Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (149)

Search Parameters:
Keywords = bubble motion

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 4086 KB  
Article
Fractal-Controlled Multiscale Evolution of Gas–Water Two-Phase Flow Patterns in Rough Sheared Fractures: A Pressure-Based Predictive Framework
by Kangsheng Xue, Hai Pu, Junce Xu, Bowen Hu, Lulu Liu, Yanlong Chen, Yu Wu and Ming Li
Fractal Fract. 2026, 10(2), 97; https://doi.org/10.3390/fractalfract10020097 (registering DOI) - 1 Feb 2026
Abstract
The roughness of rock fractures has complex features that affect how fluids move through them. This research looks at how gas and water flows change in rough fractures when they are moved using a model based on fractal geometry. Rough surfaces are created [...] Read more.
The roughness of rock fractures has complex features that affect how fluids move through them. This research looks at how gas and water flows change in rough fractures when they are moved using a model based on fractal geometry. Rough surfaces are created using a method called fractional Brownian motion. When the surfaces are moved, the space in the fractures becomes uneven. By using a level-set method together with a fluid flow model, the study explores how the speed the fluid enters, the roughness of the surface, and the movement of the surfaces affect the change between bubble, slug, and ring-like flow. The results indicate that more roughness and movement make the flow less stable, which causes a reverse change from ring-like flow to slug and bubble flow. A framework based on pressure is built, showing that the outlet pressure decreases quickly with fluid speed, rises steadily with roughness, and changes in a square relation with movement. A single prediction formula is made with R2 = 0.98, allowing precise identification of the flow types using pressure change limits. This research gives insights into flow changes in fractured reservoirs and offers a way to predict flow in real-time. Full article
(This article belongs to the Section Engineering)
25 pages, 41016 KB  
Review
Acoustic Bubble Sensing Techniques and Bioapplications
by Renjie Ning, Jonathan Faulkner, Mengren Wu and Yuan Gao
Biosensors 2026, 16(2), 88; https://doi.org/10.3390/bios16020088 (registering DOI) - 31 Jan 2026
Viewed by 49
Abstract
Acoustic bubbles are emerging as powerful microscale sensors that convert local biochemical and biomechanical cues into measurable signals in a remote, label-free, and clinically compatible manner. Originally developed as vascular contrast agents, microbubbles are now engineered so that their resonance frequency, nonlinear oscillations, [...] Read more.
Acoustic bubbles are emerging as powerful microscale sensors that convert local biochemical and biomechanical cues into measurable signals in a remote, label-free, and clinically compatible manner. Originally developed as vascular contrast agents, microbubbles are now engineered so that their resonance frequency, nonlinear oscillations, cavitation emissions, microstreaming, and radiation-force-induced motion encode information about pressure, rheology, oxygenation, and cell or tissue mechanics. In this review, we first summarize the fundamental physics of bubble dynamics, and then describe how these dynamics are translated into practical sensing observables. We then highlight key bioapplications where acoustic bubbles function as environment-responsive probes, ranging from hemodynamic pressure and fluid rheology to oxygen levels and cellular mechanics. Across these examples, we emphasize advantages such as non-invasive and wireless readout, high sensitivity arising from nonlinear bubble dynamics, and biochemical and molecular tunability. Finally, we outline current challenges and future opportunities for translating acoustic bubble-based sensing into robust, quantitative tools for biomedical applications. Full article
(This article belongs to the Special Issue Micro/Nanofluidic System-Based Biosensors)
17 pages, 2935 KB  
Article
Gas–Liquid Two-Phase Boiling Heat Transfer Mechanism in Cooling Water Jacket of Intense Thermal Load Engine and Its Improvement
by Gangzhi Tang and Chaojie Yuan
Appl. Sci. 2026, 16(2), 1081; https://doi.org/10.3390/app16021081 - 21 Jan 2026
Viewed by 96
Abstract
The results show that the numerical simulation error based on the RPI two-phase boiling heat transfer model is less than 5%, which is in good agreement with the test results. Compared with the original engine, the temperature near the spark plugs’ position of [...] Read more.
The results show that the numerical simulation error based on the RPI two-phase boiling heat transfer model is less than 5%, which is in good agreement with the test results. Compared with the original engine, the temperature near the spark plugs’ position of improvement in scheme 2 decreased by 8.4 K, and the maximum temperature difference between the cylinder head intake and exhaust decreased by 14 K. Moreover, the overheating degree of the water jacket wall is the lowest, avoiding the occurrence of film boiling, and the local maximum vaporization rate is less than 50%. The prototype tests also confirmed that the improvement scheme effectively enhanced the heat transfer performance of the water jacket. The inlet flow rate and temperature of the coolant have significant and complex effects on two-phase boiling heat transfer. Both too low a flow rate and too high a temperature will lead to local film boiling, deteriorating heat transfer. Too high a flow rate will blow away bubbles, while too low an inlet temperature will not cause boiling, both of which can only enforce convective heat transfer. Appropriately reducing the flow rate and increasing the temperature can effectively utilize the enhanced heat transfer potential of subcooled boiling, while also save pump power consumption and improving engine fuel economy. The average heat flux density of boiling heat transfer in this paper is 13.9% higher than that of the forced convective heat transfer. When designing a water jacket with boiling heat transfer, attention should be paid to the transport effect of convective motion on bubbles, controlling subcooled boiling in the high-temperature zone and preventing film boiling. Full article
Show Figures

