it corresponded to Zn(II) species adsorbed on the surface of aragonite crystals. Finally, laboratory experiments were performed with Zn(II) and/or Al(III) chlorides (10−3 mol L−1 each) added to seawater. With both Zn(II) and Al(III), a Zn(II)-Al(III) hydroxychloride precipitated in the bulk seawater. With only Al(III), and under a higher cathodic current density, Al(III) could be incorporated in a deposit mainly composed of brucite, but only in small amount. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

29 pages, 1584 KiB  
Review
Medulloblastoma: Molecular Targets and Innovative Theranostic Approaches
by Alice Foti, Fabio Allia, Marilena Briglia, Roberta Malaguarnera, Gianpiero Tamburrini, Francesco Cecconi, Vittoria Pagliarini, Francesca Nazio and Adriana Carol Eleonora Graziano
Pharmaceutics 2025, 17(6), 736; https://doi.org/10.3390/pharmaceutics17060736 - 4 Jun 2025
Viewed by 844
Abstract
Background/Objectives: Medulloblastoma is a rare tumor that represents almost two-thirds of all embryonal pediatric brain tumor cases. Current treatments, including surgery, radiation, and chemotherapy, are often associated with adverse effects, such as toxicity, resistance, and lack of specificity. According to multiple bulk and [...] Read more.
Background/Objectives: Medulloblastoma is a rare tumor that represents almost two-thirds of all embryonal pediatric brain tumor cases. Current treatments, including surgery, radiation, and chemotherapy, are often associated with adverse effects, such as toxicity, resistance, and lack of specificity. According to multiple bulk and single-cell omics-based approaches, it is now clear that each molecular subgroup of medulloblastoma possesses intrinsic genetic and molecular features that could drive the definition of distinct therapeutic targets, and of markers that have the potential to improve diagnosis. Nanomedicine offers a promising approach to overcome these challenges through precision-targeted therapies and theranostic platforms that merge diagnosis and treatment. This review explores the role of nanomedicine in medulloblastoma. Here, possible theranostic nanoplatforms combining targeted drug delivery and simultaneous imaging are reviewed, highlighting their potential as tools for personalized medicine. Methods: We performed a chronological analysis of the literature by using the major web-based research platforms, focusing on molecular targets, and the potential application of nanomedicine to overcome conventional treatment limitations. Results: Advances in nanoparticle-based drug delivery systems enable selective targeting of key molecular pathways, improving therapeutic efficacy while minimizing off-target effects. Additionally, nanotechnology-based imaging agents, including MRI contrast agents and fluorescent probes, improve diagnostic accuracy and treatment monitoring. Despite these advantages, some significant challenges remain, including overcoming the blood–brain barrier, ensuring biocompatibility, and addressing regulatory pathways for clinical translation. Conclusions: In conclusion, we sought to identify the current knowledge on the topic and hope to inspire future research to obtain new nanoplatforms for personalized medicine. Full article
Show Figures

Graphical abstract

14 pages, 1124 KiB  
Article
Sensitized Radiation-Induced Polymerization of Indene with 1,1,2,2-Tetrachloroethane
by Ransel Barzaga, Domingo Aníbal García-Hernández, Arturo Manchado, Ilaria Di Sarcina, Alessia Cemmi and Franco Cataldo
Polymers 2025, 17(11), 1550; https://doi.org/10.3390/polym17111550 - 2 Jun 2025
Viewed by 436
Abstract
Sensitized radiation-induced polymerization of indene monomer was achieved at a dose rate of 3 kGy/h. The sensitizer (1,1,2,2-tetrachloroethane or TCE) leads to higher polyindene yields and faster polymerization kinetics with respect to bulk radiation-induced polymerization of indene. The radiation chemical yield Gp [...] Read more.
Sensitized radiation-induced polymerization of indene monomer was achieved at a dose rate of 3 kGy/h. The sensitizer (1,1,2,2-tetrachloroethane or TCE) leads to higher polyindene yields and faster polymerization kinetics with respect to bulk radiation-induced polymerization of indene. The radiation chemical yield Gp was found to increase with the dose in sensitized polymerization of indene following a power law, while an opposite trend was detected in the absence of the sensitizer. The sensitizer enhances the cationic polymerization mechanism in parallel to the free radical mechanism, as shown with both electronic absorption spectroscopy and FT–IR analysis of the polyindenes. Despite the enhancement of the polymer yield and the faster polymerization kinetics offered by the presence of TCE, the molecular weight of the resulting polyindene was found to be rather low. This was true whether the molecular weight was measured by end group analysis using X-ray fluorescence or the glass transition temperature determination with respect to the polyindenes produced with γ radiation without the sensitizer or with a pure cationic mechanism. Full article
(This article belongs to the Section Polymer Chemistry)
Show Figures

