Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (53)

Search Parameters:
Keywords = brushless excitation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2202 KB  
Article
Brushless Wound-Field Synchronous Machine Topology with Excellent Rotor Flux Regulation Freedom
by Muhammad Ayub, Arsalan Arif, Atiq Ur Rehman, Azka Nadeem, Ghulam Jawad Sirewal, Mohamed A. Abido and Mudassir Raza Siddiqi
Machines 2026, 14(1), 110; https://doi.org/10.3390/machines14010110 (registering DOI) - 17 Jan 2026
Abstract
This paper presents a nine-switch inverter for brushless operation of wound-field synchronous machines with excellent rotor flux regulation freedom. The manufacturing cost of permanent magnet machines is high due to the instability of rare-earth magnet prices in the global market. Moreover, conventional wound-field [...] Read more.
This paper presents a nine-switch inverter for brushless operation of wound-field synchronous machines with excellent rotor flux regulation freedom. The manufacturing cost of permanent magnet machines is high due to the instability of rare-earth magnet prices in the global market. Moreover, conventional wound-field synchronous machines (WFSMs) have problems with their rotor brushes and slip-ring assembly, wherein the assembly starts to malfunction in the long run. Furthermore, recently, some brushless WFSM topologies have been investigated to eliminate the problems associated with rotor brushes and slip rings, but they have either a high cost due to a double-inverter, or low flux regulation freedom due to a single inverter (−id). The proposed nine-switch topology achieves a low cost by using a single inverter with nine switches and excellent flux control through three variables (−id, iq, and if), making it highly suitable for wide-speed applications. In the proposed topology, the machine’s armature winding is divided into two sets of coils: ABC and XYZ. A 12-slot and 8-pole machine stator is wound with armature winding coils ABC and XYZ, creating six terminals for injecting currents and two neutrals from each ABC and XYZ coil set. The current to the ABC and XYZ coils is supplied by a nine-switch inverter. The inverter is specially designed to supply rated currents to the ABC winding coils and half of the rated current to the XYZ winding coils. The number of turns of the ABC and XYZ winding coils are kept the same so they produce the same winding function. However, the current in the XYZ winding coils is half compared to that of the ABC winding coils, which creates an asymmetrical airgap magnetomotive force (MMF). The asymmetrical airgap MMF contains two working harmonics, i.e., fundamental MMF for torque production and an additional sub-harmonic MMF component for rotor field brushless excitation. The rotor field is controlled by the difference in current of the two armature winding coils: ABC and XYZ. The proposed topology is validated through theoretical analysis and finite element simulations of electromagnetic and flux regulation. A 2D finite-element analysis is performed to verify the idea. The proposed topology is capable of establishing a 9.15 A dc current in the rotor field winding coil, which consequently generates a torque of 7.8 N·m with a 20.30% torque ripple. Rotor field flux regulation was analyzed from the stator ABC and XYZ coils current ratio ζ. The ratio ζ is analyzed as 2 to 1.3; subsequently, the inducted field currents were 9.15 A dc to 4.8 A dc, respectively. Full article
(This article belongs to the Section Electrical Machines and Drives)
Show Figures

