Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (14,737)

Search Parameters:
Keywords = building energy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 8377 KiB  
Article
Investigation of Wind Pressure Dynamics on Low-Rise Buildings in Sand-Laden Wind Environments
by Di Hu, Teng Zhang and Qiang Jin
Buildings 2025, 15(15), 2779; https://doi.org/10.3390/buildings15152779 - 6 Aug 2025
Abstract
To enhance the structural safety in wind-sand regions, this study employs the Euler-Lagrange numerical method to investigate the wind pressure characteristics of typical low-rise auxiliary buildings in a strong wind-blown sand environment. The results reveal that sand particle motion dissipates wind energy, leading [...] Read more.
To enhance the structural safety in wind-sand regions, this study employs the Euler-Lagrange numerical method to investigate the wind pressure characteristics of typical low-rise auxiliary buildings in a strong wind-blown sand environment. The results reveal that sand particle motion dissipates wind energy, leading to a slight reduction in average wind speed, while the increase in small-scale vortex energy enhances fluctuating wind speed. In the sand-laden wind field, the average wind pressure coefficient shows no significant change, whereas the fluctuating wind pressure coefficient increases markedly, particularly in the windward region of the building. Analysis of the skewness and kurtosis of wind pressure reveals that the non-Gaussian characteristics of wind pressure are amplified in the sand-laden wind, thereby elevating the risk of damage to the building envelope. Consequently, it is recommended that the design fluctuating wind load for envelopes and components of low-rise buildings in wind-sand regions be increased by 10% to enhance structural resilience. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

22 pages, 19937 KiB  
Article
Development and Evaluation of a Two-Dimensional Extension/Contraction-Driven Rover for Sideslip Suppression During Slope Traversal
by Kenta Sagara, Daisuke Fujiwara and Kojiro Iizuka
Aerospace 2025, 12(8), 699; https://doi.org/10.3390/aerospace12080699 - 6 Aug 2025
Abstract
Wheeled rovers are widely used in lunar and planetary exploration missions owing to their mechanical simplicity and energy efficiency. However, they face serious mobility challenges on sloped soft terrain, especially in terms of sideslip and loss of attitude angle when traversing across slopes. [...] Read more.
Wheeled rovers are widely used in lunar and planetary exploration missions owing to their mechanical simplicity and energy efficiency. However, they face serious mobility challenges on sloped soft terrain, especially in terms of sideslip and loss of attitude angle when traversing across slopes. Previous research proposed using wheelbase extension/contraction and intentionally sinking wheels into the ground, thereby increasing shear resistance and reducing sideslip. Building upon this concept, this study proposes a novel recovery method that integrates beam extension/contraction and Archimedean screw-shaped wheels to enable lateral movement without rotating the rover body. The beam mechanism allows for independent wheel movement, maintaining stability by anchoring stationary wheels during recovery. Meanwhile, the helical structure of the screw wheels helps reduce lateral earth pressure by scraping soil away from the sides, improving lateral drivability. Driving experiments on a sloped sandbox test bed confirmed that the proposed 2DPPL (two-dimensional push-pull locomotion) method significantly reduces sideslip and prevents a drop in attitude angle during slope traversal. Full article
Show Figures

Figure 1

19 pages, 8559 KiB  
Article
Flexural Behavior of Concrete Beam and Slab with Novel Demountable Connectors
by Wei Li, Wei Chen, Huaming Jiang and Hongzhi Su
Buildings 2025, 15(15), 2776; https://doi.org/10.3390/buildings15152776 - 6 Aug 2025
Abstract
In this study, a new type of novel demountable connector is proposed to enable complete dry connections between concrete beams and slabs, facilitating the full demountable design of these components. To analyze and evaluate the flexural performance of the concrete beams with the [...] Read more.
In this study, a new type of novel demountable connector is proposed to enable complete dry connections between concrete beams and slabs, facilitating the full demountable design of these components. To analyze and evaluate the flexural performance of the concrete beams with the novel demountable connectors, a finite element model was developed, which was then validated by previous tests. The results indicate that bolt diameter, bolt strength, channel spacing, and concrete slab thickness have a significant impact on peak load, while concrete beam strength, concrete slab strength, and flange width have minimal influence. Similarly, flexural stiffness is strongly affected by bolt diameter, channel spacing, concrete slab strength, slab thickness, and flange width, whereas bolt strength and concrete beam strength play a lesser role. Notably, the finite element analysis confirms the absence of plastic deformation in most bolts and end plates, ensuring that the flexural components are designed for effective disassembly. A theoretical model for calculating the ultimate flexural moment of demountable concrete beams under different conditions is also proposed, and it agrees with the ultimate flexural moment from numerical analysis. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

