Domain Wall Motion and the Interfacial Dzyaloshinskii–Moriya Interaction in Pt/Co/RuO2(Ru) Multilayers
Abstract
1. Introduction
2. Experiment
3. Results and Discussion
3.1. Magnetic Characterisation
3.2. Domain Wall Dynamics and DMI Extraction
3.3. Brillouin Light Scattering (BLS) Spectroscopy
4. Simulations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dzyaloshinsky, I. A thermodynamic theory of “weak” ferromagnetism of antiferromagnetics. J. Phys. Chem. Solids 1958, 4, 241–255. [Google Scholar] [CrossRef]
- Moriya, T. Anisotropic Superexchange Interaction and Weak Ferromagnetism. Phys. Rev. 1960, 120, 91–98. [Google Scholar] [CrossRef]
- Thiaville, A.; Rohart, S.; Jué, É.; Cros, V.; Fert, A. Dynamics of Dzyaloshinskii domain walls in ultrathin magnetic films. Europhys. Lett. 2012, 100, 57002. [Google Scholar] [CrossRef]
- Fert, A.; Cros, V.; Sampaio, J. Skyrmions on the track. Nat. Nanotechnol. 2013, 8, 152–156. [Google Scholar] [CrossRef]
- Belmeguenai, M.; Adam, J.-P.; Roussigné, Y.; Eimer, S.; Devolder, T.; Kim, J.-V.; Cherif, S.M.; Stashkevich, A.; Thiaville, A. Interfacial Dzyaloshinskii-Moriya interaction in perpendicularly magnetized Pt/Co/AlOx ultrathin films measured by Brillouin light spectroscopy. Phys. Rev. B 2015, 91, 180405. [Google Scholar] [CrossRef]
- Rohart, S.; Thiaville, A. Skyrmion confinement in ultrathin film nanostructures in the presence of Dzyaloshinskii-Moriya interaction. Phys. Rev. B 2013, 88, 184422. [Google Scholar] [CrossRef]
- Zhao, X.; Zhao, J. Interlayer Dzyaloshinskii-Moriya interaction in spintronics. Npj Spintron. 2025, 3, 25. [Google Scholar] [CrossRef]
- Shahbazi, K.; Kim, J.-V.; Nembach, H.T.; Shaw, J.M.; Bischof, A.; Rossell, M.D.; Jeudy, V.; Moore, T.A.; Marrows, C.H. Domain-wall motion and interfacial Dzyaloshinskii-Moriya interactions in Pt/Co/Ir(tIr)/Ta multilayers. Phys. Rev. B 2019, 99, 094409. [Google Scholar] [CrossRef]
- Chen, G.; Ma, T.; N’Diaye, A.T.; Kwon, H.; Won, C.; Wu, Y.; Schmid, A.K. Tailoring the chirality of magnetic domain walls by interface engineering. Nat. Commun. 2013, 4, 2671. [Google Scholar] [CrossRef]
- Di, K.; Zhang, V.L.; Lim, H.S.; Ng, S.C.; Kuok, M.H.; Yu, J.; Yoon, J.; Qiu, X.; Yang, H. Direct Observation of the Dzyaloshinskii-Moriya Interaction in a Pt/Co/Ni Film. Phys. Rev. Lett. 2015, 114, 047201. [Google Scholar] [CrossRef] [PubMed]
- Heide, M.; Bihlmayer, G.; Blügel, S. Dzyaloshinskii-Moriya interaction accounting for the orientation of magnetic domains in ultrathin films: Fe/W(110). Phys. Rev. B 2008, 78, 140403. [Google Scholar] [CrossRef]
- Yu, X.Z.; Onose, Y.; Kanazawa, N.; Park, J.H.; Han, J.H.; Matsui, Y.; Nagaosa, N.; Tokura, Y. Real-space observation of a two-dimensional skyrmion crystal. Nature 2010, 465, 901–904. [Google Scholar] [CrossRef]
- Emori, S.; Bauer, U.; Ahn, S.-M.; Martinez, E.; Beach, G.S.D. Current-driven dynamics of chiral ferromagnetic domain walls. Nat. Mater. 2013, 12, 611–616. [Google Scholar] [CrossRef]
- Parkin, S.S.; Hayashi, M.; Thomas, L. Magnetic domain-wall racetrack memory. Science 2008, 320, 190–194. [Google Scholar] [CrossRef] [PubMed]
- Allwood, D.A.; Xiong, G.; Faulkner, C.C.; Atkinson, D.; Petit, D.; Cowburn, R.P. Magnetic domain-wall logic. Science 2005, 309, 1688–1692. [Google Scholar] [CrossRef] [PubMed]
- Fert, A.R. Magnetic and Transport Properties of Metallic Multilayers. Mater. Sci. Forum 1991, 59–60, 439–480. [Google Scholar] [CrossRef]