Figure 1

22 pages, 1662 KB  
Article
Comparative Analysis of Shaft Voltage Harmonic Characteristics in Large-Scale Generators: OEM and Excitation System Comparisons
by Katudi Oupa Mailula and Akshay Kumar Saha
Energies 2025, 18(23), 6128; https://doi.org/10.3390/en18236128 - 23 Nov 2025
Viewed by 342
Abstract
This study presents a comparative harmonic analysis of shaft voltage waveforms in large-scale steam turbine generators, emphasizing the influence of excitation system topology and generator design on spectral behavior. Using high-resolution Fast Fourier Transform (FFT) analysis of healthy-state data from five hydrogen-cooled turbo-generators [...] Read more.
This study presents a comparative harmonic analysis of shaft voltage waveforms in large-scale steam turbine generators, emphasizing the influence of excitation system topology and generator design on spectral behavior. Using high-resolution Fast Fourier Transform (FFT) analysis of healthy-state data from five hydrogen-cooled turbo-generators (600–846 MW), this work identifies consistent harmonic patterns and their diagnostic value. Generators with brushless excitation systems exhibit dominant harmonics at 150 Hz (3rd), 250 Hz (5th), and 400 Hz (8th), whereas static-excited units show a 150 Hz (3rd) and 450 Hz (9th) pattern. These findings confirm that excitation architecture, rather than OEM design, governs the shaft voltage harmonic “fingerprint.” The persistent 150 Hz component across all machines serves as a stable indicator of generator condition. The results provide a practical reference for establishing harmonic-based baselines to enhance early fault detection and predictive-maintenance strategies in power station generators. This work contributes new comparative insights linking excitation topology to harmonic behavior, enabling improved condition monitoring across diverse generator fleets. This study establishes harmonic profiles defined as the amplitude, frequency, and relative proportion of key harmonic components in the shaft voltage spectrum obtained via FFT analysis to serve as spectral fingerprints representing the generator’s health condition. Full article
Show Figures

Figure 1

28 pages, 3911 KB  
Review
Traction Synchronous Motors with Rotor Field Winding: A Literature Review
by Vladimir Prakht, Vladimir Dmitrievskii, Vadim Kazakbaev, Eduard Valeev and Victor Goman
World Electr. Veh. J. 2025, 16(11), 633; https://doi.org/10.3390/wevj16110633 - 20 Nov 2025
Viewed by 1049
Abstract
Synchronous motors with a field winding in the rotor, known as wound-rotor synchronous motors (WRSMs) or electrically excited synchronous motors (EESMs), are claimed to be a good alternative to induction motors and even permanent-magnet synchronous motors (PMSMs) in electric traction applications. WRSMs do [...] Read more.
Synchronous motors with a field winding in the rotor, known as wound-rotor synchronous motors (WRSMs) or electrically excited synchronous motors (EESMs), are claimed to be a good alternative to induction motors and even permanent-magnet synchronous motors (PMSMs) in electric traction applications. WRSMs do not require expensive rare-earth magnets and potentially have high power and torque density, and lower inverter power and cost, especially in applications demanding a wide constant-power speed range. Designing WRSMs for electric traction imposes some challenges and requires careful analysis. This paper provides an overview of commercial WRSMs for ground electric transport over the past 40 years, a comparison of WRSMs with other types of electric motors suitable for electric traction, and an overview of optimization methods and brushless excitation technologies for such machines. The goals of this paper are to present and discuss design approaches for traction WRSMs, to benchmark WRSMs against other motor types used in ground electric transport, and to highlight the most promising WRSM topologies and design techniques. Full article
Show Figures

Figure 1

16 pages, 2114 KB  
Article
The Design Optimization of a Harmonic-Excited Synchronous Machine Operating in the Field-Weakening Region
by Vladimir Prakht, Vladimir Dmitrievskii, Vadim Kazakbaev, Eduard Valeev and Victor Goman
World Electr. Veh. J. 2025, 16(11), 599; https://doi.org/10.3390/wevj16110599 - 29 Oct 2025
Viewed by 560
Abstract
In this paper, the optimization of a harmonic-excited synchronous machine (HESM) is carried out. A two-phase harmonic exciter winding of the HESM provides brushless excitation and sufficient starting torque at any rotor position. The HESM under consideration is intended to be used for [...] Read more.
In this paper, the optimization of a harmonic-excited synchronous machine (HESM) is carried out. A two-phase harmonic exciter winding of the HESM provides brushless excitation and sufficient starting torque at any rotor position. The HESM under consideration is intended to be used for applications requiring speed control, especially in the field-weakening region. The novelty of the proposed approach is that a two-level optimization based on a two-stage model is used to reduce the computational burden. It includes a finite-element model that takes into account only the fundamental current harmonic (basic model). Using the output of the basic model, a reduced-order model (ROM) is parametrized. The ROM considers pulse-width-modulated components of the inverter output current, zero-sequence current injected into the stator winding, and harmonic excitation winding currents. A two-level optimization technique is developed based on the Nelder–Mead method, taking into account the significantly different computational complexity of the basic and reduced-order models. Optimization is performed considering two operating points: base and maximum speed. The results show that an optimized design provides significantly higher efficiency and reduced inverter power requirements. This allows the use of more compact and cheaper power switches. Therefore, the advantage of the presented approach lies in the computationally effective optimization of HESMs (optimization time is reduced by approximately three orders of magnitude compared to calculations using FEA alone), which enhances HESMs’ performance in various applications. Full article
Show Figures