37 pages, 1907 KiB  
Review
Research Progress on Risk Prevention and Control Technology for Lithium-Ion Battery Energy Storage Power Stations: A Review
by Weihang Pan
Batteries 2025, 11(8), 301; https://doi.org/10.3390/batteries11080301 - 6 Aug 2025
Abstract
Amidst the background of accelerated global energy transition, the safety risk of lithium-ion battery energy storage systems, especially the fire hazard, has become a key bottleneck hindering their large-scale application, and there is an urgent need to build a systematic prevention and control [...] Read more.
Amidst the background of accelerated global energy transition, the safety risk of lithium-ion battery energy storage systems, especially the fire hazard, has become a key bottleneck hindering their large-scale application, and there is an urgent need to build a systematic prevention and control program. This paper focuses on the fire characteristics and thermal runaway mechanism of lithium-ion battery energy storage power stations, analyzing the current situation of their risk prevention and control technology across the dimensions of monitoring and early warning technology, thermal management technology, and fire protection technology, and comparing and analyzing the characteristics of each technology from multiple angles. Building on this analysis, this paper summarizes the limitations of the existing technologies and puts forward prospective development paths, including the development of multi-parameter coupled monitoring and warning technology, integrated and intelligent thermal management technology, clean and efficient extinguishing agents, and dynamic fire suppression strategies, aiming to provide solid theoretical support and technical guidance for the precise risk prevention and control of lithium-ion battery storage power stations. Full article
(This article belongs to the Special Issue Advanced Battery Safety Technologies: From Materials to Systems)
Show Figures

Graphical abstract

24 pages, 2863 KiB  
Article
An Integrated Bond Graph Methodology for Building Performance Simulation
by Abdelatif Merabtine
Energies 2025, 18(15), 4168; https://doi.org/10.3390/en18154168 - 6 Aug 2025
Abstract
Building performance simulation is crucial for the design and optimization of sustainable buildings. However, the increasing complexity of building systems necessitates advanced modeling techniques capable of handling multi-domain interactions. This paper presents a novel application of the bond graph (BG) methodology to simulate [...] Read more.
Building performance simulation is crucial for the design and optimization of sustainable buildings. However, the increasing complexity of building systems necessitates advanced modeling techniques capable of handling multi-domain interactions. This paper presents a novel application of the bond graph (BG) methodology to simulate and analyze the thermal behavior of an integrated trigeneration system within an experimental test cell. Unlike conventional simulation approaches, the BG framework enables unified modeling of thermal and hydraulic subsystems, offering a physically consistent and energy-based representation of system dynamics. The study investigates the system’s performance under both dynamic and steady-state conditions across two distinct climatic periods. Validation against experimental data reveals strong agreement between measured and simulated temperatures in heating and cooling scenarios, with minimal deviations. This confirms the method’s reliability and its capacity to capture transient thermal behaviors. The results also demonstrate the BG model’s effectiveness in supporting predictive control strategies, optimizing energy efficiency, and maintaining thermal comfort. By integrating hydraulic circuits and thermal exchange processes within a single modeling framework, this work highlights the potential of bond graphs as a robust and scalable tool for advanced building performance simulation. Full article
(This article belongs to the Section G: Energy and Buildings)
Show Figures