Figure 1

17 pages, 5610 KiB  
Article
Preparation of Lightweight and High-Strength Ceramsite from High-Silicon Lead-Zinc Tailings: A Sustainable Method for Waste Recycling
by Ming Li, Chongjie Liao, Qi He and Yifan Yang
Sustainability 2025, 17(10), 4523; https://doi.org/10.3390/su17104523 - 15 May 2025
Cited by 1 | Viewed by 356
Abstract
This study proposes a sustainable method to convert high-silicon lead-zinc tailings (HS-LZT) into lightweight and high-strength ceramsite, aiming to address the issues of solid waste management and resource efficiency by using HS-LZT and kaolin as the main raw materials and silicon carbide (SiC) [...] Read more.
This study proposes a sustainable method to convert high-silicon lead-zinc tailings (HS-LZT) into lightweight and high-strength ceramsite, aiming to address the issues of solid waste management and resource efficiency by using HS-LZT and kaolin as the main raw materials and silicon carbide (SiC) as the pore-forming agent. A sintering process was employed to prepare lightweight, high-strength ceramsite. X-ray diffraction (XRD), X-ray fluorescence (XRF), Thermogravimetric-differential scanning calorimetry (TG-DSC), and inductively coupled plasma optical emission spectrometer (ICP-OES) were used to analyze the physical composition and physical and chemical properties of the raw materials. The influence of raw material ratios, SiC content, sintering temperature, and sintering time on ceramsite properties was investigated, and the microstructure of the optimal finished ceramsite was analyzed. The results show that under optimal preparation conditions (70% [by mass percentage] of HS-LZT, 30% [by mass percentage] of kaolin, with an addition of 0.5% [by mass percentage] of SiC, a sintering temperature of 1200 °C, and a sintering time of 20 min), the LZT ceramsite achieved a compressive strength of 11.39 MPa, a bulk density of 724 kg/m3, and a 1 h water absorption rate of 4.82%. The leaching content of Pb and Zn of the sintered ceramsite samples is far less than the limit values of hazardous components in the leachate specified in the relevant standard. This study provides a potential pathway for the reduction, recycling, and environmentally sound utilization of HS-LZT, which is in line with the sustainable development concept of “treating waste with waste.” Full article
Show Figures

Figure 1

12 pages, 3053 KiB  
Article
Metal-Free Elemental Selenium Quantum Dots: A Novel and Robust Fluorescent Nanoprobe for Cell Imaging and the Sensitive Detection of Cr(VI)
by Ziyi Gao, Jie Liao, Xia Li and Li Zhou
Materials 2025, 18(9), 2119; https://doi.org/10.3390/ma18092119 - 5 May 2025
Viewed by 509
Abstract
In this paper, we present a simple solvothermal method to synthesize highly fluorescent metal-free elemental selenium quantum dots (SeQDs) using cost-effective bulk selenium powder. The SeQDs exhibit a small and uniform size, excellent aqueous dispersibility, a high photoluminescence quantum yield (PLQY) of 19.3% [...] Read more.
In this paper, we present a simple solvothermal method to synthesize highly fluorescent metal-free elemental selenium quantum dots (SeQDs) using cost-effective bulk selenium powder. The SeQDs exhibit a small and uniform size, excellent aqueous dispersibility, a high photoluminescence quantum yield (PLQY) of 19.3% with stable fluorescence, and scalable production with a 7.2% yield. Owing to the inner filter effect (IFE), these SeQDs function as a highly effective nanoprobe for Cr(VI) detection, exhibiting exceptional sensitivity (detection limit: 145 nM) and selectivity over a wide linear range (5–105 μM), along with rapid response kinetics. Moreover, SeQDs show low cytotoxicity and efficient cellular uptake, enabling cell imaging and intracellular Cr(VI) monitoring. Significant fluorescence quenching in Cr(VI)-exposed cells confirms the potential of SeQDs as a viable fluorescent nanoprobe for Cr(VI) detection in complex cellular environments. This work thus not only establishes a simple method for the preparation of fluorescent SeQDs but also develops a promising fluorescent nanoprobe for cell imaging and Cr(VI) sensing. Full article
(This article belongs to the Special Issue Diverse Nanomaterials Applied in Bio- and Electrochemical Sensing)
Show Figures

