Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (226)

Search Parameters:
Keywords = building energy harvesting

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1365 KiB  
Article
On Standard Cell-Based Design for Dynamic Voltage Comparators and Relaxation Oscillators
by Orazio Aiello
Chips 2025, 4(3), 31; https://doi.org/10.3390/chips4030031 - 30 Jul 2025
Viewed by 160
Abstract
This paper deals with a standard cell-based analog-in-concept pW-power building block as a comparator and a wake-up oscillator. Both topologies, traditionally conceived as an analog building block made by a custom process and supply voltage-dependent design flow, are designed only by using digital [...] Read more.
This paper deals with a standard cell-based analog-in-concept pW-power building block as a comparator and a wake-up oscillator. Both topologies, traditionally conceived as an analog building block made by a custom process and supply voltage-dependent design flow, are designed only by using digital gates, enabling them to be automated and fully synthesizable. This further results in supply voltage scalability and regulator-less operation, allowing direct powering by an energy harvester without additional ancillary circuit blocks (such as current and voltage sources). In particular, the circuit similarities in implementing a rail-to-rail dynamic voltage comparator and a relaxation oscillator using only digital gates are discussed. The building blocks previously reported in the literature by the author will be described, and the common root of their design will be highlighted. Full article
(This article belongs to the Special Issue IC Design Techniques for Power/Energy-Constrained Applications)
Show Figures

Figure 1

33 pages, 7013 KiB  
Article
Towards Integrated Design Tools for Water–Energy Nexus Solutions: Simulation of Advanced AWG Systems at Building Scale
by Lucia Cattani, Roberto Figoni, Paolo Cattani and Anna Magrini
Energies 2025, 18(14), 3874; https://doi.org/10.3390/en18143874 - 21 Jul 2025
Viewed by 448
Abstract
This study investigated the integration of advanced Atmospheric Water Generators (AWGs) within the design process of building energy systems, focusing on the water–energy nexus in the context of a real-life hospital building. It is based on a simulation approach, recognised as a viable [...] Read more.
This study investigated the integration of advanced Atmospheric Water Generators (AWGs) within the design process of building energy systems, focusing on the water–energy nexus in the context of a real-life hospital building. It is based on a simulation approach, recognised as a viable means to analyse and enhance AWG potentialities. However, the current state of research does not address the issue of AWG integration within building plant systems. This study contributes to fill such a research gap by building upon an authors’ previous work and proposing an enhanced methodology. The methodology describes how to incorporate a multipurpose AWG system into the energy simulation environment of DesignBuilder (DB), version 7.0.0116, through its coupling with AWGSim, version 1.20d, a simulation tool specifically developed for atmospheric water generators. The chosen case study is a wing of the Mondino Hospital in Pavia, Italy, selected for its complex geometry and HVAC requirements. By integrating AWG outputs—covering water production, heating, and cooling—into DB, this study compared two configurations: the existing HVAC system and an enhanced version that includes the AWG as plant support. The simulation results demonstrated a 16.3% reduction in primary energy consumption (from 231.3 MWh to 193.6 MWh), with the elimination of methane consumption and additional benefits in water production (257 m3). This water can be employed for photovoltaic panel cleaning, further reducing the primary energy consumption to 101.9 MWh (55.9% less than the existing plant), and for human consumption or other technical needs. Moreover, this study highlights the potential of using AWG technology to supply purified water, which can be a pivotal solution for hospitals located in areas affected by water crises. This research contributes to the atmospheric water field by addressing the important issue of simulating AWG systems within building energy design tools, enabling informed decisions regarding water–energy integration at the project stage and supporting a more resilient and sustainable approach to building infrastructure. Full article
(This article belongs to the Special Issue Performance Analysis of Building Energy Efficiency)
Show Figures