Figure 1

24 pages, 9695 KiB  
Article
Dynamic Response and Stress Evolution of RPC Slabs Protected by a Three-Layered Energy-Dissipating System Based on the SPH-FEM Coupled Method
by Dongmin Deng, Hanqing Zhong, Shuisheng Chen and Zhixiang Yu
Buildings 2025, 15(15), 2769; https://doi.org/10.3390/buildings15152769 - 6 Aug 2025
Abstract
Aiming at the lightweight design of a bridge-shed integration structure, this paper presents a three-layered absorbing system in which a part of the sand cushion is replaced by expanded polystyrene (EPS) geofoam and the reinforced concrete (RC) protective slab is arranged above the [...] Read more.
Aiming at the lightweight design of a bridge-shed integration structure, this paper presents a three-layered absorbing system in which a part of the sand cushion is replaced by expanded polystyrene (EPS) geofoam and the reinforced concrete (RC) protective slab is arranged above the sand cushion to enhance the composite system’s safety. A three-dimensional Smoothed Particle Hydrodynamics–Finite Element Method (SPH-FEM) coupled numerical model is developed in LS-DYNA (Livermore Software Technology Corporation, Livermore, CA, USA, version R13.1.1), with its validity rigorously verified. The dynamic response of rockfall impacts on the shed slab with composite cushions of various thicknesses is analyzed by varying the thickness of sand and EPS materials. To optimize the cushion design, a specific energy dissipation ratio (SEDR), defined as the energy dissipation rate per unit mass (η/M), is introduced as a key performance metric. Furthermore, the complicated interactional mechanism between the rockfall and the optimum-thickness composite system is rationally interpreted, and the energy dissipation mechanism of the composite cushion is revealed. Using logistic regression, the ultimate stress state of the reactive powder concrete (RPC) slab is methodically analyzed, accounting for the speed and mass of the rockfall. The results are indicative of the fact that the composite cushion not only has less dead weight but also exhibits superior impact resistance compared to the 90 cm sand cushions; the impact resistance performance index SEDR of the three-layered absorbing system reaches 2.5, showing a remarkable 55% enhancement compared to the sand cushion (SEDR = 1.61). Additionally, both the sand cushion and the RC protective slab effectively dissipate most of the impact energy, while the EPS material experiences relatively little internal energy build-up in comparison. This feature overcomes the traditional vulnerability of EPS subjected to impact loads. One of the highlights of the present investigation is the development of an identification model specifically designed to accurately assess the stress state of RPC slabs under various rockfall impact conditions. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

14 pages, 1855 KiB  
Article
Sustainable Investments in Construction: Cost–Benefit Analysis Between Rehabilitation and New Building in Romania
by Tudor Panfil Toader, Marta-Ioana Moldoveanu, Daniela-Mihaiela Boca, Raluca Iștoan, Lidia Maria Lupan, Aurelia Bradu, Andreea Hegyi and Ana Boga
Buildings 2025, 15(15), 2770; https://doi.org/10.3390/buildings15152770 - 6 Aug 2025
Abstract
Sustainable investments in construction are essential for the development of communities and for reducing environmental impacts. This study analyzes two scenarios: rehabilitation of an existing building and construction of a new NZEB-compliant building, based on a life cycle cost–benefit analysis. The results show [...] Read more.
Sustainable investments in construction are essential for the development of communities and for reducing environmental impacts. This study analyzes two scenarios: rehabilitation of an existing building and construction of a new NZEB-compliant building, based on a life cycle cost–benefit analysis. The results show that both scenarios generate negative Net Present Values (NPVs) due to the social nature of the project, but the new NZEB building presents superior performance (NPV: USD –2.61 million vs. USD –3.05 million for rehabilitation) and lower operational costs (USD 1.49 million vs. USD 1.92 million over 30 years). Key financial indicators (IRR, CBR), sensitivity analysis, and discount rate variation support the conclusion that the NZEB scenario ensures greater economic resilience. This study highlights the relevance of extended LCCBA in guiding sustainable investment decisions in social infrastructure. Full article
Show Figures