Figure 1

19 pages, 5266 KB  
Article
Sand Fluidized Beds for Wood Waste Gasification: The Pellet Influence on Bed Fluid Dynamics at Ambient-Conditions
by Marcos Navarro Salazar, Nicolas Torres Brauer and Hugo de Lasa
Processes 2026, 14(2), 291; https://doi.org/10.3390/pr14020291 - 14 Jan 2026
Viewed by 143
Abstract
Understanding the fluid dynamics of fluidized beds loaded with biomass pellets is of significant value for the design of wood waste gasifiers. In the present study, cylindrical wood pellets are loaded into a lab-scale cold gasifier unit at 2.5 vol% and 7.5 vol% [...] Read more.
Understanding the fluid dynamics of fluidized beds loaded with biomass pellets is of significant value for the design of wood waste gasifiers. In the present study, cylindrical wood pellets are loaded into a lab-scale cold gasifier unit at 2.5 vol% and 7.5 vol% concentrations and studied at superficial air velocities of 0.25, 0.282, and 0.344 m/s (corresponding to 80, 90, and 110 SCFM). Measurements of bubbles, sand particles, and biomass pellets are taken at a 45 cm height from the distributor plate, and at 9, 12, 15, 18, and 21 cm radial positions from the column wall by employing the CREC-GS-Optiprobes, a valuable integrated fiber optic-laser tool system. A new data processing methodology is established using laser signals that are reflected from the outer surface of aluminum-foil-wrapped cylindrical wood pellets. In addition, a new algorithm is implemented to distinguish pellet-reflected signals from those of bubbles and emulsion-phase particles. On this basis, for the first time, a Phenomenological Probabilistic Predictive Model (PPPM), is considered to predict Bubble Axial Chords (BACs) and Bubble Rise Velocities (BRVs), in a sand fluidized bed loaded with biomass pellets. This is accomplished within a set band of values accounting for three standard deviations from their means or including 85.9% of the bubbles measured. Thus, it is demonstrated that the PPPM is adequate to establish the constrained random motion of bubbles in sand fluidized beds, under the influence of uniformly distributed biomass pellets. It is anticipated that the findings of the present study will be of significant value for the design of sand biomass gasifiers of different scales. Full article
Show Figures