Figure 1

41 pages, 2392 KiB  
Review
How Beyond-5G and 6G Makes IIoT and the Smart Grid Green—A Survey
by Pal Varga, Áron István Jászberényi, Dániel Pásztor, Balazs Nagy, Muhammad Nasar and David Raisz
Sensors 2025, 25(13), 4222; https://doi.org/10.3390/s25134222 - 6 Jul 2025
Viewed by 732
Abstract
The convergence of next-generation wireless communication technologies and modern energy infrastructure presents a promising path toward sustainable and intelligent systems. This survey explores how beyond-5G and 6G communication technologies can support the greening of Industrial Internet of Things (IIoT) systems and smart grids. [...] Read more.
The convergence of next-generation wireless communication technologies and modern energy infrastructure presents a promising path toward sustainable and intelligent systems. This survey explores how beyond-5G and 6G communication technologies can support the greening of Industrial Internet of Things (IIoT) systems and smart grids. It highlights the critical challenges in achieving energy efficiency, interoperability, and real-time responsiveness across different domains. The paper reviews key enablers such as LPWAN, wake-up radios, mobile edge computing, and energy harvesting techniques for green IoT, as well as optimization strategies for 5G/6G networks and data center operations. Furthermore, it examines the role of 5G in enabling reliable, ultra-low-latency data communication for advanced smart grid applications, such as distributed generation, precise load control, and intelligent feeder automation. Through a structured analysis of recent advances and open research problems, the paper aims to identify essential directions for future research and development in building energy-efficient, resilient, and scalable smart infrastructures powered by intelligent wireless networks. Full article
(This article belongs to the Special Issue Feature Papers in the Internet of Things Section 2025)
Show Figures

Figure 1

19 pages, 3192 KiB  
Article
Evaluation of Solar Energy Performance in Green Buildings Using PVsyst: Focus on Panel Orientation and Efficiency
by Seyed Azim Hosseini, Seyed Alireza Mansoori Al-yasin, Mohammad Gheibi and Reza Moezzi
Eng 2025, 6(7), 137; https://doi.org/10.3390/eng6070137 - 24 Jun 2025
Viewed by 590
Abstract
This study explores the optimization of solar energy harvesting in Truro City in the UK using PVSyst simulations integrated with real-time meteorological data. Focusing on panel orientation, tilt angle, shading, and albedo, the research aimed to enhance both energy efficiency and economic viability [...] Read more.
This study explores the optimization of solar energy harvesting in Truro City in the UK using PVSyst simulations integrated with real-time meteorological data. Focusing on panel orientation, tilt angle, shading, and albedo, the research aimed to enhance both energy efficiency and economic viability of photovoltaic (PV) systems in green buildings. A 100 kWp rooftop solar installation served as the case study. Energy outputs derived from spreadsheet-based models and PVSyst simulations were compared to validate results. Optimal tilt angles were identified between 35° and 39°, and the azimuth angle of 0° yielded the highest energy gain without requiring solar tracking. Fixed configurations with a 5 m pitch showed only a 10% shading loss, requiring 1680 m2 of space and generating an average of 646.83 kWh/m2 monthly. Compared to recent works, our integration of real-time climate data improved simulation accuracy by 6–9%, refining operational planning and decision-making processes. This included better timing of high-load activities and enhanced prediction for grid feedback. The study demonstrates that data-driven optimization significantly improves performance reliability and system design, offering practical insights for solar infrastructure in similar temperate climates. These results provide a benchmark for urban energy planners seeking to balance performance and spatial constraints in PV deployment. Full article
(This article belongs to the Special Issue Interdisciplinary Insights in Engineering Research)
Show Figures