Figure 1

31 pages, 1803 KiB  
Article
A Hybrid Machine Learning Approach for High-Accuracy Energy Consumption Prediction Using Indoor Environmental Quality Sensors
by Bibars Amangeldy, Nurdaulet Tasmurzayev, Timur Imankulov, Baglan Imanbek, Waldemar Wójcik and Yedil Nurakhov
Energies 2025, 18(15), 4164; https://doi.org/10.3390/en18154164 - 6 Aug 2025
Abstract
Accurate forecasting of energy consumption in buildings is essential for achieving energy efficiency and reducing carbon emissions. However, many existing models rely on limited input variables and overlook the complex influence of indoor environmental quality (IEQ). In this study, we assess the performance [...] Read more.
Accurate forecasting of energy consumption in buildings is essential for achieving energy efficiency and reducing carbon emissions. However, many existing models rely on limited input variables and overlook the complex influence of indoor environmental quality (IEQ). In this study, we assess the performance of hybrid machine learning ensembles for predicting hourly energy demand in a smart office environment using high-frequency IEQ sensor data. Environmental variables including carbon dioxide concentration (CO2), particulate matter (PM2.5), total volatile organic compounds (TVOCs), noise levels, humidity, and temperature were recorded over a four-month period. We evaluated two ensemble configurations combining support vector regression (SVR) with either Random Forest or LightGBM as base learners and Ridge regression as a meta-learner, alongside single-model baselines such as SVR and artificial neural networks (ANN). The SVR combined with Random Forest and Ridge regression demonstrated the highest predictive performance, achieving a mean absolute error (MAE) of 1.20, a mean absolute percentage error (MAPE) of 8.92%, and a coefficient of determination (R2) of 0.82. Feature importance analysis using SHAP values, together with non-parametric statistical testing, identified TVOCs, humidity, and PM2.5 as the most influential predictors of energy use. These findings highlight the value of integrating high-resolution IEQ data into predictive frameworks and demonstrate that such data can significantly improve forecasting accuracy. This effect is attributed to the direct link between these IEQ variables and the activation of energy-intensive systems; fluctuations in humidity drive HVAC energy use for dehumidification, while elevated pollutant levels (TVOCs, PM2.5) trigger increased ventilation to maintain indoor air quality, thus raising the total energy load. Full article
Show Figures

Figure 1

18 pages, 2108 KiB  
Article
Machine Learning Forecasting of Commercial Buildings’ Energy Consumption Using Euclidian Distance Matrices
by Connor Scott and Alhussein Albarbar
Energies 2025, 18(15), 4160; https://doi.org/10.3390/en18154160 - 5 Aug 2025
Abstract
Governments worldwide have set ambitious targets for decarbonising energy grids, driving the need for increased renewable energy generation and improved energy efficiency. One key strategy for achieving this involves enhanced energy management in buildings, often using machine learning-based forecasting methods. However, such methods [...] Read more.
Governments worldwide have set ambitious targets for decarbonising energy grids, driving the need for increased renewable energy generation and improved energy efficiency. One key strategy for achieving this involves enhanced energy management in buildings, often using machine learning-based forecasting methods. However, such methods typically rely on extensive historical data collected via costly sensor installations—resources that many buildings lack. This study introduces a novel forecasting approach that eliminates the need for large-scale historical datasets or expensive sensors. By integrating custom-built models with existing energy data, the method applies calculated weighting through a distance matrix and accuracy coefficients to generate reliable forecasts. It uses readily available building attributes—such as floor area and functional type to position a new building within the matrix of existing data. A Euclidian distance matrix, akin to a K-nearest neighbour algorithm, determines the appropriate neural network(s) to utilise. These findings are benchmarked against a consolidated, more sophisticated neural network and a long short-term memory neural network. The dataset has hourly granularity over a 24 h horizon. The model consists of five bespoke neural networks, demonstrating the superiority of other models with a 610 s training duration, uses 500 kB of storage, achieves an R2 of 0.9, and attains an average forecasting accuracy of 85.12% in predicting the energy consumption of the five buildings studied. This approach not only contributes to the specific goal of a fully decarbonized energy grid by 2050 but also establishes a robust and efficient methodology for maintaining standards with existing benchmarks while providing more control over the method. Full article
Show Figures