Graphical abstract

22 pages, 14004 KB  
Article
Bifurcation and Firing Behavior Analysis of the Tabu Learning Neuron with FPGA Implementation
by Hongyan Sun, Yujie Chen and Fuhong Min
Electronics 2025, 14(23), 4639; https://doi.org/10.3390/electronics14234639 - 25 Nov 2025
Viewed by 429
Abstract
Neuronal firing behaviors are fundamental to brain information processing, and their abnormalities are closely associated with neurological disorders. This study conducts a comprehensive bifurcation and firing-behavior analysis of an improved Tabu Learning neuron model using a semi-analytical discrete implicit mapping framework. First, a [...] Read more.
Neuronal firing behaviors are fundamental to brain information processing, and their abnormalities are closely associated with neurological disorders. This study conducts a comprehensive bifurcation and firing-behavior analysis of an improved Tabu Learning neuron model using a semi-analytical discrete implicit mapping framework. First, a discrete implicit mapping is constructed for the Tabu Learning neuron, enabling high-precision localization of stable and unstable periodic orbits within chaotic regimes and overcoming the limitations of conventional time-domain integration. Second, an eigenvalue-centered analysis is used to classify bifurcation types and stability, summarized in explicit bifurcation tables that reveal self-similar offset bifurcation routes, coexisting periodic and chaotic attractors, and chaotic bubbling firing patterns. Third, the proposed neuron model and its discrete mapping are implemented on an FPGA platform, where hardware experiments faithfully reproduce the analytically predicted stable and unstable motions, thereby tightly linking theoretical analysis and digital neuromorphic hardware. Overall, this work establishes a unified analytical–numerical–hardware framework for exploring complex neuronal dynamics and provides a potential basis for neuromodulation strategies and neuromorphic computing system design. Full article
(This article belongs to the Section Circuit and Signal Processing)
Show Figures

Figure 1

23 pages, 11467 KB  
Article
Experimental Study on Energy Characteristics of a Single Contaminated Bubble near the Wall in Shear Flow
by Jiawei Zhang, Jiao Sun, Jinliang Tao, Nan Jiang, Haoyang Li, Xiaolong Wang and Jinghang Yang
Appl. Sci. 2025, 15(18), 10180; https://doi.org/10.3390/app151810180 - 18 Sep 2025
Viewed by 561
Abstract
This study experimentally investigates the dynamic behavior and energy conversion characteristics of a single contaminated bubble (deq = 2.49–3.54 mm, Reb = 470–830) rising near a vertical wall (S* = 1.41–2.02) in a linear shear flow (the conditions of average flow [...] Read more.
This study experimentally investigates the dynamic behavior and energy conversion characteristics of a single contaminated bubble (deq = 2.49–3.54 mm, Reb = 470–830) rising near a vertical wall (S* = 1.41–2.02) in a linear shear flow (the conditions of average flow rate 0.1 m/s and shear rate 0.5 s−1) using a vertical water tunnel and varying sodium dodecyl sulfate (SDS) concentrations (0–50 ppm) and bubble sizes (via needle nozzles). High-speed imaging with orthogonal shadowgraphy captures bubble trajectories, rotation, deformation, and oscillation modes (2, 0) and (2, 2), revealing that an increasing SDS concentration suppresses deformation and the inclination amplitude while enhancing the oscillation frequency, particularly for smaller bubbles. Velocity analysis shows that vertical components remain steady, whereas wall-normal and spanwise fluctuations diminish with surfactant concentration, indicating stabilized trajectories. Additional mass force coefficients are larger for bigger bubbles and decrease with contamination level. Energy analysis demonstrates that surface energy dominates the total energy budget, with vertical kinetic energy comprising over 70% of the total kinetic energy under high SDS concentrations. The results highlight strong scale dependence and Marangoni effects in controlling near-wall bubble motion and energy transfer, providing insights for optimizing gas–liquid two-phase flow processes in chemical and environmental engineering applications. Full article
Show Figures