Figure 1

21 pages, 3047 KiB  
Review
Microgeneration of Electricity in Gyms—A Review and Conceptual Study
by Waldemar Moska and Andrzej Łebkowski
Energies 2025, 18(11), 2912; https://doi.org/10.3390/en18112912 - 2 Jun 2025
Viewed by 640
Abstract
This article presents a comprehensive analysis of the potential for microgeneration of electrical energy from human physical activity and reviews current commercial and research solutions, including stationary bicycles, treadmills, rowing ergometers, strength equipment, and kinetic floor systems. The physiological foundations of human energy [...] Read more.
This article presents a comprehensive analysis of the potential for microgeneration of electrical energy from human physical activity and reviews current commercial and research solutions, including stationary bicycles, treadmills, rowing ergometers, strength equipment, and kinetic floor systems. The physiological foundations of human energy generation are examined, with attention to key factors such as age, gender, fitness level, maximum oxygen uptake, heart rate, and hydration. The study includes mathematical models of energy conversion from metabolic to electrical output, incorporating fatigue as a limiting factor in long-duration performance. Available energy storage technologies (e.g., lithium-ion batteries, supercapacitors, and flywheels) and intelligent energy management systems (EMS) for use in sports facilities and net-zero energy buildings are also reviewed. As part of the study, a conceptual design of a multifunctional training and diagnostic device is proposed to illustrate potential technological directions. This device integrates microgeneration with dynamic physiological monitoring and adaptive load control through power electronic conversion. The paper highlights both the opportunities and limitations of harvesting human-generated energy and outlines future directions for sustainable energy applications in fitness environments. A preliminary economic analysis is also included, showing that while the energy payback alone is limited, the device offers commercial potential when combined with diagnostic and smart fitness services and may contribute to broader building energy efficiency strategies through integration with intelligent energy systems. Full article
(This article belongs to the Special Issue Advanced Technologies for Energy-Efficient Buildings)
Show Figures

Figure 1

22 pages, 2629 KiB  
Article
Optimal Rainwater Harvesting System for a Commercial Building: A Case Study Focusing on Water and Energy Efficiency
by Douglas Alves, Rita Teixeira, José Baptista, Ana Briga-Sá and Cristina Matos
Sustainability 2025, 17(10), 4584; https://doi.org/10.3390/su17104584 - 16 May 2025
Viewed by 562
Abstract
Water stress is a significant issue in many countries, including Portugal, which has seen a 20% reduction in water availability over the last 20 years, with a further 10–25% reduction expected by the end of the century. To address potable water consumption, this [...] Read more.
Water stress is a significant issue in many countries, including Portugal, which has seen a 20% reduction in water availability over the last 20 years, with a further 10–25% reduction expected by the end of the century. To address potable water consumption, this study aims to identify the optimal rainwater harvesting (RWH) system for a commercial building under various non-potable water use scenarios. This research involved qualitative and quantitative methods, utilizing the Rippl method for storage reservoir sizing and ETA 0701 version 11 guidelines. Various scenarios of non-potable water use were considered, including their budgets and economic feasibility. The best scenario was determined through cash flow analysis, considering the initial investment (RWH construction), income (water bill savings), and expenses (energy costs from hydraulic pumps), and evaluating the net present value (NPV), payback period (PB), and internal rate of return (IRR). The energy savings obtained were calculated by sizing a hybrid system with an RWH system and a photovoltaic (PV) system to supply the energy needs of each of the proposed scenarios and the water pump, making the system independent of the electricity grid. The results show that the best scenario resulted in energy savings of 92.11% for a 7-month period of regularization. These results also demonstrate the possibility for reducing potable water consumption in non-essential situations supported by renewable energy systems, thus helping to mitigate water stress while simultaneously reducing dependence on the grid. Full article
Show Figures

Figure 1

17 pages, 3432 KiB  
Article
Energy Efficiency Optimization for UAV-RIS-Assisted Wireless Powered Communication Networks
by Xianhao Shen, Ling Gu, Jiazhi Yang and Shuangqin Shen
Drones 2025, 9(5), 344; https://doi.org/10.3390/drones9050344 - 1 May 2025
Cited by 1 | Viewed by 925
Abstract
In urban environments, unmanned aerial vehicles (UAVs) can significantly enhance the performance of wireless powered communication networks (WPCNs), enabling reliable communication and efficient energy transfer for urban Internet of Things (IoTs) nodes. However, the complex urban landscape characterized by dense building structures and [...] Read more.
In urban environments, unmanned aerial vehicles (UAVs) can significantly enhance the performance of wireless powered communication networks (WPCNs), enabling reliable communication and efficient energy transfer for urban Internet of Things (IoTs) nodes. However, the complex urban landscape characterized by dense building structures and node distributions severely hampers the efficiency of wireless power transmission. To address this challenge, this paper presents a novel framework for urban WPCN systems assisted by UAVs equipped with reconfigurable intelligent surfaces (UAV-RISs). The framework adopts time division multiple access (TDMA) technology to coordinate the transmission process of information and energy. Considering two TDMA methods, the paper jointly optimizes the flight trajectory of the UAV, the energy harvesting scheduling of ground nodes, and the phase shift matrix of the RIS with the goal of improving the energy efficiency of the system. Furthermore, deep reinforcement learning (DRL) is introduced to effectively solve the formulated optimization problem. Simulation results demonstrate that the proposed optimized scheme outperforms benchmark schemes in terms of average throughput and energy efficiency. Experimental data also reveal the applicability of different TDMA strategies: dynamic TDMA exhibits superior performance in achieving higher average throughput at ground nodes in urban scenarios, while traditional TDMA is more advantageous for total energy harvesting efficiency. These findings provide critical theoretical insights and practical guidelines for UAV trajectory design and communication network optimization in urban environments. Full article
Show Figures

