Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,976)

Search Parameters:
Keywords = building management systems

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
34 pages, 347 KiB  
Article
Clinician-Reported Person-Centered Culturally Responsive Practices for Youth with OCD and Anxiety
by Sasha N. Flowers, Amanda L. Sanchez, Asiya Siddiqui, Michal Weiss and Emily M. Becker-Haimes
Children 2025, 12(8), 1034; https://doi.org/10.3390/children12081034 - 7 Aug 2025
Abstract
Background: Exposure-based cognitive behavioral therapy (Ex-CBT) is widely seen as the gold-standard treatment for anxiety and obsessive-compulsive disorder (OCD). Yet, minoritized youth are underrepresented in efficacy studies, raising questions about the applicability of Ex-CBT to minoritized youth. Effectiveness data suggest systematic adaptation of [...] Read more.
Background: Exposure-based cognitive behavioral therapy (Ex-CBT) is widely seen as the gold-standard treatment for anxiety and obsessive-compulsive disorder (OCD). Yet, minoritized youth are underrepresented in efficacy studies, raising questions about the applicability of Ex-CBT to minoritized youth. Effectiveness data suggest systematic adaptation of Ex-CBT to address youth culture and context is likely needed, and many clinicians make adaptations and augmentations in practice. However, research on the specific strategies clinicians use to address their youth clients’ culture and context within anxiety and OCD treatment is lacking. In the current study, we assess practice-based adaptations, augmentations, and process-based approaches utilized when delivering treatment to youth for OCD and anxiety in public mental health clinics. Methods: We conducted qualitative interviews with 16 clinicians from both specialty anxiety and general mental health clinics serving youth with anxiety or OCD in the public mental health system. Participating clinicians had a mean age of 32.19 (SD = 5.87) and 69% of therapists identified as female; 69% identified as White, 25% identified as Asian, and 6% as Black or African American. In qualitative interviews, clinicians shared how they addressed clients’ culture and context (e.g., social identities, stressors and strengths related to social identities and lived environment). Thematic analysis identified the strategies clinicians employed to address culture and context. Results: Clinicians reported incorporating culture and context through process-based approaches (e.g., building trust gradually, considering clients’ social identity stressors, engaging in self-awareness to facilitate cultural responsiveness) and through culturally adapting and augmenting treatment to promote person-centered care. Core strategies included proactive and ongoing assessment of clients’ cultural and contextual factors, adapting exposures and augmenting Ex-CBT with strategies such as case management and discussion of cultural context, and taking a systems-informed approach to care. Conclusions: Examining practice-based adaptations, augmentations, and process-based approaches to treatment for minoritized youth with OCD or anxiety can inform efforts to understand what comprises person-centered culturally responsive Ex-CBT. Empirical testing of identified strategies is a needed area of future research. Full article
26 pages, 1794 KiB  
Review
Activating and Enhancing the Energy Flexibility Provided by a Pipe-Embedded Building Envelope: A Review
by Xiaochen Yang, Yanqing Li, Xiaoqiong Li, Khaled A. Metwally and Yan Ding
Buildings 2025, 15(15), 2793; https://doi.org/10.3390/buildings15152793 - 7 Aug 2025
Abstract
Building thermal mass offers a cost-effective solution to enhance the integration of energy supply and demand in dynamic energy systems. Thermally activated building systems (TABS), incorporating embedded heat tubes, shows strong potential for energy flexibility. However, the significant thermal inertia of TABS also [...] Read more.
Building thermal mass offers a cost-effective solution to enhance the integration of energy supply and demand in dynamic energy systems. Thermally activated building systems (TABS), incorporating embedded heat tubes, shows strong potential for energy flexibility. However, the significant thermal inertia of TABS also imposes challenges to precise load shift and indoor climate control. This review synthesizes key research on the effective demand-side management of TABS from multiple perspectives. It examines and compares various TABS configurations, including floor, ceiling, and wall systems. Differences in heat transfer performance between heating and cooling result in distinct application preferences for each type. The integration of advanced materials, such as phase change materials (PCM), can further enhance energy flexibility. TABS flexibility is primarily activated through adjustments to indoor operative temperature, with relevant influencing factors and regulatory constraints analyzed and discussed. Key aspects of optimizing building energy flexibility, including simulation methods and control strategies for TABS, are reviewed from both theoretical and practical perspectives. The energy and economic performance of TABS under various control strategies is analyzed in detail. This review provides insights to support the optimal design and operation of TABS within dynamic energy systems and to enhance the energy flexibility of building envelopes. Full article
Show Figures