Figure 1

14 pages, 6076 KiB  
Article
Thermally Driven Layered Phase Transition and Decomposition Kinetics of γ-AlH3: A Multiscale Study Integrating Core-Shell Dynamics and Fluorescence-Guided Analysis
by Mengfan Sun and Leping Dang
Processes 2025, 13(5), 1321; https://doi.org/10.3390/pr13051321 - 26 Apr 2025
Viewed by 359
Abstract
In this study, the γ → α phase transition and decomposition of AlH3 were probed using integrated hot-stage polarized microscopy, in situ XRD, DSC, and fluorescence analysis. Phase coexistence at 100 °C and complete transition at 140 °C were demonstrated by in [...] Read more.
In this study, the γ → α phase transition and decomposition of AlH3 were probed using integrated hot-stage polarized microscopy, in situ XRD, DSC, and fluorescence analysis. Phase coexistence at 100 °C and complete transition at 140 °C were demonstrated by in situ XRD. Meanwhile, synchronized fluorescence decay (ImageJ-quantified) and XRD evolution analysis confirmed the temperature-dependent kinetics, with the isothermal γ → α durations decreasing from 225 min (100 °C) to 5 min (180 °C). The transition involved competing surface nucleation and bulk diffusion, which was accelerated by the reduced diffusion resistance at elevated temperatures. Above 160 °C, α → Al decomposition dominated via interfacial reactions and H2 release, accompanied by gas-induced crystalline fracturing. DSC analysis revealed heating-rate-dependent core–shell thermal gradients, which caused hysteresis. At the same time, the experiment also shows that the surface oxidation of γ-AlH3 may have hindered transitions through passivation layer formation. This work validates Gao et al.’s core–shell model, demonstrating that combined fluorescence and conventional techniques elucidate kinetic laws in metastable systems. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

11 pages, 2135 KiB  
Article
Identification and Specific KASP Marker Development for Durum Wheat T2DS-2AS.2AL Translocation Line YL-429 with Wax Inhibitor Gene IW2
by Sujie Yang, Fan Yang, Zujun Yang, Wenjing Hu, Hongxia Ding, Feiyang Yang, Hongshen Wan, Zehou Liu, Tao Lang, Ning Yang, Jie Zhang, Yun Jiang, Junyan Feng, Hao Tang, Qian Chen, Qian Deng, Ying Wang, Jingyu Wu, Jun Xiao, Xing Fan, Yonghong Zhou and Jun Liadd Show full author list remove Hide full author list
Plants 2025, 14(7), 1077; https://doi.org/10.3390/plants14071077 - 1 Apr 2025
Viewed by 556
Abstract
Non-glaucous wheat can reduce solar light reflection in low-light cultivation regions, enhancing photosynthetic efficiency and potentially increasing yield. In previous work, a non-glaucous cuticular line, YL-429, was discovered in derivatives of pentaploid hybrids by crossing the synthetic wheat LM/AT23 (non-glaucous cuticular) with its [...] Read more.
Non-glaucous wheat can reduce solar light reflection in low-light cultivation regions, enhancing photosynthetic efficiency and potentially increasing yield. In previous work, a non-glaucous cuticular line, YL-429, was discovered in derivatives of pentaploid hybrids by crossing the synthetic wheat LM/AT23 (non-glaucous cuticular) with its tetraploid donor parent LM (glaucous) and selfing to F7 generations. In the present study, multicolor fluorescence in situ hybridization was used to characterize the karyotype of the YL-429 line; genome resequencing was performed to identify the breakpoint of the 2D-2A chromosome translocation of YL-429; and bulk sequencing analysis was conducted to detect the SNP in the translocated fragment and accordingly develop specific kompetitive allele-specific PCR markers for use in breeding. The line YL-429 was preliminarily determined as a 2DS and 2AS translocation (LM T2DS-2AS.2AL) line through karyotyping. Genome alignment identified an approximately 13.8 Mb segment, including the wax inhibitor gene Iw2, in the telomeric region of the 2DS chromosome arm replacing an approximately 16.1 Mb segment in that of the 2AS chromosome arm. According to the bulk DNA sequencing data, 27 specific KASP markers were developed for detecting the translocated fragment from the 2DS of Aegilops tauschii. The LM T2DS-2AS.2AL translocation line YL-429 could be helpful in improving the photosynthesis of durum wheat cultivated in low-light cultivation regions. The developed markers can assist the screening of the T2DS-2AS.2AL translocation in breeding. Full article
(This article belongs to the Section Plant Genetics, Genomics and Biotechnology)
Show Figures