Figure 1

21 pages, 2556 KB  
Article
Scour Control in a 90° Bend by Means of an Air Bubble Screen
by Pari Maleki, Javad Ahadiyan, Rui Aleixo, Hossein Azizi Nadian, Zeinab Tamoradi, Seyed Mahmood Kashefipour, Anton J. Schleiss and Manouchehr Fathi Moghadam
Water 2025, 17(18), 2693; https://doi.org/10.3390/w17182693 - 12 Sep 2025
Viewed by 876
Abstract
Scouring is an erosional process driven by the water motion over a sediment bed. Scour can lead to structural safety risks of built structures and to riverbanks’ instabilities and collapse. In particular, scouring in river bends is a known phenomenon caused by secondary [...] Read more.
Scouring is an erosional process driven by the water motion over a sediment bed. Scour can lead to structural safety risks of built structures and to riverbanks’ instabilities and collapse. In particular, scouring in river bends is a known phenomenon caused by secondary flow currents. This scouring can result in negative impacts on the economic and social activities that occur on the riverbanks. On the other hand, the erosion and scouring processes of riverbeds are often addressed by means of heavy civil engineering construction works. Aiming at looking for different solutions for the scour in river bends, this research investigates the use of an air bubble screen system to minimize the scouring in river bends by providing detailed measurements of sedimentation patterns and velocity fields in a mild 90-degree bend where an air screen bubble was installed. The air bubble screen is generated by injecting compressed air through a perforated pipe placed on the bed along the outer bend. Different parameters were tested, including the water flow rate in the channel, the air flow rate, the angle of attack between the air bubble screen and the secondary flow, and flow direction. The air bubble screen opposes the direction of the bend’s induced secondary flows, altering the velocity pattern such that the maximum velocity at cross-sections of 45°, 65°, 80°, and 90° were displaced from the outer wall as much as 53%, 68%, 89%, and 84% of the width, respectively. The air bubble screen system also reduced the secondary flow power in the maximum scour zone by 35%. Hence, the maximum scour depth was reduced by 59% to 79.8% for the maximum flow rate by increasing the air bubbles’ angle of attack relative to the primary flow from 0° to 90°. Finally, the limitations of this study and its applicability to real cases is discussed. Full article
(This article belongs to the Special Issue Numerical Modeling of Hydrodynamics and Sediment Transport)
Show Figures

Figure 1

10 pages, 11710 KB  
Communication
Domain Wall Motion and the Interfacial Dzyaloshinskii–Moriya Interaction in Pt/Co/RuO2(Ru) Multilayers
by Milad Jalali, Kai Wang, Haoxiang Xu, Yaowen Liu and Sylvain Eimer
Materials 2025, 18(17), 4008; https://doi.org/10.3390/ma18174008 - 27 Aug 2025
Viewed by 1437
Abstract
The interfacial Dzyaloshinskii–Moriya interaction (DMI) plays a pivotal role in stabilising and controlling the motion of chiral spin textures, such as Néel-type bubble domains, in ultrathin magnetic films—an essential feature for next-generation spintronic devices. In this work, we investigate domain wall (DW) dynamics [...] Read more.
The interfacial Dzyaloshinskii–Moriya interaction (DMI) plays a pivotal role in stabilising and controlling the motion of chiral spin textures, such as Néel-type bubble domains, in ultrathin magnetic films—an essential feature for next-generation spintronic devices. In this work, we investigate domain wall (DW) dynamics in magnetron-sputtered Ta(3 nm)/Pt(3 nm)/Co(1 nm)/RuO2(1 nm) [Ru(1 nm)]/Pt(3 nm) multilayers, benchmarking their behaviour against control stacks. Vibrating sample magnetometry (VSM) was employed to determine saturation magnetisation and perpendicular magnetic anisotropy (PMA), while polar magneto-optical Kerr effect (P-MOKE) measurements provided coercivity data. Kerr microscopy visualised the expansion of bubble-shaped domains under combined perpendicular and in-plane magnetic fields, enabling the extraction of effective DMI fields. Brillouin light scattering (BLS) spectroscopy quantified the asymmetric propagation of spin waves, and micromagnetic simulations corroborated the experimental findings. The Pt/Co/RuO2 system exhibits a Dzyaloshinskii–Moriya interaction (DMI) constant of ≈1.08 mJ/m2, slightly higher than the Pt/Co/Ru system (≈1.03 mJ/m2) and much higher than the Pt/Co control (≈0.23 mJ/m2). Correspondingly, domain walls in the RuO2-capped films show pronounced velocity asymmetry under in-plane fields, whereas the symmetric Pt/Co/Pt shows negligible asymmetry. Despite lower depinning fields in the Ru-capped sample, its domain walls move faster than those in the RuO2-capped sample, indicating reduced pinning. Our results demonstrate that integrating RuO2 significantly alters interfacial spin–orbit interactions. Full article
(This article belongs to the Section Thin Films and Interfaces)
Show Figures