- Je, S.-G.; Kim, D.-H.; Yoo, S.-C.; Min, B.-C.; Lee, K.-J.; Choe, S.-B. Asymmetric magnetic domain-wall motion by the Dzyaloshinskii-Moriya interaction. Phys. Rev. B 2013, 88, 214401. [Google Scholar] [CrossRef]
- Chauve, P.; Giamarchi, T.; Le Doussal, P. Creep and depinning in disordered media. Phys. Rev. B 2000, 62, 6241–6267. [Google Scholar] [CrossRef]
- Heinze, S.; von Bergmann, K.; Menzel, M.; Brede, J.; Kubetzka, A.; Wiesendanger, R.; Bihlmayer, G.; Blügel, S. Spontaneous atomic-scale magnetic skyrmion lattice in two dimensions. Nat. Phys. 2011, 7, 713–718. [Google Scholar] [CrossRef]
- Stashkevich, A.A.; Belmeguenai, M.; Roussigné, Y.; Cherif, S.M.; Kostylev, M.; Gabor, M.; Lacour, D.; Tiusan, C.; Hehn, M. Experimental study of spin-wave dispersion in Py/Pt film structures in the presence of an interface Dzyaloshinskii-Moriya interaction. Phys. Rev. B 2015, 91, 214409. [Google Scholar] [CrossRef]
- Nembach, H.T.; Shaw, J.M.; Weiler, M.; Jué, E.; Silva, T.J. Linear relation between Heisenberg exchange and interfacial Dzyaloshinskii–Moriya interaction in metal films. Nat. Phys. 2015, 11, 825–829. [Google Scholar] [CrossRef]
- Kuepferling, M.; Casiraghi, A.; Soares, G.; Durin, G.; Garcia-Sanchez, F.; Chen, L.; Back, C.H.; Marrows, C.H.; Tacchi, S.; Carlotti, G. Measuring interfacial Dzyaloshinskii-Moriya interaction in ultrathin magnetic films. Rev. Mod. Phys. 2023, 95, 015003. [Google Scholar] [CrossRef]
- Yang, H.; Thiaville, A.; Rohart, S.; Fert, A.; Chshiev, M. Anatomy of Dzyaloshinskii-Moriya Interaction at Co/Pt Interfaces. Phys. Rev. Lett. 2015, 115, 267210. [Google Scholar] [CrossRef]
- Zhang, W.J.; Wei, F.; Liu, B.; Zhou, Y.; Kang, S.S.; Sun, B. Interfacial DMI in Fe/Pt thin films grown on different buffer layers. Chin. Phys. B 2024, 33, 048501. [Google Scholar] [CrossRef]
- Šmejkal, L.; Sinova, J.; Jungwirth, T. Emerging Research Landscape of Altermagnetism. Phys. Rev. X 2022, 12, 040501. [Google Scholar] [CrossRef]
- Fedchenko, O.; Minar, J.; Akashdeep, A.; D’Souza, S.W.; Vasilyev, D.; Tkach, O.; Odenbreit, L.; Nguyen, Q.; Kutnyakhov, D.; Wind, N.; et al. Observation of time-reversal symmetry breaking in the band structure of altermagnetic RuO2. Sci. Adv. 2024, 10, eadj4883. [Google Scholar] [CrossRef] [PubMed]
- Pellegren, J.P.; Lau, D.; Sokalski, V. Dispersive Stiffness of Dzyaloshinskii Domain Walls. Phys. Rev. Lett. 2017, 119, 027203. [Google Scholar] [CrossRef]
- Liu, J.; Zhan, J.; Li, T.; Liu, J.; Cheng, S.; Shi, Y.; Deng, L.; Zhang, M.; Li, C.; Ding, J.; et al. Absence of Altermagnetic Spin Splitting Character in Rutile Oxide RuO2. Phys. Rev. Lett. 2024, 133, 176401. [Google Scholar] [CrossRef]
- Fert, A.; Reyren, N.; Cros, V. Magnetic skyrmions: Advances in physics and potential applications. Nat. Rev. Mater. 2017, 2, 17031. [Google Scholar] [CrossRef]
- Song, X.; Cao, Z.; Bai, L.; Zhao, J.; Cai, X.; Zhu, D.; Wei, G. Interface engineering induced Dzyaloshinskii-Moriya interaction enhancement in Py/Ti/CoFeB/MgO heterostructures. Front. Electron. 2025, 6, 1608122. [Google Scholar] [CrossRef]
- Kammerbauer, F.; Choi, W.-Y.; Freimuth, F.; Lee, K.; Frömter, R.; Han, D.-S.; Lavrijsen, R.; Swagten, H.J.M.; Mokrousov, Y.; Kläui, M. Controlling the Interlayer Dzyaloshinskii–Moriya Interaction by Electrical Currents. Nano Lett. 2023, 23, 7070–7075. [Google Scholar] [CrossRef]