Figure 1

18 pages, 3191 KiB  
Article
Material Characterization and Technological Properties of Biocompatible Ti-12Al-42Nb Spherical Powder Alloy for Additive Manufacturing of Personal Medical Implants
by Alexander Anokhin, Andrey Kirsankin, Elena Kukueva, Alexander Luk’yanov, Maria Chuvikina, Elena Ermakova, Svetlana Strelnikova and Stepan Kupreenko
Metals 2025, 15(2), 147; https://doi.org/10.3390/met15020147 - 31 Jan 2025
Viewed by 965
Abstract
The paper focuses on material characterization and technology properties of a new Ti-12Al-42Nb spherical powder alloy for additive manufacturing of personal medical implants. The electrode induction melting inert gas atomization (EIGA) method was used to produce the powder alloy. The powder sphericity coefficient [...] Read more.
The paper focuses on material characterization and technology properties of a new Ti-12Al-42Nb spherical powder alloy for additive manufacturing of personal medical implants. The electrode induction melting inert gas atomization (EIGA) method was used to produce the powder alloy. The powder sphericity coefficient (PSC) was 1.02. Image J software was used to calculate the spherical degree by processing images sets from scanning electron microscopy (SEM) and optical microscopy (OM). SEM of particles cross-sections indicated internal thermal-induced porosity (TIP) with a 2.3 μm pore diameter. Particle size distribution was in the range from 15.72 μm (d10) to 64.48 μm (d100) as measured by laser particle analyzer. It was indicated that flowability and powder bulk density were 196 sec and 2.79 g/cm3, respectively. XRD analysis confirmed the beta phase of the powder alloy with no additional phases. X-ray fluorescence spectrometry confirmed the alloyed composition. Reducing and oxidative melting methods of analysis showed a slight amount of impurities: oxygen (0.0087 wt.%), nitrogen (0.03 wt.%), hydrogen (0.0012 wt.%), sulfur (0.0016 wt.%), and carbon (0.022 wt.%). Simultaneous thermal analysis (STA) was performed to indicate weight growth and losses and thermal effects in argon, nitrogen, and air as well as the oxidation of Al2O3, TiO2, and Nb2O5 on the surface layer of Ti-12Al-42Nb powder alloy particles. Different phase transformations of γAl2O3  θAl2O3  αAl2O3 and TiO2 rutile TiO2 anatase phase transformation were detected by STA in the oxidative layer. Full article
Show Figures