Figure 1

19 pages, 1780 KB  
Article
Steady Radial Diverging Flow of a Particle-Laden Fluid with Particle Migration
by C. Q. Ru
Fluids 2025, 10(8), 200; https://doi.org/10.3390/fluids10080200 - 1 Aug 2025
Cited by 1 | Viewed by 607
Abstract
The steady plane radial diverging flow of a viscous or inviscid particle-fluid suspension is studied using a novel two-fluid model. For the initial flow field with a uniform particle distribution, our results show that the relative velocity of particles with respect to the [...] Read more.
The steady plane radial diverging flow of a viscous or inviscid particle-fluid suspension is studied using a novel two-fluid model. For the initial flow field with a uniform particle distribution, our results show that the relative velocity of particles with respect to the fluid depends on their inlet velocity ratio at the entrance, the mass density ratio and the Stokes number of particles, and the particles heavier (or lighter) than the fluid will move faster (or slower) than the fluid when their inlet velocities are equal (then Stokes drag vanishes at the entrance). The relative motion of particles with respect to the fluid leads to particle migration and the non-uniform distribution of particles. An explicit expression is obtained for the steady particle distribution eventually attained due to particle migration. Our results demonstrated and confirmed that, for both light particles (gas bubbles) and heavy particles, depending on the particle-to-fluid mass density ratio, the volume fraction of particles attains its maximum or minimum value near the entrance of the radial flow and after then monotonically decreases or increases with the radial coordinate and converges to an asymptotic value determined by the particle-to-fluid inlet velocity ratio. Explicit solutions given here could help quantify the steady particle distribution in the decelerating radial flow of a particle-fluid suspension. Full article
(This article belongs to the Special Issue 10th Anniversary of Fluids—Recent Advances in Fluid Mechanics)
Show Figures

Figure 1

15 pages, 5142 KB  
Article
Cavitation-Jet-Induced Erosion Controlled by Injection Angle and Jet Morphology
by Jinichi Koue and Akihisa Abe
J. Mar. Sci. Eng. 2025, 13(8), 1415; https://doi.org/10.3390/jmse13081415 - 25 Jul 2025
Viewed by 889
Abstract
To improve environmental sustainability and operational safety in maritime industries, the development of efficient methods for removing biofouling from submerged surfaces is critical. This study investigates the erosion mechanisms of cavitation jets as a non-contact, high-efficiency method for detaching marine organisms, including bacteria [...] Read more.
To improve environmental sustainability and operational safety in maritime industries, the development of efficient methods for removing biofouling from submerged surfaces is critical. This study investigates the erosion mechanisms of cavitation jets as a non-contact, high-efficiency method for detaching marine organisms, including bacteria and larvae, from ship hulls and underwater infrastructure. Through erosion experiments on coated specimens, variations in jet morphology, and flow visualization using the Schlieren method, we examined how factors such as jet incident angle and nozzle configuration influence removal performance. The results reveal that erosion occurs not only at the direct jet impact zone but also in regions where cavitation bubbles exhibit intense motion, driven by pressure fluctuations and shock waves. Notably, single-hole jets with longer potential cores produced more concentrated erosion, while multi-jet interference enhanced bubble activity. These findings underscore the importance of understanding bubble distribution dynamics in the flow field and provide insight into optimizing cavitation jet configurations to expand the effective cleaning area while minimizing material damage. This study contributes to advancing biofouling removal technologies that promote safer and more sustainable maritime operations. Full article
Show Figures

Figure 1

27 pages, 5476 KB  
Article
The Harmonic Pitching NACA 0018 Airfoil in Low Reynolds Number Flow
by Jan Michna, Maciej Śledziewski and Krzysztof Rogowski
Energies 2025, 18(11), 2884; https://doi.org/10.3390/en18112884 - 30 May 2025
Cited by 1 | Viewed by 2099
Abstract
This study investigates the aerodynamic performance of a symmetric NACA 0018 airfoil under harmonic pitching motions at low Reynolds numbers, a regime characterized by the presence of laminar separation bubbles and their impact on aerodynamic forces. The analysis encompasses oscillation frequencies of 1 [...] Read more.
This study investigates the aerodynamic performance of a symmetric NACA 0018 airfoil under harmonic pitching motions at low Reynolds numbers, a regime characterized by the presence of laminar separation bubbles and their impact on aerodynamic forces. The analysis encompasses oscillation frequencies of 1 Hz, 2 Hz, and 13.3 Hz, with amplitudes of 4° and 8°, along with steady-state simulations conducted for angles of attack up to 20° to validate the numerical model. The results reveal that the γ-Reθ turbulence model provides improved predictions of aerodynamic forces at higher Reynolds numbers but struggles at lower Reynolds numbers, where laminar flow effects dominate. The inclusion of the 13.3 Hz frequency, relevant to Darrieus vertical-axis wind turbines, demonstrates the effectiveness of the model in capturing dynamic hysteresis loops and reduced oscillations, in contrast to the k-ω SST model. Comparisons with XFOIL further highlight the challenges in accurately modeling laminar-to-turbulent transitions and dynamic flow phenomena. These findings offer valuable insights into the aerodynamic behavior of thick airfoils under low Reynolds number conditions and contribute to the advancement of turbulence modeling, particularly in applications involving vertical-axis wind turbines. Full article
(This article belongs to the Section A3: Wind, Wave and Tidal Energy)
Show Figures