Figure 1

14 pages, 4328 KB  
Article
Analysis and Design of a Brushless WRSM with Harmonic Excitation Based on Electromagnetic Induction Power Transfer Optimization
by Arsalan Arif, Farhan Arif, Zuhair Abbas, Ghulam Jawad Sirewal, Muhammad Saleem, Qasim Ali and Mukhtar Ullah
Magnetism 2025, 5(4), 26; https://doi.org/10.3390/magnetism5040026 - 18 Oct 2025
Viewed by 874
Abstract
This paper proposes a method to analyze the effect of the rotor’s harmonic winding design and the output of a brushless wound rotor synchronous machine (WRSM) for optimal excitation power transfer. In particular, the machine analyzed by the finite-element method was a 48-slot [...] Read more.
This paper proposes a method to analyze the effect of the rotor’s harmonic winding design and the output of a brushless wound rotor synchronous machine (WRSM) for optimal excitation power transfer. In particular, the machine analyzed by the finite-element method was a 48-slot eight-pole 2D model. The subharmonic magnetomotive force was additionally created in the air gap flux, which induces voltage in the harmonic winding of the rotor. This voltage is rectified and fed to the field winding through a full bridge rectifier. Eventually, a direct current (DC) flows to the field winding, removing the need for external excitation through brushes and sliprings. The effect of the number of harmonic winding turns is analyzed and the field winding turns were varied with respect to the available rotor slot space. Optimization of the harmonic excitation part of the machine will maximize the rotor excitation for regulation purposes and optimize the torque production at the same time. Two-dimensional finite-element analysis has been performed in ANSYS Maxwell 19 to obtain the basic results for the design of the machine. Full article
Show Figures

Figure 1

16 pages, 9202 KB  
Article
Hybrid Brushless Wound-Rotor Synchronous Machine with Dual-Mode Operation for Washing Machine Applications
by Sheeraz Ahmed, Qasim Ali, Ghulam Jawad Sirewal, Kapeel Kumar and Gilsu Choi
Machines 2025, 13(5), 342; https://doi.org/10.3390/machines13050342 - 22 Apr 2025
Cited by 3 | Viewed by 2084
Abstract
This paper proposes a hybrid brushless wound-rotor synchronous machine (HB-WRSM) with an outer rotor topology that can operate as a permanent magnet synchronous machine (PMSM), as well as an HB-WRSM. In the first part, the existing brushless wound-rotor synchronous machine (BL-WRSM) is modified [...] Read more.
This paper proposes a hybrid brushless wound-rotor synchronous machine (HB-WRSM) with an outer rotor topology that can operate as a permanent magnet synchronous machine (PMSM), as well as an HB-WRSM. In the first part, the existing brushless wound-rotor synchronous machine (BL-WRSM) is modified into a hybrid model by introducing permanent magnets (PMs) in the rotor pole faces to improve the magnetic field strength and other performance variables of the machine. In the second part, a centrifugal switch is introduced, which can change the machine operation from HB-WRSM to PMSM. The proposed machine uses an inner stator, outer rotor model with 36 stator slots and 48 poles, making the stator winding a concentrated winding. The HB-WRSM is utilized for dual-speed applications such as washing machines that run at low speed (46 rpm) and high speed (1370 rpm). For high speed, to have a better efficiency and less torque ripple, the machine is switched to PMSM mode using a centrifugal switch. The results are compared with the existing BL-WRSM. A 2D model is simulated using ANSYS Electromagnetics Suite to validate the machine model and performance. Full article
(This article belongs to the Special Issue Recent Developments in Machine Design, Automation and Robotics)
Show Figures