Figure 1

19 pages, 2093 KiB  
Article
Risk Assessment of Prefabricated Building Projects Based on the G1-CRITIC Method and Cloud Model: A Case Study from China
by Zhipeng Zhang, Lini Duan and Xinran Du
Buildings 2025, 15(15), 2787; https://doi.org/10.3390/buildings15152787 - 7 Aug 2025
Abstract
To enhance the ability to identify and analyze the construction safety risks of prefabricated building projects, this paper explores the risk factors affecting the construction safety of prefabricated buildings from the perspective of the construction stage. Based on the WSR theory, this paper [...] Read more.
To enhance the ability to identify and analyze the construction safety risks of prefabricated building projects, this paper explores the risk factors affecting the construction safety of prefabricated buildings from the perspective of the construction stage. Based on the WSR theory, this paper identifies risk-influencing factors from five dimensions: personnel, materials, management, technology, and environment, and constructs a safety risk assessment index system. This paper establishes a risk assessment model based on the G1-CRITIC method and cloud model. Firstly, it quantitatively analyzes the weights of the risk indicators for prefabricated building construction, and then evaluates the specific degree of impact of each indicator on the construction risk of this type of project. The research results show that the project is at the low-risk level, but there are still some potential risks in terms of material and technical factors, which require close attention and targeted management. The evaluation results obtained by applying this model are consistent with the current actual situation of prefabricated building construction, further demonstrating the applicability of this model. The risk assessment model proposed in this paper, by focusing on a specific type of risk, comprehensively incorporates the fuzziness and randomness of risk factors, thereby more effectively capturing the dynamic characteristics of risk evolution. This model can effectively evaluate the level of safety risk management and plays a positive role in reducing the incidence of engineering accidents. Furthermore, it also provides practical experience that can be drawn upon by risk managers of similar projects which holds significant theoretical value and practical guiding significance. Full article
(This article belongs to the Section Construction Management, and Computers & Digitization)
Show Figures

Figure 1

25 pages, 5195 KiB  
Article
Individual Fish Broadband Echo Recognition Method and Performance Analysis Oriented to Aquaculture Scenarios
by Hang Yang, Jing Cheng, Guodong Li, Shujie Wan and Jun Chen
Fishes 2025, 10(8), 391; https://doi.org/10.3390/fishes10080391 - 7 Aug 2025
Abstract
Obtaining the echo of individual fish is an important prerequisite for fisheries acoustic applications, such as in situ measurement of fish target strength and assessment of fish abundance using the counting method. It is also the foundation for evaluating the growth status of [...] Read more.
Obtaining the echo of individual fish is an important prerequisite for fisheries acoustic applications, such as in situ measurement of fish target strength and assessment of fish abundance using the counting method. It is also the foundation for evaluating the growth status of farmed fish and managing aquaculture risks. The density of farmed fish populations is typically higher, and such high-density aquaculture further increases the difficulty of obtaining individual fish echoes in practical applications. Building upon previous research and considering the behavioral characteristics of fish in aquaculture settings, this study conducted performance simulations, live fish experiments in simulated aquaculture cages, and comparative evaluations of three individual fish broadband echo detection methods based on a broadband signal system: the amplitude pulse width method (APM) based on echo envelopes, the peak detection and time delay estimation method (PDM), and the peak time delay combined with instantaneous frequency method (PDIM). This study assumed a dorsolateral fish orientation, which limits its research scope and applicability. The results showed that the PDIM achieved a detection accuracy of 78.34% and a false recognition rate of 1.32%. The APM based on echo envelopes was insensitive to individual fish echoes and had lower recognition accuracy. The PDM exhibited better individual fish echo capture capabilities, while the PDIM demonstrated superior overlapping echo rejection capabilities. Full article
(This article belongs to the Special Issue Applications of Acoustics in Marine Fisheries)
Show Figures