Figure 1

15 pages, 11215 KB  
Article
Effects of Reduced Frequency on the Aerodynamic Characteristics of a Pitching Airfoil at Moderate Reynolds Numbers
by Teng Zhou, Huijing Cao and Ben Zhao
Aerospace 2025, 12(6), 457; https://doi.org/10.3390/aerospace12060457 - 23 May 2025
Viewed by 1276
Abstract
Aerodynamic characteristics of a pitching NACA 0012 airfoil, including the load performance and flow field features, are studied using numerical simulations in this paper. Large Eddy Simulations (LESs) have been performed, and the chord-based Reynolds number is set to 6.6×104 [...] Read more.
Aerodynamic characteristics of a pitching NACA 0012 airfoil, including the load performance and flow field features, are studied using numerical simulations in this paper. Large Eddy Simulations (LESs) have been performed, and the chord-based Reynolds number is set to 6.6×104. Pitching frequency varies from 3 to 20 Hz, corresponding to a reduced frequency of 0.094–0.628 (k=πfpc/U, where fp is the pitching frequency, c is the chord length, and U refers to the incident flow speed). As the pitching frequency increases, the maximum lift coefficient achieved in one pitching cycle decreases, and the direction of the lift hysteresis loop changes as the pitching frequency exceeds a certain value, leading to a change in the lift of the sign at the zero-incidence moment, which is a result of the instantaneous flow patterns on the airfoil surface. As the pitching frequency increases, flow unsteadiness develops less in one pitching cycle, and the time duration in which the turbulence boundary layer can be detected in one pitching cycle shrinks. Additionally, for the pitching airfoil, combinations of the flow patterns on the upper and lower sides, such as laminar separation and the turbulent boundary layer, or laminar separation and the laminar separation bubble, were observed on the airfoil surface, and these were not detected on a static airfoil at the corresponding Reynolds number. This is considered an effect of the pitching motion that is in addition to the phase-lag effect. Full article
(This article belongs to the Special Issue Aerodynamics and Aeroacoustics of Unsteady Flow)
Show Figures

Figure 1

18 pages, 1555 KB  
Article
Multi-Model Collaborative Inversion Method for Natural Gas Pipeline Leakage Sources in Underwater Environments
by Xue Yang, Wei Chen and Zheng Zhang
Water 2025, 17(11), 1562; https://doi.org/10.3390/w17111562 - 22 May 2025
Viewed by 697
Abstract
The identification of leakage sources in underwater natural gas pipelines (UNGPs) remains a critical challenge due to complex environmental conditions. In this study, we propose a novel simulation–optimization method, integrating numerical bubble plume dynamics models with surrogate models to enable accurate leakage parameter [...] Read more.
The identification of leakage sources in underwater natural gas pipelines (UNGPs) remains a critical challenge due to complex environmental conditions. In this study, we propose a novel simulation–optimization method, integrating numerical bubble plume dynamics models with surrogate models to enable accurate leakage parameter inversion. First, a bubble plume underwater motion simulation model was developed based on the actual conditions of the study area to predict the future spatial and temporal variation characteristics of the bubble plumes in certain wave fields. Then, the simulation–optimization method was applied to determine the leakage velocity and offset distance of the underwater gas pipeline leakage source via inversion. To reduce the computational load of the optimization model by repeatedly invoking the simulation model, the Kriging method and a backpropagation (BP) neural network were used to build surrogate models for the numerical model. Finally, the optimized surrogate model was solved using the simulated annealing method, and the inverse identification results were obtained. The experimental results show that both methods can achieve a high inversion accuracy. The relative error of the Kriging model is no more than 12%, and the running time is 13 min. Meanwhile, based on the BP neural network surrogate model, the relative error of the BP neural network model is about 14%, and the running time is 2.5 min. Full article
(This article belongs to the Special Issue AI, Machine Learning and Digital Twin Applications in Water)
Show Figures