Figure 1

18 pages, 8696 KB  
Article
Traction Synchronous Machine with Rotor Field Winding and Two-Phase Harmonic Field Exciter
by Vladimir Prakht, Vladimir Dmitrievskii, Vadim Kazakbaev, Aleksey Paramonov and Victor Goman
World Electr. Veh. J. 2025, 16(1), 25; https://doi.org/10.3390/wevj16010025 - 6 Jan 2025
Cited by 2 | Viewed by 2665
Abstract
Many modern electric drives for cars, trucks, ships, etc., use permanent magnet synchronous motors because of their compact size. At the same time, permanent magnets are expensive, and their uncontrolled flux is a problem when it is necessary to provide a wide constant [...] Read more.
Many modern electric drives for cars, trucks, ships, etc., use permanent magnet synchronous motors because of their compact size. At the same time, permanent magnets are expensive, and their uncontrolled flux is a problem when it is necessary to provide a wide constant power speed range in the field weakening region. An alternative to permanent magnet motors is synchronous motors with field windings. This article presents a novel design of a traction brushless synchronous motor with a field winding and a two-phase harmonic exciter winding on the rotor and zero-sequence signal injection. The two-phase harmonic exciter winding increases the electromotive force on the field winding compared to a single-phase one and makes it possible to start the motor at any rotor position. This article discusses the advantages of the proposed design over conventional solutions. A simplified mathematical model based on the finite element method for steady state simulation is presented. The machine performance of a hysteresis current controller and a field-oriented PI current controller are compared using the model. Full article
Show Figures

Figure 1

17 pages, 23136 KB  
Article
Analysis of an Axial Field Hybrid Excitation Synchronous Generator
by Junyue Yu, Shushu Zhu and Chuang Liu
Energies 2024, 17(24), 6329; https://doi.org/10.3390/en17246329 - 16 Dec 2024
Viewed by 1364
Abstract
An axial field hybrid excitation synchronous generator (AF-HESG) is proposed for an independent power supply system, and its electromagnetic performance is studied in this paper. The distinguishing feature of the proposed generator is the addition of static magnetic bridges at both ends to [...] Read more.
An axial field hybrid excitation synchronous generator (AF-HESG) is proposed for an independent power supply system, and its electromagnetic performance is studied in this paper. The distinguishing feature of the proposed generator is the addition of static magnetic bridges at both ends to place the field windings and the use of a sloping surface to increase the additional air-gap cross-sectional area. The advantage of the structure is that it achieves brushless excitation and improves the flux-regulation range. The structure and magnetic circuit characteristics are introduced in detail. Theoretical analysis of the flux-regulation principle is conducted by studying the relationship between field magnetomotive force, rotor reluctance, and air-gap flux density. Quantitative calculation is performed using a magnetomotive force (MMF)-specific permeance model, and the influence of the main parameters on the air-gap flux density and flux-regulation range is analyzed. Subsequently, magnetic field, no-load, and load characteristics are investigated through three-dimensional finite element analysis. The loss distribution is analyzed, and the temperature of the generator under rated conditions is simulated. Finally, a 30 kW, 1500 r/min prototype is developed and tested. The test results show good flux-regulation capability and stable voltage output performance of the proposed generator. Full article
(This article belongs to the Section F: Electrical Engineering)
Show Figures