Figure 1

23 pages, 1050 KiB  
Article
Lattice-Based Certificateless Proxy Re-Signature for IoT: A Computation-and-Storage Optimized Post-Quantum Scheme
by Zhanzhen Wei, Gongjian Lan, Hong Zhao, Zhaobin Li and Zheng Ju
Sensors 2025, 25(15), 4848; https://doi.org/10.3390/s25154848 - 6 Aug 2025
Abstract
Proxy re-signature enables transitive authentication of digital identities across different domains and has significant application value in areas such as digital rights management, cross-domain certificate validation, and distributed system access control. However, most existing proxy re-signature schemes, which are predominantly based on traditional [...] Read more.
Proxy re-signature enables transitive authentication of digital identities across different domains and has significant application value in areas such as digital rights management, cross-domain certificate validation, and distributed system access control. However, most existing proxy re-signature schemes, which are predominantly based on traditional public-key cryptosystems, face security vulnerabilities and certificate management bottlenecks. While identity-based schemes alleviate some issues, they introduce key escrow concerns. Certificateless schemes effectively resolve both certificate management and key escrow problems but remain vulnerable to quantum computing threats. To address these limitations, this paper constructs an efficient post-quantum certificateless proxy re-signature scheme based on algebraic lattices. Building upon algebraic lattice theory and leveraging the Dilithium algorithm, our scheme innovatively employs a lattice basis reduction-assisted parameter selection strategy to mitigate the potential algebraic attack vectors inherent in the NTRU lattice structure. This ensures the security and integrity of multi-party communication in quantum-threat environments. Furthermore, the scheme significantly reduces computational overhead and optimizes signature storage complexity through structured compression techniques, facilitating deployment on resource-constrained devices like Internet of Things (IoT) terminals. We formally prove the unforgeability of the scheme under the adaptive chosen-message attack model, with its security reducible to the hardness of the corresponding underlying lattice problems. Full article
(This article belongs to the Special Issue IoT Network Security (Second Edition))
Show Figures

Figure 1

33 pages, 26161 KiB  
Article
Adaptive Intermodal Transportation for Freight Resilience: An Integrated and Flexible Strategy for Managing Disruptions
by Siyavash Filom, Satrya Dewantara, Mahnam Saeednia and Saiedeh Razavi
Logistics 2025, 9(3), 107; https://doi.org/10.3390/logistics9030107 - 6 Aug 2025
Abstract
Background: Disruptions in freight transportation—such as service delays, infrastructure failures, and labor strikes—pose significant challenges to the reliability and efficiency of intermodal networks. To address these challenges, this study introduces Adaptive Intermodal Transportation (AIT), a resilient and flexible planning framework that enhances [...] Read more.
Background: Disruptions in freight transportation—such as service delays, infrastructure failures, and labor strikes—pose significant challenges to the reliability and efficiency of intermodal networks. To address these challenges, this study introduces Adaptive Intermodal Transportation (AIT), a resilient and flexible planning framework that enhances Synchromodal Freight Transport (SFT) by integrating real-time disruption management. Methods: Building on recent advances, we propose two novel strategies: (1) Reassign with Delay Buffer, which enables dynamic rerouting of shipments within a user-defined delay tolerance, and (2) (De)Consolidation, which allows splitting or merging of shipments across services depending on available capacity. These strategies are incorporated into a re-planning module that complements a baseline optimization model and a continuous disruption-monitoring system. Numerical experiments conducted on a Great Lakes-based case study evaluate the performance of the proposed strategies against a benchmark approach. Results: Results show that under moderate and high-disruption conditions, the proposed strategies reduce delay and disruption-incurred costs while increasing the percentage of matched shipments. The Reassign with Delay Buffer strategy offers controlled flexibility, while (De)Consolidation improves resource utilization in constrained environments. Conclusions: Overall, the AIT framework demonstrates strong potential for improving operational resilience in intermodal freight systems by enabling adaptive, disruption-aware planning decisions. Full article
Show Figures