- Liu, F.; Wang, Y.; Gao, C.; Xue, D.; Chai, G.; Jia, C.; Jiang, C. Ferroelectric switching of Dzyaloshinskii-Moriya interaction. Phys. Rev. B 2025, 111, L220408. [Google Scholar] [CrossRef]
- Hanneken, C.; Kubetzka, A.; von Bergmann, K.; Wiesendanger, R. Pinning and movement of individual nanoscale magnetic skyrmions via defects. New J. Phys. 2016, 18, 055009. [Google Scholar] [CrossRef]
- Vansteenkiste, A.; Leliaert, J.; Dvornik, M.; Helsen, M.; Garcia-Sanchez, F.; Van Waeyenberge, B. The design and verification of MuMax3. AIP Adv. 2014, 4, 107133. [Google Scholar] [CrossRef]
- Kim, J.-V.; Yoo, M.-W. Current-driven skyrmion dynamics in disordered films. Appl. Phys. Lett. 2017, 110, 132404. [Google Scholar] [CrossRef]
- Metaxas, P.J. Chapter 2—Creep and Flow Dynamics of Magnetic Domain Walls: Weak Disorder, Wall Binding, and Periodic Pinning. In Solid State Physics; Camley, R.E., Stamps, R.L., Eds.; Academic Press: Cambridge, MA, USA, 2010; Volume 62, pp. 75–162. [Google Scholar]
- Jeudy, V.; Mougin, A.; Bustingorry, S.; Savero Torres, W.; Gorchon, J.; Kolton, A.B.; Lemaître, A.; Jamet, J.P. Universal Pinning Energy Barrier for Driven Domain Walls in Thin Ferromagnetic Films. Phys. Rev. Lett. 2016, 117, 057201. [Google Scholar] [CrossRef]
- Cao, A.; Zhang, X.; Koopmans, B.; Peng, S.; Zhang, Y.; Wang, Z.; Yan, S.; Yang, H.; Zhao, W. Tuning the Dzyaloshinskii–Moriya interaction in Pt/Co/MgO heterostructures through the MgO thickness. Nanoscale 2018, 10, 12062–12067. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Lambeth, D.N.; Laughlin, D.E. Dependence of Co anisotropy constants on temperature, processing, and underlayer. J. Appl. Phys. 2000, 87, 6884–6886. [Google Scholar] [CrossRef]
- Mohseni, S.M.; Sani, S.R.; Persson, J.; Nguyen, T.N.A.; Chung, S.; Pogoryelov, Y.; Muduli, P.K.; Iacocca, E.; Eklund, A.; Dumas, R.K.; et al. Spin Torque–Generated Magnetic Droplet Solitons. Science 2013, 339, 1295–1298. [Google Scholar] [CrossRef] [PubMed]
- Buda, L.D.; Prejbeanu, I.L.; Demand, M.; Ebels, U.; Punadjela, K. Vortex states stability in circular Co(0001) dots. IEEE Trans. Magn. 2001, 37, 2061–2063. [Google Scholar] [CrossRef]
Layer | Vacuum (mbar) | Power (W, DC) | Growth Rate (s/nm) |
---|---|---|---|
Ta | 5.3 × 10−3 mbar | 50 | 47 |
Pt | 25 | 32 | |
Co | 25 | 75 | |
RuO2 | 25 | 92 | |
Ru | 50 | 29 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jalali, M.; Wang, K.; Xu, H.; Liu, Y.; Eimer, S. Domain Wall Motion and the Interfacial Dzyaloshinskii–Moriya Interaction in Pt/Co/RuO2(Ru) Multilayers. Materials 2025, 18, 4008. https://doi.org/10.3390/ma18174008
Jalali M, Wang K, Xu H, Liu Y, Eimer S. Domain Wall Motion and the Interfacial Dzyaloshinskii–Moriya Interaction in Pt/Co/RuO2(Ru) Multilayers. Materials. 2025; 18(17):4008. https://doi.org/10.3390/ma18174008
Chicago/Turabian StyleJalali, Milad, Kai Wang, Haoxiang Xu, Yaowen Liu, and Sylvain Eimer. 2025. "Domain Wall Motion and the Interfacial Dzyaloshinskii–Moriya Interaction in Pt/Co/RuO2(Ru) Multilayers" Materials 18, no. 17: 4008. https://doi.org/10.3390/ma18174008
APA StyleJalali, M., Wang, K., Xu, H., Liu, Y., & Eimer, S. (2025). Domain Wall Motion and the Interfacial Dzyaloshinskii–Moriya Interaction in Pt/Co/RuO2(Ru) Multilayers. Materials, 18(17), 4008. https://doi.org/10.3390/ma18174008