Figure 1

17 pages, 4714 KiB  
Article
Post-Wildfire Mobilization of Organic Carbon
by Travis Numan, Srinidhi Lokesh, Abrar Shahriar, Anil Timilsina, Myron L. Lard, Justin Clark, Yasaman Raeofy, Qian Zhao, Simon R. Poulson, Paul S. Verburg, Jocelyn A. Richardson, Robert L. Cook, Vera Samburova and Yu Yang
Soil Syst. 2025, 9(1), 11; https://doi.org/10.3390/soilsystems9010011 - 30 Jan 2025
Viewed by 1661
Abstract
Wildfires significantly alter watershed functions, particularly the mobilization of organic carbon (OC). This study investigated OC mobility and the physicochemical characteristics of wildfire-impacted soils and ashes from the northern California and Nevada fires (Dixie, Beckworth, Caldor). Organic carbon in wildfire-derived ashes (9.2–57.3 mg/g) [...] Read more.
Wildfires significantly alter watershed functions, particularly the mobilization of organic carbon (OC). This study investigated OC mobility and the physicochemical characteristics of wildfire-impacted soils and ashes from the northern California and Nevada fires (Dixie, Beckworth, Caldor). Organic carbon in wildfire-derived ashes (9.2–57.3 mg/g) generally exceeded levels in the background soils (4.3–24.4 mg/g), except at the Dixie fire sites. The mobile OC fraction varied from 0.0093 to 0.029 in ashes and 0.010 to 0.065 in soils, though no consistent trend was observed between the ashes and soils. Notably, the ash samples displayed lower OC mobility compared with the soils beneath them. A negative correlation was found between the mobile OC fraction and bulk OC content. Wildfire increased the total amount of mobile OC substantially by 5.2–574% compared to the background soils. Electron paramagnetic resonance (EPR) spectra confirmed the presence of environmentally persistent free radicals (EPFRs), which correlated with observed redox reactivity. Additionally, X-ray absorption near edge structure (XANES) and X-ray fluorescence (XRF) imaging revealed that Fe(II) oxidation in soils beneath the ashes may have enhanced the OC mobility, likely driven by pyrogenic carbon and free radicals. These findings enhance our understanding of post-wildfire OC mobilization and the impact of ash–soil physicochemical properties on watershed health. Full article
Show Figures

Figure 1

14 pages, 1413 KiB  
Article
Cork and Compost as Mitigators of Soil Compaction from Trampling in Urban Green Areas: Effects on Plant Growth and Soil Functionality
by Bianca Rompato, Lucia Mondanelli, Ermes Lo Piccolo, Claudia Cocozza, Giovanni Mastrolonardo, Laura Giagnoni, Gregorio Fantoni, Alessandro Bizzarri, Barbara Mariotti, Leonardo Verdi, Alberto Maltoni, Francesco Ferrini and Giacomo Certini
Urban Sci. 2025, 9(1), 5; https://doi.org/10.3390/urbansci9010005 - 31 Dec 2024
Viewed by 1454
Abstract
Compacted soils in urban areas suffer from reduced porosity, impairing plant growth, water infiltration, and gas exchange, thus exacerbating other potential environmental issues. Amending soil with organic matter can reduce bulk density and increase permeability, thereby enhancing soil fertility and functionality. This study [...] Read more.
Compacted soils in urban areas suffer from reduced porosity, impairing plant growth, water infiltration, and gas exchange, thus exacerbating other potential environmental issues. Amending soil with organic matter can reduce bulk density and increase permeability, thereby enhancing soil fertility and functionality. This study evaluated the effects of two organic soil amendments (i.e., chipped cork and municipal waste compost) on soil functionality and the physiology of Quercus ilex trees, following a soil compaction treatment. Five soil treatments were compared: control (no compaction and amendments), soil compaction without amendments, and compaction with amendments including cork, compost, or a combination of both. Soil and plant physiological responses were analyzed during the summer months, focusing on soil gas exchange, temperature, moisture, microbial respiration, enzymatic activity, leaf gas exchange, leaf chlorophyll fluorescence, chlorophyll content, and maximum daily trunk shrinkage. The results showed that amended soils exhibited increased soil gas exchanges, lower temperatures, and higher microbial activity than non-amended compacted soils, thereby reducing the detrimental effects of soil compaction on plant physiology. These findings suggested that incorporating organic amendments into urban soils, especially those subjected to frequent trampling, could make them more resistant/resilient to compaction, supporting healthier green spaces and more sustainable urban ecosystems. Full article
Show Figures