Figure 1

18 pages, 7369 KB  
Article
Influence of Parameters on the Excitation Power of Third Harmonic Brushless Hybrid Excitation Generator
by Yonghong Xia, Jianxin Xu, Jinhui Hu, Yeguo Yu, Ying Chen and Jingming Zhang
Energies 2024, 17(23), 6021; https://doi.org/10.3390/en17236021 - 29 Nov 2024
Viewed by 1041
Abstract
Hybrid-excited generators have a wide voltage regulation capability or a wide range of variable-speed constant-voltage output capability, providing a significant advantage in the new energy power generation field. To achieve the optimal design of brushless hybrid excitation synchronous generators with third harmonic excitation, [...] Read more.
Hybrid-excited generators have a wide voltage regulation capability or a wide range of variable-speed constant-voltage output capability, providing a significant advantage in the new energy power generation field. To achieve the optimal design of brushless hybrid excitation synchronous generators with third harmonic excitation, it is necessary to grasp the influence of design parameters on excitation power accurately. Firstly, this paper elaborates on the structure and principle of the hybrid excitation synchronous generator. From the perspective of excitation power generation, the expression for excitation power in hybrid excitation generators has been derived, identifying the primary factors influencing excitation power, which include winding parameters, structural parameters, and magnetic circuit saturation. Secondly, qualitatively calculate the influence of the number of turns and arrangement, turns in rotor harmonic, air gap length, and thickness of the permanent magnet on the excitation power, which is verified by the electromagnetic field finite element method. The results showed that the use of full pitch and a moderate increase in turns, a decrease in air gap length, and an increase in the thickness of the permanent magnet can all increase the rotor excitation power. A brushless hybrid excitation synchronous generator prototype based on third harmonic excitation was developed, the correctness of theoretical analysis and calculation were verified by test results. Full article
(This article belongs to the Section F3: Power Electronics)
Show Figures

Figure 1

27 pages, 6953 KB  
Article
Automatic Classification of Rotating Rectifier Faults in Brushless Synchronous Machines
by Kumar Mahtani, Julien Decroix, Rubén Pascual, José M. Guerrero and Carlos A. Platero
Electronics 2024, 13(23), 4667; https://doi.org/10.3390/electronics13234667 - 26 Nov 2024
Viewed by 2147
Abstract
This paper presents an advanced automatic fault classification method for detecting rotating rectifier faults in brushless synchronous machines (BSMs). The proposed approach employs a multilayer perceptron (MLP) neural network to classify the operational states of the rotating rectifier, including healthy conditions and common [...] Read more.
This paper presents an advanced automatic fault classification method for detecting rotating rectifier faults in brushless synchronous machines (BSMs). The proposed approach employs a multilayer perceptron (MLP) neural network to classify the operational states of the rotating rectifier, including healthy conditions and common fault types: open-diode (OD), shorted-diode (SD), and open-phase (OP). Key machine measurements, available on an ordinary basis in the industry, such as active power (P), reactive power (Q), stator voltage (U), and excitation current (Ie), are used as inputs for this model, allowing for non-invasive, real-time fault detection. This model achieved an overall classification accuracy of 93.4%, with a precision of 94.9% for fault detection and strong recall performance across multiple fault types. The neural network’s robustness is enhanced by advanced data processing techniques, including Gaussian filtering and class balancing through the synthetic minority over-sampling technique (SMOTE). Experimental testing on a modified 5-kVA BSM setup, where rectifier faults were systematically induced, was used to train the network and validate the model’s performance. This method provides a promising tool for real-time condition monitoring of BSMs, improving machine reliability and minimizing downtime in industrial applications. Full article
Show Figures

Figure 1

15 pages, 5537 KB  
Article
Influence of Temperature on Brushless Synchronous Machine Field Winding Interturn Fault Severity Estimation
by Rubén Pascual, Eduardo Rivero, José M. Guerrero, Kumar Mahtani and Carlos A. Platero
Appl. Sci. 2024, 14(17), 8061; https://doi.org/10.3390/app14178061 - 9 Sep 2024
Cited by 1 | Viewed by 2023
Abstract
There are numerous methods for detecting interturn faults (ITFs) in the field winding of synchronous machines (SMs). One effective approach is based on comparing theoretical and measured excitation currents. This method is unaffected by rotor temperature in static excitation SMs. However, this paper [...] Read more.
There are numerous methods for detecting interturn faults (ITFs) in the field winding of synchronous machines (SMs). One effective approach is based on comparing theoretical and measured excitation currents. This method is unaffected by rotor temperature in static excitation SMs. However, this paper investigates the influence of rotor temperature in brushless synchronous machines (BSMs), where rotor temperature significantly impacts the exciter excitation current. Extensive experimental tests were conducted on a special BSM with measurable rotor temperature. Given the challenges of measuring rotor temperature in industrial machines, this paper explores the feasibility of using stator temperature in the exciter field current estimation model. The theoretical exciter field current is calculated using a deep neural network (DNN), which incorporates electrical brushless synchronous generator output values and stator temperature, and it is subsequently compared with the measured exciter field current. This method achieves an error rate below 0.5% under healthy conditions, demonstrating its potential for simple implementation in industrial BSMs for ITF detection. Full article
Show Figures