Figure 1

20 pages, 19306 KiB  
Article
Integrated Development of Mechanical Strength and Thermoelectric Properties in Cement Composites Incorporating Graphene Oxide and Manganese Dioxide
by Jude Shalitha Perera, Anuradha Silva, Priyan Mendis, Shanaka Kristombu Baduge, Aathavan Kuhanandha, Lochlan Hau and Philip Trinh
J. Compos. Sci. 2025, 9(4), 196; https://doi.org/10.3390/jcs9040196 - 21 Apr 2025
Viewed by 547
Abstract
Cement-based thermoelectric materials are gaining popularity among materials scientists due to their robust mechanical characteristics and suitability for thermal energy harvesting in building applications. However, despite advancements in the development of these materials, a significant knowledge gap persists regarding their mechanical characterisation. This [...] Read more.
Cement-based thermoelectric materials are gaining popularity among materials scientists due to their robust mechanical characteristics and suitability for thermal energy harvesting in building applications. However, despite advancements in the development of these materials, a significant knowledge gap persists regarding their mechanical characterisation. This research aimed to enhance the thermoelectric performance of cement composites through the incorporation of graphene oxide (GO) and manganese dioxide (MnO2), while ensuring adequate compressive strength was maintained. An experimental investigation was conducted to simultaneously assess both properties of cement composites using identical specimens. Additionally, microstructural analysis of the samples was performed to further understand the integrated development of these two properties. To evaluate the integrative properties, a Pareto analysis was performed to identify the Pareto-optimal solutions for specific applications. Additionally, a new index, termed the Thermoelectric Strength Index (TSI), was developed to compare materials in applications where both thermoelectric efficiency and mechanical robustness are important. The findings indicated that while both GO and MnO2 enhanced the thermoelectric properties of cement, their reactions with the cement phases produced distinct relationships with compressive strength, especially when GO and MnO2 were added together. The TSI demonstrated that MnO2 was superior for simultaneously enhancing mechanical strength and thermoelectric performance, with the 7.5 wt.% formulation yielding the best results. This study demonstrates the complex interrelationship between the mechanical strength and thermoelectric properties of the investigated fillers, underscoring the necessity for a holistic approach in the development of thermoelectric cement composites. Full article
(This article belongs to the Special Issue Mechanical Properties of Composite Materials and Joints)
Show Figures

Figure 1

16 pages, 3871 KiB  
Article
Economic Analysis of Biofuel Production in Agrophotovoltaic Systems Using Building-Integrated Photovoltaics in South Korea
by Youngjin Kim and Sojung Kim
Energies 2025, 18(8), 1949; https://doi.org/10.3390/en18081949 - 11 Apr 2025
Viewed by 527
Abstract
Agrophotovoltaic (APV) systems represent innovative agricultural farms and solar power plants, capable of producing electricity and crops simultaneously. Since the solar radiation required to optimize harvests varies by crop type, traditional PV panels face challenges in efficiently adjusting the shading ratio of APV [...] Read more.
Agrophotovoltaic (APV) systems represent innovative agricultural farms and solar power plants, capable of producing electricity and crops simultaneously. Since the solar radiation required to optimize harvests varies by crop type, traditional PV panels face challenges in efficiently adjusting the shading ratio of APV systems. This study evaluates the economic viability of APV systems integrated with building-integrated photovoltaic (BIPV) systems for biofuel production. Specifically, it assesses the production forecast for corn-based biofuel—demand for which is rising due to the mixed-fuel use policy of the Korean government—and the economic feasibility of production in the APV system enhanced by BIPV integration (i.e., the APV–BIPV system). To this end, LCOE (levelized cost of energy) and NPV (net present value) are employed as performance indicators. Additionally, yield data from corn and corn stover harvested in actual APV facilities are utilized to predict bioenergy production. Consequently, the study will analyze the impact of renewable energy production from the proposed APV–BIPV system on achieving the Korean government’s renewable energy production goals and will provide guidelines on the potential benefits for farmers involved in renewable energy production and energy crop harvesting. Full article
(This article belongs to the Section A: Sustainable Energy)
Show Figures