Figure 1

37 pages, 13501 KiB  
Review
Research Progress on Risk Prevention and Control Technology for Lithium-Ion Battery Energy Storage Power Stations: A Review
by Weihang Pan
Batteries 2025, 11(8), 301; https://doi.org/10.3390/batteries11080301 - 6 Aug 2025
Abstract
Amidst the background of accelerated global energy transition, the safety risk of lithium-ion battery energy storage systems, especially the fire hazard, has become a key bottleneck hindering their large-scale application, and there is an urgent need to build a systematic prevention and control [...] Read more.
Amidst the background of accelerated global energy transition, the safety risk of lithium-ion battery energy storage systems, especially the fire hazard, has become a key bottleneck hindering their large-scale application, and there is an urgent need to build a systematic prevention and control program. This paper focuses on the fire characteristics and thermal runaway mechanism of lithium-ion battery energy storage power stations, analyzing the current situation of their risk prevention and control technology across the dimensions of monitoring and early warning technology, thermal management technology, and fire protection technology, and comparing and analyzing the characteristics of each technology from multiple angles. Building on this analysis, this paper summarizes the limitations of the existing technologies and puts forward prospective development paths, including the development of multi-parameter coupled monitoring and warning technology, integrated and intelligent thermal management technology, clean and efficient extinguishing agents, and dynamic fire suppression strategies, aiming to provide solid theoretical support and technical guidance for the precise risk prevention and control of lithium-ion battery storage power stations. Full article
(This article belongs to the Special Issue Advanced Battery Safety Technologies: From Materials to Systems)
Show Figures

Graphical abstract

17 pages, 220 KiB  
Article
Which Standards to Follow? The Plurality of Conventions of French Principals Within the School Organization
by Romuald Normand
Educ. Sci. 2025, 15(8), 998; https://doi.org/10.3390/educsci15080998 - 5 Aug 2025
Abstract
This study examines the moral agency of French secondary school headteachers through the lens of the theory of conventions. Using qualitative data from interviews with fifteen headteachers involved in professional development, this study explores how these leaders justify their practices within a centralized, [...] Read more.
This study examines the moral agency of French secondary school headteachers through the lens of the theory of conventions. Using qualitative data from interviews with fifteen headteachers involved in professional development, this study explores how these leaders justify their practices within a centralized, bureaucratic, and hierarchical education system. It identifies a variety of conventions—civic, domestic, industrial, project, market, inspired, and fame—that headteachers draw on to navigate institutional constraints, manage professional relationships, and foster pedagogical and organizational change. Particular attention is given to how civic and domestic conventions shape leadership discourse and practices, especially regarding trust building, decision making, and reform implementation. We also compare the French context with international examples from the International Successful School Principalship Project (ISSPP), focusing on Nordic countries, where leadership emphasizes democratic participation, professional trust, and shared responsibility. This study underscores the uniqueness of the French leadership model, which resists managerial and market logics while remaining rooted in republican and egalitarian ideals. It concludes by advocating for a more context-aware, ethically grounded, and dialogical approach to school leadership. Full article
15 pages, 5152 KiB  
Article
Assessment of Emergy, Environmental and Economic Sustainability of the Mango Orchard Production System in Hainan, China
by Yali Lei, Xiaohui Zhou and Hanting Cheng
Sustainability 2025, 17(15), 7030; https://doi.org/10.3390/su17157030 - 2 Aug 2025
Viewed by 252
Abstract
Mangoes are an important part of Hainan’s tropical characteristic agriculture. In response to the requirements of building an ecological civilization pilot demonstration zone in Hainan, China, green and sustainable development will be the future development trend of the mango planting system. However, the [...] Read more.
Mangoes are an important part of Hainan’s tropical characteristic agriculture. In response to the requirements of building an ecological civilization pilot demonstration zone in Hainan, China, green and sustainable development will be the future development trend of the mango planting system. However, the economic benefits and environmental impact during its planting and management process remain unclear. This paper combines emergy, life cycle assessment (LCA), and economic analysis to compare the system sustainability, environmental impact, and economic benefits of the traditional mango cultivation system (TM) in Dongfang City, Hainan Province, and the early-maturing mango cultivation system (EM) in Sanya City. The emergy evaluation results show that the total emergy input of EM (1.37 × 1016 sej ha−1) was higher than that of TM (1.32 × 1016 sej ha−1). From the perspective of the emergy index, compared with TM, EM exerted less pressure on the local environment and has better stability and sustainability. This was due to the higher input of renewable resources in EM. The LCA results showed that based on mass as the functional unit, the potential environmental impact of the EM is relatively high, and its total environmental impact index was 18.67–33.19% higher than that of the TM. Fertilizer input and On-Farm emissions were the main factors causing environmental consequences. Choosing alternative fertilizers that have a smaller impact on the environment may effectively reduce the environmental impact of the system. The economic analysis results showed that due to the higher selling price of early-maturing mango, the total profit and cost–benefit ratio of the EM have increased by 55.84% and 36.87%, respectively, compared with the TM. These results indicated that EM in Sanya City can enhance environmental sustainability and boost producers’ annual income, but attention should be paid to the negative environmental impact of excessive fertilizer input. These findings offer insights into optimizing agricultural inputs for Hainan mango production to mitigate multiple environmental impacts while enhancing economic benefits, aiming to provide theoretical support for promoting the sustainable development of the Hainan mango industry. Full article
Show Figures