Figure 1

18 pages, 4164 KB  
Article
Experimental Study of the Energy Regenerated by a Horizontal Seat Suspension System under Random Vibration
by Igor Maciejewski, Sebastian Pecolt, Andrzej Błażejewski, Bartosz Jereczek and Tomasz Krzyzynski
Energies 2024, 17(17), 4341; https://doi.org/10.3390/en17174341 - 30 Aug 2024
Cited by 3 | Viewed by 2251
Abstract
This article introduces a novel regenerative suspension system designed for active seat suspension, to reduce vibrations while recovering energy. The system employs a four-quadrant electric actuator operation model and utilizes a brushless DC motor as an actuator and an energy harvester. This motor, [...] Read more.
This article introduces a novel regenerative suspension system designed for active seat suspension, to reduce vibrations while recovering energy. The system employs a four-quadrant electric actuator operation model and utilizes a brushless DC motor as an actuator and an energy harvester. This motor, a permanent magnet synchronous type, transforms DC into three-phase AC power, serving dual purposes of vibration energy recovery and active power generation. The system’s advanced vibration control is achieved through the switching of MOSFET transistors, ensuring the suspension system meets operational criteria that contrast with traditional vibro-isolation systems, thereby reducing the negative effects of mechanical vibrations on the human body, while also lowering energy consumption. Comparative studies of the regenerative system dynamics against passive and active systems under random vibrations demonstrated its effectiveness. This research assessed the system’s performance through power spectral density and transmissibility functions, highlighting its potential to enhance energy efficiency and the psychophysical well-being of individuals subjected to mechanical vibrations. The effectiveness of the energy regeneration process under the chosen early excitation vibrations was investigated. Measurements of the motor torque in the active mode and during regenerative braking mode, and the corresponding phase currents of the motor, are presented. Full article
(This article belongs to the Section K: State-of-the-Art Energy Related Technologies)
Show Figures

Figure 1

14 pages, 6487 KB  
Article
A Novel Rotor Harmonic Winding Configuration for the Brushless Wound Rotor Synchronous Machine
by Farhan Arif, Arsalan Arif, Qasim Ali, Asif Hussain, Abid Imran, Mukhtar Ullah and Asif Khan
World Electr. Veh. J. 2024, 15(6), 226; https://doi.org/10.3390/wevj15060226 - 23 May 2024
Cited by 4 | Viewed by 2553
Abstract
In the last decade, permanent magnet (PM)-free or hybrid PM machines have been extensively researched to find an alternative for high cost rare-earth PM machines. Brushless wound rotor synchronous machines (BL-WRSMs) are one of the alternatives to these PM machines. BL-WRSMs have a [...] Read more.
In the last decade, permanent magnet (PM)-free or hybrid PM machines have been extensively researched to find an alternative for high cost rare-earth PM machines. Brushless wound rotor synchronous machines (BL-WRSMs) are one of the alternatives to these PM machines. BL-WRSMs have a lower torque density compared to PM machines. In this paper, a new topology is introduced to improve the torque producing capability of the existing BL-WRSM by utilizing the vacant spaces in the rotor slots. The new topology has two harmonic windings placed on the rotor which induce separate currents. A capacitor is used between the two harmonic windings to bring the currents in phase with each other. The harmonic winding currents are fed to the rectifier which is also placed on the rotor. Due to additional harmonic winding, the overall field current fed to the rotor field winding has been increased and hence the average torque has also increased. Finite element analysis (FEA)-based simulations are performed using ANSYS Maxwell to validate the proposed topology. The results show that the average torque of the machine has been significantly increased compared to the reference model. The detailed comparison results are provided in this paper. Full article
Show Figures