Figure 1

33 pages, 5236 KiB  
Review
A Review and Characterization of Energy-Harvesting Resources in Buildings with a Case Study of a Commercial Building in a Cold Climate—Toronto, Canada
by Jeremy Lytle, Zenon Radewych, Kristiina Valter Mai and Alan S. Fung
Energies 2025, 18(8), 1913; https://doi.org/10.3390/en18081913 - 9 Apr 2025
Viewed by 531
Abstract
The present work provides a framework for the comprehensive assessment of energy-harvesting resources in buildings, encompassing environmental, anthropogenic, and recyclable sources. A review of resources and state-of-the-art energy-harvesting technologies is presented, including an outlook on the future theoretical limitations of their performance. The [...] Read more.
The present work provides a framework for the comprehensive assessment of energy-harvesting resources in buildings, encompassing environmental, anthropogenic, and recyclable sources. A review of resources and state-of-the-art energy-harvesting technologies is presented, including an outlook on the future theoretical limitations of their performance. The assessment framework is applied to a case-study commercial building located in Toronto, Ontario, Canada. The available resources are categorized into three orders of magnitude with respect to achievable power generation, with solar and wind in the first tier, elevator potential and fitness centres in the second tier, and sources including vibrations, occupant traffic, and thermoelectric conversion in the third. Situated in a mid-rise context, the total annual resource magnitude is found to be eight times greater than the building demand. However, only an overall 10% of the available resource is converted with the harvesting applications and efficiencies considered, resulting in a net energy deficit. It is shown that with maximum theoretical efficiencies, the conversion rate can reach 30% resulting in 151% surplus electrical generation for the building in question. Full article
Show Figures

Figure 1

27 pages, 6612 KiB  
Article
Integrated Atmospheric Water Generators for Building Sustainability: A Simulation-Based Approach
by Lucia Cattani, Roberto Figoni, Paolo Cattani and Anna Magrini
Energies 2025, 18(7), 1839; https://doi.org/10.3390/en18071839 - 5 Apr 2025
Cited by 1 | Viewed by 1149
Abstract
This paper presents the first results of a broader study aimed at considering atmospheric water generation as a viable option within sustainable building design strategies. In particular, the focus is on integrated systems in which atmospheric water generator (AWG) machines, in addition to [...] Read more.
This paper presents the first results of a broader study aimed at considering atmospheric water generation as a viable option within sustainable building design strategies. In particular, the focus is on integrated systems in which atmospheric water generator (AWG) machines, in addition to producing water, support HVAC systems. The research focuses on the combined use of two different simulation tools: a commercial tool designed to study the energy balance of buildings and a custom-developed software for AWG modelling. This is the first step of a more complex procedure of software integration that is aimed to provide designers with a method to implement AWGs in the design process of buildings, both residential or industrial. This preliminary procedure is applied to a case study concerning the link between an advanced integrated AWG and a building housing inverters and transformers that belong to a photovoltaic field. The scope of the integration consists in enhancing the energy sustainability of atmospheric water intended for hydrogen production and panel washing by means of the dry and cold air flux that comes from the cycle of vapour condensation. The results highlight the potentialities of the integrated design, which includes AWGs, to enhance the final efficiency of sustainable housing. In particular, the joint action of the simulation tools used in this study provides insights about the possibility to reduce the size of traditional chiller that serve the building by an order of magnitude, and to achieve an energy saving of 29.8 MWh a year. Full article
Show Figures