Graphical abstract

25 pages, 1105 KiB  
Review
Review and Decision-Making Tree for Methods to Balance Indoor Environmental Comfort and Energy Conservation During Building Operation
by Shan Lin, Yu Zhang, Xuanjiang Chen, Chengzhi Pan, Xianjun Dong, Xiang Xie and Long Chen
Sustainability 2025, 17(15), 7016; https://doi.org/10.3390/su17157016 - 1 Aug 2025
Viewed by 276
Abstract
Effective building operation requires a careful balance between energy conservation and indoor environmental comfort. Although numerous methods have been developed to reduce energy consumption during the operational phase, their objectives and applications vary widely. However, the complexity of building energy management makes it [...] Read more.
Effective building operation requires a careful balance between energy conservation and indoor environmental comfort. Although numerous methods have been developed to reduce energy consumption during the operational phase, their objectives and applications vary widely. However, the complexity of building energy management makes it challenging to identify the most suitable methods that simultaneously achieve both comfort and efficiency goals. Existing studies often lack a systematic framework that supports integrated decision-making under comfort constraints. This research aims to address this gap by proposing a decision-making tree for selecting energy conservation methods during building operation with an explicit consideration of indoor environmental comfort. A comprehensive literature review is conducted to identify four main energy-consuming components during building operation: the building envelope, HVAC systems, lighting systems, and plug loads and appliances. Three key comfort indicators—thermal comfort, lighting comfort, and air quality comfort—are defined, and energy conservation methods are categorized into three strategic groups: passive strategies, control optimization strategies, and behavioural intervention strategies. Each method is assessed using a defined set of evaluation criteria. Subsequently, a questionnaire survey is administered for the calibration of the decision tree, incorporating stakeholder preferences and expert judgement. The findings contribute to the advancement of understanding regarding the co-optimization of energy conservation and occupant comfort in building operations. Full article
(This article belongs to the Special Issue Novel Technologies and Digital Design in Smart Construction)
Show Figures