Figure 1

23 pages, 17020 KB  
Article
An Unresolved SPH-DEM Coupling Framework for Bubble–Particle Interactions in Dense Multiphase Systems
by Ying Tian, Guanhua An, Xiangwei Dong, Rui Chen, Zhen Guo, Xuhe Zheng and Qiang Zhang
Processes 2025, 13(5), 1291; https://doi.org/10.3390/pr13051291 - 23 Apr 2025
Cited by 1 | Viewed by 1469
Abstract
This study presents a novel unresolved SPH-DEM coupling framework to investigate the complex interactions between rising gas bubbles and sinking solid particles in multiphase systems. Traditional numerical methods often struggle with large deformations, multiphase interfaces, and computational efficiency when simulating dense particle-laden flows. [...] Read more.
This study presents a novel unresolved SPH-DEM coupling framework to investigate the complex interactions between rising gas bubbles and sinking solid particles in multiphase systems. Traditional numerical methods often struggle with large deformations, multiphase interfaces, and computational efficiency when simulating dense particle-laden flows. To address these challenges, the proposed model leverages SPH’s Lagrangian nature to resolve fluid motion and bubble dynamics, while the DEM captures particle–particle and particle–bubble interactions. An unresolved coupling strategy is introduced to bridge the scales between fluid and particle phases, enabling efficient simulations of large-scale systems with discrete bubbles/particles. The model is validated against benchmark cases, including single bubbles rising and single particle’s sedimentation. Simulation studies reveal the effects of particle/bubble number and initial distance on phase interaction patterns and clustering behaviors. Results further illustrate the model’s capability to capture complex phenomena such as particle entrainment by bubble wakes and hindered settling in dense suspensions. The framework offers a robust and efficient tool for optimizing industrial processes like mineral flotation, where bubble–particle dynamics play a critical role. Full article
Show Figures

Figure 1

27 pages, 1979 KB  
Article
Study on Cavitation Effects in Elastic Cylinder Displacement and Bubble Morphology: Modeling, Reliability, and Behavioral Analysis
by Yuxin Gou, Dongyan Shi and Jiuqiang Wang
Appl. Sci. 2025, 15(7), 3979; https://doi.org/10.3390/app15073979 - 4 Apr 2025
Cited by 1 | Viewed by 1101
Abstract
The shape of a bubble changes near an elastic boundary, and this alteration also influences the boundary itself. This study investigates bubble shape and boundary displacement near an elastic cylindrical boundary through an electric spark bubble experiment. Three parameters—dimensionless distance, elastic cylinder tension, [...] Read more.
The shape of a bubble changes near an elastic boundary, and this alteration also influences the boundary itself. This study investigates bubble shape and boundary displacement near an elastic cylindrical boundary through an electric spark bubble experiment. Three parameters—dimensionless distance, elastic cylinder tension, and dimensionless size—are discussed and analyzed in relation to bubble shape. For studying elastic cylinder boundary displacement, a displacement formula is proposed by establishing a motion model, and impulse is used for verification. Furthermore, the elastic cylinder tension employed in this study has negligible impact on boundary displacement. Understanding how bubble shape changes near an elastic boundary, along with the corresponding boundary displacement, provides valuable insights into the stability and durability of materials and structures under similar conditions. The elasticity of the cylinder and its displacement response to external forces can help predict long-term behavior, contributing to the reliability assessment of engineering systems involving elastic boundaries and fluid dynamics. Full article
(This article belongs to the Special Issue Data-Enhanced Engineering Structural Integrity Assessment and Design)
Show Figures

Figure 1

Back to TopTop