Figure 1

35 pages, 6795 KiB  
Article
Thermal Analysis of Energy Efficiency Performance and Indoor Comfort in a LEED-Certified Campus Building in the United Arab Emirates
by Khushbu Mankani, Mutasim Nour and Hassam Nasarullah Chaudhry
Energies 2025, 18(15), 4155; https://doi.org/10.3390/en18154155 - 5 Aug 2025
Abstract
Enhancing the real-world performance of sustainably designed and certified green buildings remains a significant challenge, particularly in hot climates where efforts to improve thermal comfort often conflict with energy efficiency goals. In the United Arab Emirates (UAE), even newly constructed facilities with green [...] Read more.
Enhancing the real-world performance of sustainably designed and certified green buildings remains a significant challenge, particularly in hot climates where efforts to improve thermal comfort often conflict with energy efficiency goals. In the United Arab Emirates (UAE), even newly constructed facilities with green building certifications present opportunities for retrofitting and performance optimization. This study investigates the energy and thermal comfort performance of a LEED Gold-certified, mixed-use university campus in Dubai through a calibrated digital twin developed using IES thermal modelling software. The analysis evaluated existing sustainable design strategies alongside three retrofit energy conservation measures (ECMs): (1) improved building envelope U-values, (2) installation of additional daylight sensors, and (3) optimization of fan coil unit efficiency. Simulation results demonstrated that the three ECMs collectively achieved a total reduction of 15% in annual energy consumption. Thermal comfort was assessed using operative temperature distributions, Predicted Mean Vote (PMV), and Predicted Percentage of Dissatisfaction (PPD) metrics. While fan coil optimization yielded the highest energy savings, it led to less favorable comfort outcomes. In contrast, enhancing envelope U-values maintained indoor conditions consistently within ASHRAE-recommended comfort zones. To further support energy reduction and progress toward Net Zero targets, the study also evaluated the integration of a 228.87 kW rooftop solar photovoltaic (PV) system, which offset 8.09% of the campus’s annual energy demand. By applying data-driven thermal modelling to assess retrofit impacts on both energy performance and occupant comfort in a certified green building, this study addresses a critical gap in the literature and offers a replicable framework for advancing building performance in hot climate regions. Full article
(This article belongs to the Special Issue Energy Efficiency and Thermal Performance in Buildings)
Show Figures

Graphical abstract

14 pages, 1527 KiB  
Article
The Effect of the Metal Impurities on the Stability, Chemical, and Sensing Properties of MoSe2 Surfaces
by Danil W. Boukhvalov, Murat K. Rakhimzhanov, Aigul Shongalova, Abay S. Serikkanov, Nikolay A. Chuchvaga and Vladimir Yu. Osipov
Surfaces 2025, 8(3), 56; https://doi.org/10.3390/surfaces8030056 - 5 Aug 2025
Abstract
In this study, we present a comprehensive theoretical analysis of modifications in the physical and chemical properties of MoSe2 upon the introduction of substitutional transition metal impurities, specifically, Ti, V, Cr, Fe, Co, Ni, Cu, W, Pd, and Pt. Wet systematically calculated [...] Read more.
In this study, we present a comprehensive theoretical analysis of modifications in the physical and chemical properties of MoSe2 upon the introduction of substitutional transition metal impurities, specifically, Ti, V, Cr, Fe, Co, Ni, Cu, W, Pd, and Pt. Wet systematically calculated the adsorption enthalpies for various representative analytes, including O2, H2, CO, CO2, H2O, NO2, formaldehyde, and ethanol, and further evaluated their free energies across a range of temperatures. By employing the formula for probabilities, we accounted for the competition among molecules for active adsorption sites during simultaneous adsorption events. Our findings underscore the importance of integrating temperature effects and competitive adsorption dynamics to predict the performance of highly selective sensors accurately. Additionally, we investigated the influence of temperature and analyte concentration on sensor performance by analyzing the saturation of active sites for specific scenarios using Langmuir sorption theory. Building on our calculated adsorption energies, we screened the catalytic potential of doped MoSe2 for CO2-to-methanol conversion reactions. This paper also examines the correlations between the electronic structure of active sites and their associated sensing and catalytic capabilities, offering insights that can inform the design of advanced materials for sensors and catalytic applications. Full article
Show Figures