Figure 1

13 pages, 1561 KiB  
Article
Chloroquine Affects Presynaptic Membrane Retrieval in Diaphragm Neuromuscular Junctions of Old Mice
by Sepideh Jahanian, Chloe I. Gulbronson, Heather M. Gransee, Elena Millesi, Gary C. Sieck and Carlos B. Mantilla
Int. J. Mol. Sci. 2025, 26(1), 43; https://doi.org/10.3390/ijms26010043 - 24 Dec 2024
Viewed by 798
Abstract
Aging disrupts multiple homeostatic processes, including autophagy, a cellular process for the recycling and degradation of defective cytoplasmic structures. Acute treatment with the autophagy inhibitor chloroquine blunts the maximal forces generated by the diaphragm muscle, but the mechanisms underlying neuromuscular dysfunction in old [...] Read more.
Aging disrupts multiple homeostatic processes, including autophagy, a cellular process for the recycling and degradation of defective cytoplasmic structures. Acute treatment with the autophagy inhibitor chloroquine blunts the maximal forces generated by the diaphragm muscle, but the mechanisms underlying neuromuscular dysfunction in old age remain poorly understood. We hypothesized that chloroquine treatment increases the presynaptic retention of the styryl dye FM 4-64 following high-frequency nerve stimulation, consistent with the accumulation of unprocessed bulk endosomes. Diaphragm-phrenic nerve preparations from 24-month-old male and female C57BL/6 × 129 J mice were incubated with FM 4-64 (5 µM) and either chloroquine (50 µM) or vehicle during 80 Hz phrenic nerve stimulation. Acute chloroquine treatment significantly decreased FM 4-64 intensity at diaphragm neuromuscular junctions following 80 Hz phrenic nerve stimulation, consistent with disrupted synaptic vesicle recycling. A similar reduction was evident in regions with the greatest FM 4-64 fluorescence intensity, which most likely surround synaptic vesicle release sites. In the absence of nerve stimulation, chloroquine treatment significantly increased FM 4-64 intensity at diaphragm neuromuscular junctions. These findings highlight the importance of autophagy in regulating presynaptic vesicle retrieval (including vesicle recycling and endosomal processing) and support the role of autophagy impairments in age-related neuromuscular dysfunction. Full article
(This article belongs to the Special Issue Molecular and Neuromuscular Mechanisms in Skeletal Muscle Aging)
Show Figures

Figure 1

15 pages, 1201 KiB  
Article
Evaluation of the Efficacy of the Vaccine Production Process in Removing Residual Host Cell DNA from the Vero Cell Rabies Vaccine
by Jia Li, Ruowen Pan, Fengyi Yue, Tie Gao, Xiaohong Wu, Leitai Shi, Yunpeng Wang, Danhua Zhao, Zhaohui Lan, Hongxu Chen, Qiang Ye and Shouchun Cao
Vaccines 2024, 12(12), 1379; https://doi.org/10.3390/vaccines12121379 - 6 Dec 2024
Cited by 1 | Viewed by 2052
Abstract
Background: The Vero cell rabies vaccine is currently the most widely used human rabies vaccine. However, owing to the presence of residual host cell DNA (HCD) in the final product and the potential tumorigenicity of the DNA of high-passage Vero cells, the WHO [...] Read more.
Background: The Vero cell rabies vaccine is currently the most widely used human rabies vaccine. However, owing to the presence of residual host cell DNA (HCD) in the final product and the potential tumorigenicity of the DNA of high-passage Vero cells, the WHO not only sets a limit on the number of times cells used in production can be passaged, but also imposes strict requirements on the amount of residual HCD in the final vaccine product. Objectives: To systematically reduce the HCD level in the final vaccine product, multiple purification steps are included in the vaccine production process. This study investigated the effectiveness of key production steps in antigen recovery and DNA removal. Methods: The residual HCD fragment content and size distribution were detected using fluorescence quantitative PCR (qPCR) and capillary gel electrophoresis (CGE), and the rabies virus glycoprotein antigen content was detected using enzyme-linked immunosorbent assay (ELISA). The antigen recovery rate and HCD removal rate in each key process were calculated to evaluate the scientific basis and effectiveness of each production step. Additionally, the stability of the process was studied using multiple commercial batches of the product. Results: The results revealed that the total antigen recovery rate in the production process described in this report was no less than 8.5%, and the effective removal rate of residual HCD was not lower than 99.99%. Moreover, the amount of residual HCD in the final product was far below the quality standard of 2 ng/dose, and most of the residual HCD fragments were smaller than 200 bp. The results of the process stability studies on multiple commercial batches showed that the bulk human rabies vaccine produced by this process had excellent safety and efficacy and that the production process was stable and thus suitable for large-scale batch production. Conclusions: The production process described in this study achieved effective recovery of viral antigens and efficient removal of residual HCD, and the process was stable and controllable, enabling the continuous and stable production of vaccine products that meet WHO recommendations and the relevant requirements of the current edition of the Chinese Pharmacopeia. In addition, this study provides theoretical guidance for optimizing the vaccine production process. Full article
(This article belongs to the Special Issue Biotechnologies Applied in Vaccine Research)
Show Figures

Figure 1

Back to TopTop