Figure 1

19 pages, 5788 KB  
Article
Mutual Inductance Identification and Bilateral Cooperation Control Strategy for MCR-BE System
by Ke Li, Yuanmeng Liu, Xiaodong Sun and Xiang Tian
World Electr. Veh. J. 2024, 15(5), 196; https://doi.org/10.3390/wevj15050196 - 2 May 2024
Viewed by 1629
Abstract
Considering that the excitation method of an electric excitation synchronous motor has the disadvantages of the brush and slip ring, this article proposes a new brushless excitation system, which includes two parts: a wireless charging system and a motor. To meet the requirements [...] Read more.
Considering that the excitation method of an electric excitation synchronous motor has the disadvantages of the brush and slip ring, this article proposes a new brushless excitation system, which includes two parts: a wireless charging system and a motor. To meet the requirements of maximum transmission efficiency and constant voltage output of the system, a bilateral cooperation control strategy is proposed. For the strategy, the buck converter in the receiving side of the system can maintain maximum transmission efficiency through impedance matching, while the inverter in the transmitting side can keep the output voltage constant through phase shift modulation. In the control process, considering that the offset of coupling coils will affect the control results, a grey wolf optimization–particle swarm optimization algorithm is proposed to identify mutual inductance. Simulation and experimental results show that this identification algorithm can improve the identification accuracy and maximize the avoidance of falling into local optima. The final experimental result shows that the bilateral cooperation control strategy can maintain the output voltage around 48 V and the transmission efficiency around 84.5%, which meets the expected requirements. Full article
(This article belongs to the Special Issue Permanent Magnet Motors and Driving Control for Electric Vehicles)
Show Figures

Figure 1

16 pages, 6954 KB  
Article
Torque Ripple Reduction in Brushless Wound Rotor Vernier Machine Using Third-Harmonic Multi-Layer Winding
by Muhammad Zulqarnain, Sheikh Yasir Hammad, Junaid Ikram, Syed Sabir Hussain Bukhari and Laiq Khan
World Electr. Veh. J. 2024, 15(4), 163; https://doi.org/10.3390/wevj15040163 - 11 Apr 2024
Cited by 8 | Viewed by 1854
Abstract
This article aims to realize the brushless operation of a wound rotor vernier machine (WRVM) by a third-harmonic field produced through stator auxiliary winding (X). In the conventional model, a third-harmonic current is generated by connecting a 4-pole armature and 12-pole excitation windings [...] Read more.
This article aims to realize the brushless operation of a wound rotor vernier machine (WRVM) by a third-harmonic field produced through stator auxiliary winding (X). In the conventional model, a third-harmonic current is generated by connecting a 4-pole armature and 12-pole excitation windings serially with a three-phase diode rectifier to develop a pulsating field in the airgap of a machine. However, in the proposed model, the ABC winding is supplied by a three-phase current source inverter, whereas the auxiliary winding (X) carries no current due to an open circuit. The fundamental MMF component developed in the machine airgap creates a four-pole stator field, while the third-harmonic MMF induces the harmonic current in the specialized rotor harmonic winding. The rotor on the other side contains the harmonic and the field windings connected through a full-bridge rectifier. The electromagnetic interaction of the stator and rotor fields generates torque. Due to the open-circuited winding pattern, the proposed machine results in a low torque ripple. A 2D model is designed using JMAG-Designer, and 2D field element analysis (FEA) is carried out to determine the output torque and machine’s efficiency. A comparative performance analysis of both the conventional and proposed topologies is discussed graphically. The quantitative analysis of the proposed topology shows better performance as compared to the recently developed third-harmonic-based brushless WRVM topology in terms of output torque and torque ripples. Full article
Show Figures

Figure 1

Back to TopTop