Graphical abstract

38 pages, 2949 KiB  
Article
Modeling the Evolutionary Mechanism of Multi-Stakeholder Decision-Making in the Green Renovation of Existing Residential Buildings in China
by Yuan Gao, Jinjian Liu, Jiashu Zhang and Hong Xie
Buildings 2025, 15(15), 2758; https://doi.org/10.3390/buildings15152758 - 5 Aug 2025
Abstract
The green renovation of existing residential buildings is a key way for the construction industry to achieve sustainable development and the dual carbon goals of China, which makes it urgent to make collaborative decisions among multiple stakeholders. However, because of divergent interests and [...] Read more.
The green renovation of existing residential buildings is a key way for the construction industry to achieve sustainable development and the dual carbon goals of China, which makes it urgent to make collaborative decisions among multiple stakeholders. However, because of divergent interests and risk perceptions among governments, energy service companies (ESCOs), and owners, the implementation of green renovation is hindered by numerous obstacles. In this study, we integrated prospect theory and evolutionary game theory by incorporating core prospect-theory parameters such as loss aversion and perceived value sensitivity, and developed a psychologically informed tripartite evolutionary game model. The objective was to provide a theoretical foundation and analytical framework for collaborative governance among stakeholders. Numerical simulations were conducted to validate the model’s effectiveness and explore how government regulation intensity, subsidy policies, market competition, and individual psychological factors influence the system’s evolutionary dynamics. The findings indicate that (1) government regulation and subsidy policies play central guiding roles in the early stages of green renovation, but the effectiveness has clear limitations; (2) ESCOs are most sensitive to policy incentives and market competition, and moderately increasing their risk costs can effectively deter opportunistic behavior associated with low-quality renovation; (3) owners’ willingness to participate is primarily influenced by expected returns and perceived renovation risks, while economic incentives alone have limited impact; and (4) the evolutionary outcomes are highly sensitive to parameters from prospect theory, The system’s evolutionary outcomes are highly sensitive to prospect theory parameters. High levels of loss aversion (λ) and loss sensitivity (β) tend to drive the system into a suboptimal equilibrium characterized by insufficient demand, while high gain sensitivity (α) serves as a key driving force for the system’s evolution toward the ideal equilibrium. This study offers theoretical support for optimizing green renovation policies for existing residential buildings in China and provides practical recommendations for improving market competition mechanisms, thereby promoting the healthy development of the green renovation market. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

24 pages, 1464 KiB  
Review
An Overview of the Italian Roadmap for the Implementation of Circular Economy in the Energy Transition of Buildings
by Marilena De Simone and Daniele Campagna
Buildings 2025, 15(15), 2755; https://doi.org/10.3390/buildings15152755 - 5 Aug 2025
Abstract
An important task for the European Union is to transpose agreements and international standards in regulation and directives that are binding on member states. The resultant European action plans and directives identify priority areas in the building and energy sectors where circular economy [...] Read more.
An important task for the European Union is to transpose agreements and international standards in regulation and directives that are binding on member states. The resultant European action plans and directives identify priority areas in the building and energy sectors where circular economy principles can be applied. Italy records a general circular materials rate of 20.8%, surpassing the mean European value. But low recycling rates are still registered in the construction sector. This paper aims to assess the position of Italy with respect to the European regulatory framework on circularity in the energy transition of buildings. Firstly, the government’s initiatives and technical standards are introduced and commented upon. Secondly, the study illustrates the current Italian platforms, networks, and public and private initiatives highlighting opportunities and obstacles that the energy sector has to overcome in the area of circularity. It emerges that Italian policies still use voluntary tools that are not sufficiently in line with an effective circular economy model. Moreover, data collection plays a crucial role in accelerating the implementation of future actions. Italy should consider the foundation of a National Observatory for the Circular Economy to elaborate European directives, harmonize regional policies, and promote the implementation of effective practices. Full article
(This article belongs to the Special Issue Research on Sustainable Energy Performance of Green Buildings)
Show Figures