Figure 1

25 pages, 953 KiB  
Article
Command Redefined: Neural-Adaptive Leadership in the Age of Autonomous Intelligence
by Raul Ionuț Riti, Claudiu Ioan Abrudan, Laura Bacali and Nicolae Bâlc
AI 2025, 6(8), 176; https://doi.org/10.3390/ai6080176 - 1 Aug 2025
Viewed by 216
Abstract
Artificial intelligence has taken a seat at the executive table and is threatening the fact that human beings are the only ones who should be in a position of power. This article gives conjectures on the future of leadership in which managers will [...] Read more.
Artificial intelligence has taken a seat at the executive table and is threatening the fact that human beings are the only ones who should be in a position of power. This article gives conjectures on the future of leadership in which managers will collaborate with learning algorithms in the Neural Adaptive Artificial Intelligence Leadership Model, which is informed by the transformational literature on leadership and socio-technical systems, as well as the literature on algorithmic governance. We assessed the model with thirty in-depth interviews, system-level traces of behavior, and a verified survey, and we explored six hypotheses that relate to algorithmic delegation and ethical oversight, as well as human judgment versus machine insight in terms of agility and performance. We discovered that decisions are made quicker, change is more effective, and interaction is more vivid where agile practices and good digital understanding exist, and statistical tests propose that human flexibility and definite governance augment those benefits as well. It is single-industry research that contains self-reported measures, which causes research to be limited to other industries that contain more objective measures. Practitioners are provided with a practical playbook on how to make algorithmic jobs meaningful, introduce moral fail-safes, and build learning feedback to ensure people and machines are kept in line. Socially, the practice is capable of minimizing bias and establishing inclusion by visualizing accountability in the code and practice. Filling the gap between the theory of leadership and the reality of algorithms, the study provides a model of intelligent systems leading in organizations that can be reproduced. Full article
(This article belongs to the Section AI Systems: Theory and Applications)
23 pages, 798 KiB  
Article
Aligning with SDGs in Construction: The Foreman as a Key Lever for Reducing Worker Risk-Taking
by Jing Feng, Kongling Liu and Qinge Wang
Sustainability 2025, 17(15), 7000; https://doi.org/10.3390/su17157000 - 1 Aug 2025
Viewed by 214
Abstract
Improving occupational health and safety (OHS) in the construction industry can contribute to the advancement of the Sustainable Development Goals (SDGs), particularly Goals 3 (Good Health and Well-being) and 8 (Decent Work and Economic Growth). Yet, workers’ risk-taking behaviors (RTBs) remain a persistent [...] Read more.
Improving occupational health and safety (OHS) in the construction industry can contribute to the advancement of the Sustainable Development Goals (SDGs), particularly Goals 3 (Good Health and Well-being) and 8 (Decent Work and Economic Growth). Yet, workers’ risk-taking behaviors (RTBs) remain a persistent challenge. Drawing on Social Cognitive Theory and Social Information Processing Theory, this study develops and tests a social influence model to examine how foremen’s safety attitudes (SAs) shape workers’ RTBs. Drawing on survey data from 301 construction workers in China, structural equation modeling reveals that foremen’s SAs significantly and negatively predict workers’ RTBs. However, the three dimensions of SAs—cognitive, affective, and behavioral—exert their influence through different pathways. Risk perception (RP) plays a key mediating role, particularly for the cognitive and behavioral dimensions. Furthermore, interpersonal trust (IPT) functions as a significant moderator in some of these relationships. By identifying the micro-social pathways that link foremen’s attitudes to workers’ safety behaviors, this study offers a testable theoretical framework for implementing the Sustainable Development Goals (particularly Goals 3 and 8) at the frontline workplace level. The findings provide empirical support for organizations to move beyond rule-based management and instead build more resilient OHS governance systems by systematically cultivating the multidimensional attitudes of frontline leaders. Full article
Show Figures

Figure 1

20 pages, 413 KiB  
Article
Spectral Graph Compression in Deploying Recommender Algorithms on Quantum Simulators
by Chenxi Liu, W. Bernard Lee and Anthony G. Constantinides
Computers 2025, 14(8), 310; https://doi.org/10.3390/computers14080310 - 1 Aug 2025
Viewed by 196
Abstract
This follow-up scientific case study builds on prior research to explore the computational challenges of applying quantum algorithms to financial asset management, focusing specifically on solving the graph-cut problem for investment recommendation. Unlike our prior study, which focused on idealized QAOA performance, this [...] Read more.
This follow-up scientific case study builds on prior research to explore the computational challenges of applying quantum algorithms to financial asset management, focusing specifically on solving the graph-cut problem for investment recommendation. Unlike our prior study, which focused on idealized QAOA performance, this work introduces a graph compression pipeline that enables QAOA deployment under real quantum hardware constraints. This study investigates quantum-accelerated spectral graph compression for financial asset recommendations, addressing scalability and regulatory constraints in portfolio management. We propose a hybrid framework combining the Quantum Approximate Optimization Algorithm (QAOA) with spectral graph theory to solve the Max-Cut problem for investor clustering. Our methodology leverages quantum simulators (cuQuantum and Cirq-GPU) to evaluate performance against classical brute-force enumeration, with graph compression techniques enabling deployment on resource-constrained quantum hardware. The results underscore that efficient graph compression is crucial for successful implementation. The framework bridges theoretical quantum advantage with practical financial use cases, though hardware limitations (qubit counts, coherence times) necessitate hybrid quantum-classical implementations. These findings advance the deployment of quantum algorithms in mission-critical financial systems, particularly for high-dimensional investor profiling under regulatory constraints. Full article
(This article belongs to the Section AI-Driven Innovations)
Show Figures