Graphical abstract

23 pages, 2621 KiB  
Article
Analysing the Water–Energy Nexus Considering Rainwater Harvesting in Buildings
by Tânia Mara Sebben Oneda and Enedir Ghisi
Water 2025, 17(7), 1037; https://doi.org/10.3390/w17071037 - 31 Mar 2025
Viewed by 504
Abstract
Rainwater harvesting has been widely discussed globally due to major concerns regarding climate change and water scarcity. This paper aims to analyse and evaluate rainwater harvesting in buildings and its relationship with the water–energy nexus. Five types of buildings were analysed: public, industrial, [...] Read more.
Rainwater harvesting has been widely discussed globally due to major concerns regarding climate change and water scarcity. This paper aims to analyse and evaluate rainwater harvesting in buildings and its relationship with the water–energy nexus. Five types of buildings were analysed: public, industrial, commercial, single-family houses, and multi-family residential buildings within the Cubatão do Norte river watershed in Joinville, Brazil. Using simulations in the Netuno programme, the potential for potable water savings was calculated. This potential was compared to the energy consumption for potable water treatment by the municipality. The average potential for potable water savings was the following: 28.18% for public buildings, 50.83% for industrial buildings, 34.12% for commercial buildings, 23.12% for single-family houses, and 18.55% for multi-family residential buildings. After analysing the energy savings for the entire watershed, the average savings were 245 kWh/day for all public sector buildings, 209 kWh/day for all industrial sector buildings, 8 kWh/day for all commercial sector buildings, 25 kWh/day for all single-family houses, and 15 kWh/day for all multi-family residential buildings. Over a year, energy savings can range from 135,426 kWh to 240,900 kWh in all the buildings studied in Joinville. Finally, further studies on the water–energy nexus are needed to make cities more resilient and sustainable in terms of using resources. Full article
(This article belongs to the Section Urban Water Management)
Show Figures

Graphical abstract

26 pages, 5315 KiB  
Article
Biomimicry-Based Design of Underground Cold Storage Facilities: Energy Efficiency and Sustainability
by Mugdha Kshirsagar, Sanjay Kulkarni, Ankush Kumar Meena, Danby Caetano D’costa, Aroushi Bhagwat, Md Irfanul Haque Siddiqui and Dan Dobrotă
Biomimetics 2025, 10(2), 122; https://doi.org/10.3390/biomimetics10020122 - 18 Feb 2025
Viewed by 1631
Abstract
Underground cold storage gives rise to special challenges that require innovative solutions to ensure maximum energy efficiency. Conventional energy systems tend to be based on high energy use, so sustainable solutions are crucial. This study explores the novel idea of biomimetics and how [...] Read more.
Underground cold storage gives rise to special challenges that require innovative solutions to ensure maximum energy efficiency. Conventional energy systems tend to be based on high energy use, so sustainable solutions are crucial. This study explores the novel idea of biomimetics and how it might be used in the planning and building of underground cold storage facilities as well as other infrastructure projects. Biomimetic strategies, inspired by termite mounds, gentoo penguin feathers, and beehive structures, are applied to minimize reliance on energy-intensive cooling systems. These natural models offer efficient thermal regulation, airflow optimization, and passive cooling mechanisms such as geothermal energy harvesting. The integration of naturally driven convection and ventilation ensures stable internal temperatures under varying conditions. Biomimicry was employed in Revit Architecture, coupled with structural optimization, to eliminate urban space’s limitations and further increase energy efficiency. The analytical work for this paper utilized a set of formulas that represent heat flow, thermal resistance, R-value, thermal transmittance, U-value, solar absorption, and G-value. The results pointed to very good insulation, with exterior walls having an R-value of 10.2 m2K/W and U-value of 0.98 W/m2K. Among the chosen 3-layer ETFE cushion with a U-value of 1.96 W/m2K, with a G-value of 0.50, showed good heat regulation and daylight management. Furthermore, bagasse-cement composites with a very low thermal conductivity of 0.10–0.30 W/m·K provided good insulation. This research proposes a scalable and sustainable approach in the design of underground cold storage by merging modelling based on Revit with thermal simulations. Biomimicry has been demonstrated to have the potential for changing subterranean infrastructure, conserving energy consumption, and creating eco-friendly construction practices. Full article
Show Figures