Figure 1

22 pages, 6187 KiB  
Article
Device Modeling Method for the Entire Process of Energy-Saving Retrofit of a Refrigeration Plant
by Xuanru Xu, Lun Zhang, Jun Chen, Qingbin Lin and Junjie Chen
Energies 2025, 18(15), 4147; https://doi.org/10.3390/en18154147 - 5 Aug 2025
Viewed by 26
Abstract
With the increasing awareness of energy consumption issues, there has been a growing emphasis on energy-saving retrofits for central air-conditioning systems that constitute a significant proportion of energy consumption in buildings. Efficient energy utilization can be achieved by optimizing the modeling of the [...] Read more.
With the increasing awareness of energy consumption issues, there has been a growing emphasis on energy-saving retrofits for central air-conditioning systems that constitute a significant proportion of energy consumption in buildings. Efficient energy utilization can be achieved by optimizing the modeling of the equipment within the chiller plants of central air-conditioning systems. Traditional modeling approaches have been static and have focused on modeling within narrow time frames when a certain amount of equipment operating data has accumulated, thus prioritizing the precision of the model itself while overlooking the fact that energy-saving retrofits are a long-term process. This study proposes a modeling scheme for the equipment within chiller plants throughout the energy-saving retrofit process. Based on the differences in the amount of available operating data for the equipment and the progress of retrofit implementation, the retrofit process was divided into three stages, each employing different modeling techniques and ensuring smooth transitions between the stages. The equipment within the chiller plants is categorized into two types based on the clarity of their operating characteristics, and two modeling schemes are proposed accordingly. Based on the proposed modeling scheme, chillers and chilled-water pumps were selected to represent the two types of equipment. Real operating data from actual retrofit projects was used to model the equipment and evaluate the accuracy of the model predictions. The results indicate that the models established by the proposed modeling scheme exhibit good accuracy at each stage of the retrofit, with the coefficients of variation (CV) remaining below 6.88%. Furthermore, the prediction accuracy improved as the retrofitting process progressed. The modeling scheme performs better on equipment with simpler and clearer operating characteristics, with a CV as low as 0.67% during normal operation stages. This underscores the potential application of the proposed modeling scheme throughout the energy-saving retrofit process and provides a model foundation for the subsequent optimization of the refrigeration system. Full article
Show Figures

Figure 1

15 pages, 2053 KiB  
Article
Unveiling Radon Concentration in Geothermal Installation: The Role of Indoor Conditions and Human Activity
by Dimitrios-Aristotelis Koumpakis, Savvas Petridis, Apostolos Tsakirakis, Ioannis Sourgias, Alexandra V. Michailidou and Christos Vlachokostas
Gases 2025, 5(3), 18; https://doi.org/10.3390/gases5030018 - 5 Aug 2025
Viewed by 49
Abstract
The naturally occurring radioactive gas radon presents a major public health danger mainly affecting people who spend time in poorly ventilated buildings. The periodic table includes radon as a noble gas which forms through uranium decay processes in soil, rock, and water. The [...] Read more.
The naturally occurring radioactive gas radon presents a major public health danger mainly affecting people who spend time in poorly ventilated buildings. The periodic table includes radon as a noble gas which forms through uranium decay processes in soil, rock, and water. The accumulation of radon indoors in sealed or poorly ventilated areas leads to dangerous concentrations that elevate human health risks of lung cancer. The research examines environmental variables affecting radon concentration indoors by studying geothermal installations and their drilling activities, which potentially increase radon emissions. The study was conducted in the basement of the plumbing educational building at the Aristotle University of Thessaloniki to assess the potential impact of geothermal activity on indoor radon levels, as the building is equipped with a geothermal heating system. The key findings based on 150 days of continuous data showed that radon levels peak during the cold days, where the concentration had a mean value of 41.5 Bq/m3 and reached a maximum at about 95 Bq/m3. The reason was first and foremost poor ventilation and pressure difference. The lowest concentrations were on days with increased human activity with measures that had a mean value of 14.8 Bq/m3, which is reduced by about 65%. The results that are presented confirm the hypotheses and the study is making clear that ventilation and human activity are crucial in radon mitigation, especially on geothermal and energy efficient structures. Full article
Show Figures

Figure 1

Back to TopTop