Figure 1

15 pages, 629 KiB  
Article
Pathways for Diagnosis and Multimodal Management, Including Botulinum Neurotoxin Therapy, in Shoulder Conditions Following Acquired Central Nervous System Lesions
by Bo Biering-Sørensen, Carlos Cordero-García, Chris Boulias, Damon Hoad, Djamel Bensmail, Franco Molteni, François Genêt, Jörg Wissel, Jorge Jacinto, Philippe Marque and Steffen Berweck
Toxins 2025, 17(8), 385; https://doi.org/10.3390/toxins17080385 - 31 Jul 2025
Viewed by 258
Abstract
There is limited published guidance available to help less experienced practitioners assess and manage shoulder conditions, including spasticity, after acquired central nervous system (CNS) lesions. To address this gap, 11 spasticity and dystonia experts convened in a 2023 meeting to build on existing [...] Read more.
There is limited published guidance available to help less experienced practitioners assess and manage shoulder conditions, including spasticity, after acquired central nervous system (CNS) lesions. To address this gap, 11 spasticity and dystonia experts convened in a 2023 meeting to build on existing guidance, provide consensus on best treatment practice, and develop expert recommendations to guide the diagnosis and treatment of complications of shoulder conditions following CNS lesions. Presentations by each expert on diagnosis and management were followed by discussion; consensus on assessment and treatment practices was identified and recommendations developed. The expert panel recommended an assessment approach structured using the following components: patient history, including interpretation of reported symptoms; observation of postures and pain responses; clinical examination with targeted tests for specific signs; diagnostic tests; and assessment of upper limb impairment, activity limitations, and participation restrictions. This assessment process and the recommended measures recognize the importance of identifying shoulder involvement in upper limb spasticity as part of the diagnostic process in shoulder conditions following CNS lesions. These recommendations provide a practical approach to diagnosis and treatment for clinicians who are less experienced in evaluating and treating such conditions, simplifying otherwise complicated clinical scenarios. Full article
(This article belongs to the Section Bacterial Toxins)
Show Figures

Figure 1

30 pages, 3319 KiB  
Article
A Pilot Study on Thermal Comfort in Young Adults: Context-Aware Classification Using Machine Learning and Multimodal Sensors
by Bibars Amangeldy, Timur Imankulov, Nurdaulet Tasmurzayev, Serik Aibagarov, Nurtugan Azatbekuly, Gulmira Dikhanbayeva and Aksultan Mukhanbet
Buildings 2025, 15(15), 2694; https://doi.org/10.3390/buildings15152694 - 30 Jul 2025
Viewed by 356
Abstract
While personal thermal comfort is critical for well-being and productivity, it is often overlooked by traditional building management systems that rely on uniform settings. Modern data-driven approaches often fail to capture the complex interactions between various data streams. This pilot study introduces a [...] Read more.
While personal thermal comfort is critical for well-being and productivity, it is often overlooked by traditional building management systems that rely on uniform settings. Modern data-driven approaches often fail to capture the complex interactions between various data streams. This pilot study introduces a high-accuracy, interpretable framework for thermal comfort classification, designed to identify the most significant predictors from a comprehensive suite of environmental, physiological, and anthropometric data in a controlled group of young adults. Initially, an XGBoost model using the full 24-feature dataset achieved the best performance at 91% accuracy. However, after using SHAP analysis to identify and select the most influential features, the performance of our ensemble models improved significantly; notably, a Random Forest model’s accuracy rose from 90% to 94%. Our analysis confirmed that for this homogeneous cohort, environmental parameters—specifically temperature, humidity, and CO2—were the dominant predictors of thermal comfort. The primary strength of this methodology lies in its ability to create a transparent pipeline that objectively identifies the most critical comfort drivers for a given population, forming a crucial evidence base for model design. The analysis also revealed that the predictive value of heart rate variability (HRV) diminished when richer physiological data, such as diastolic blood pressure, were included. For final validation, the optimized Random Forest model, using only the top 10 features, was tested on a hold-out set of 100 samples, achieving a final accuracy of 95% and an F1-score of 0.939, with all misclassifications occurring only between adjacent comfort levels. These findings establish a validated methodology for creating effective, context-aware comfort models that can be embedded into intelligent building management systems. Such adaptive systems enable a shift from static climate control to dynamic, user-centric environments, laying the critical groundwork for future personalized systems while enhancing occupant well-being and offering significant energy savings. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

Back to TopTop