Figure 1

20 pages, 9485 KiB  
Article
From Waste to Functional Material—Carbon Aerogels from Citrus Biomass Infiltrated with Phase Change Materials for Possible Application in Solar-Thermal Energy Conversion and Storage
by Katarzyna Suchorowiec, Martyna Bieda, Martyna Szatkowska, Małgorzata Sieradzka, Monika Kuźnia, Magdalena Ziąbka and Kinga Pielichowska
Energies 2025, 18(4), 814; https://doi.org/10.3390/en18040814 - 10 Feb 2025
Cited by 2 | Viewed by 1006
Abstract
Green energy conversion and storage materials have become a focal point of research in recent times, especially in energy-consuming buildings. Phase change materials (PCMs) have gained more and more attention not only for energy storage but also in composites for solar energy conversion. [...] Read more.
Green energy conversion and storage materials have become a focal point of research in recent times, especially in energy-consuming buildings. Phase change materials (PCMs) have gained more and more attention not only for energy storage but also in composites for solar energy conversion. This research investigates a sustainable method for converting orange biomass waste (OBW) into advanced porous carbon aerogel (PCA) composites, designed for solar-thermal energy harvesting and storage in building applications. Using potato starch as a binder, the research develops a process for producing a uniform and lightweight carbon matrix that could be scalable. The best results were found for PCA obtained with 2.5% starch, where the lowest mass loss (8.2, 0.5, 11.2% pt) was observed during the leakage test. This study highlights the suitability of OBW-derived aerogels as effective matrices for PCM impregnation and shape stabilization, indicating their future potential in solar-thermal energy conversion and storage and potentially lowering energy consumption in buildings. By repurposing agricultural waste, this work contributes to sustainable material development and advances the application of renewable energy technologies. Full article
(This article belongs to the Special Issue Phase Change Materials for Building Energy Applications)
Show Figures

Figure 1

22 pages, 6919 KiB  
Article
Assessment of Possibilities of Using Local Renewable Resources in Road Infrastructure Facilities—A Case Study from Poland
by Agnieszka Stec, Daniel Słyś, Przemysław Ogarek, Kacper Bednarz, Izabela Bartkowska, Joanna Gwoździej-Mazur, Małgorzata Iwanek and Beata Kowalska
Energies 2024, 17(24), 6351; https://doi.org/10.3390/en17246351 - 17 Dec 2024
Cited by 2 | Viewed by 1110
Abstract
The rising demand for water and energy is driving the overuse of natural resources and contributing to environmental degradation. To address these challenges, the focus has shifted to low- and zero-emission technologies that utilize alternative sources of water and energy. Although such systems [...] Read more.
The rising demand for water and energy is driving the overuse of natural resources and contributing to environmental degradation. To address these challenges, the focus has shifted to low- and zero-emission technologies that utilize alternative sources of water and energy. Although such systems are commonly applied in residential, commercial, and industrial buildings, facilities along transportation routes generally depend on grid connections. This study aimed to enhance operational independence and reduce environmental impacts by modernizing the Rest Area Stobierna (RAS) along Poland’s S19 expressway, part of the Via Carpatia road. A comprehensive technical, economic, and environmental analysis was conducted using HOMER Pro software (3.18.3 PRO Edition) and a simulation model based on YAS operating principles. The proposed Hybrid Renewable Energy System (HRES) incorporates photovoltaic panels, battery storage, and a rainwater harvesting system (RWHS). Two configurations of the HRES were evaluated, a prosumer-based setup and a hybrid-island mode. Optimization results showed that the hybrid-island configuration was most effective, achieving a 61.6% share of renewable energy in the annual balance, a 7.1-year return on investment, a EUR 0.77 million reduction in Net Present Cost (NPC), and a 75,002 kg decrease in CO2 emissions over the system’s 25-year lifecycle. This study highlights the potential of integrating renewable energy and water systems to improve sustainability, reduce operational costs, and enhance service quality in road infrastructure facilities, offering a replicable model for similar contexts. Full article
(This article belongs to the Section A: Sustainable Energy)
Show Figures

Figure 1

Back to TopTop