Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (274)

Search Parameters:
Keywords = broken symmetry

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1735 KB  
Article
Entanglement Negativity and Exceptional-Point Signatures in a PT-Symmetric Non-Hermitian XY Dimer: Parameter Regimes and Directional-Coupler Mapping
by Linzhi Jiang, Weicheng Miao, Wen-Yang Sun and Wenchao Ma
Photonics 2025, 12(12), 1239; https://doi.org/10.3390/photonics12121239 - 18 Dec 2025
Viewed by 409
Abstract
We investigate a non-Hermitian two-spin XY model driven by alternating real and imaginary transverse fields and derive an explicit analytic formula for the ground-state entanglement negativity. This provides a systematic analytic characterization of how ground-state entanglement behaves across PT-symmetry breaking in a non-Hermitian [...] Read more.
We investigate a non-Hermitian two-spin XY model driven by alternating real and imaginary transverse fields and derive an explicit analytic formula for the ground-state entanglement negativity. This provides a systematic analytic characterization of how ground-state entanglement behaves across PT-symmetry breaking in a non-Hermitian spin dimer. In the PT-symmetric regime, the anisotropy γ enhances entanglement, whereas the real field h0 suppresses it; in the PT-broken regime dominated by φ3, the negativity decreases monotonically with the imaginary field η0. Moreover, the first derivative of the negativity exhibits a cusp-type non-analyticity at the exceptional point (EP), consistent with the ground-state phase boundary and revealing a direct correspondence between entanglement transitions and exceptional-point physics. To facilitate implementation in integrated quantum photonics, we map h0,η0,γ onto the device parameters Δβ,g,κ of a PT-symmetric directional coupler and propose a two-qubit quantum state tomography readout based on local Pauli measurements, thereby offering a concrete entanglement-based probe of exceptional-point signatures in a realistic photonic platform. Within this model, we identify parameter regimes for observing this signature: a cusp feature is expected near Δβ0 and gκ, which remains observable under small detuning and moderate loss mismatch. These results offer a testable avenue for entanglement-based probing of PT-symmetry breaking and may inform device characterization and quantitative assessment in integrated quantum photonics. These combined advances provide both analytical insight into non-Hermitian entanglement structure and a feasible route toward experimentally diagnosing PT-symmetry breaking using entanglement. Full article
(This article belongs to the Special Issue Quantum Optics: Communication, Sensing, Computing, and Simulation)
Show Figures

Figure 1

26 pages, 1323 KB  
Article
Strategic Scenario Interaction: A Computational Framework Based on Game-Theoretic and Quantum-Inspired Modeling
by Ioannis Lomis, Anna-Maria Kanzola and Panagiotis E. Petrakis
Symmetry 2025, 17(12), 2022; https://doi.org/10.3390/sym17122022 - 24 Nov 2025
Viewed by 548
Abstract
Strategic foresight often involves navigating deeply uncertain futures through scenario-based reasoning. Traditional methods rely on static narratives or probabilistic models, which fail to capture the dynamic, interacting, and nonexclusive nature of competing futures. This paper introduces a quantum-inspired framework for scenario interaction grounded [...] Read more.
Strategic foresight often involves navigating deeply uncertain futures through scenario-based reasoning. Traditional methods rely on static narratives or probabilistic models, which fail to capture the dynamic, interacting, and nonexclusive nature of competing futures. This paper introduces a quantum-inspired framework for scenario interaction grounded in the mathematical formalism of superposition, interference, and contextuality. Agents are modeled as epistemic learners who iteratively update their preferences across multiple narrative pathways, which are treated as basis states in a conceptual Hilbert space. The simulation combines reinforcement learning with stochastic imitation, producing emergent distributions that resemble quantum-like collapse under feedback. Central to the model is the emergence of symmetries in the scenario structure and learning dynamics. Agents begin with neutral priors, facing a balanced reward landscape, epistemic and normative symmetry that is gradually broken through adaptive behavior. However, statistical symmetries persist at the ensemble level, as agents maintain partial preferences and oscillate among futures. These layered symmetries reflect both the cognitive realism of foresight practices and the mathematical tractability of quantum-inspired systems. The proposed model bridges strategic foresight, game-theoretic interaction, and quantum cognition, and offers a novel computational lens to study how futures are constructed, selected, and stabilized under uncertainty. Full article
Show Figures

Figure 1

22 pages, 4107 KB  
Article
Hybrid CNN–MLP for Robust Fault Diagnosis in Induction Motors Using Physics-Guided Spectral Augmentation
by Alexander Shestakov, Dmitry Galyshev, Olga Ibryaeva and Victoria Eremeeva
Algorithms 2025, 18(11), 722; https://doi.org/10.3390/a18110722 - 15 Nov 2025
Viewed by 485
Abstract
The diagnosis of faults in induction motors, such as broken rotor bars, is critical for preventing costly emergency shutdowns and production losses. The complexity of this task lies in the diversity of induction motor operating regimes. Specifically, a change in load alters the [...] Read more.
The diagnosis of faults in induction motors, such as broken rotor bars, is critical for preventing costly emergency shutdowns and production losses. The complexity of this task lies in the diversity of induction motor operating regimes. Specifically, a change in load alters the signal’s frequency composition and, consequently, the values of fault diagnostic features. Developing a reliable diagnostic model requires data covering the entire range of motor loads, but the volume of available experimental data is often limited. This work investigates a data augmentation method based on the physical relationship between the frequency content of diagnostic signals and the motor’s operating regime. The method enables stretching and compression of the signal in the spectral domain while preserving Fourier transform symmetry and energy consistency, facilitating the generation of synthetic data for various load regimes. We evaluated the method on experimental data from a 0.37 kW induction motor with broken rotor bars. The synthetic data were used to train three diagnostic models: a Multilayer Perceptron (MLP), a Convolutional Neural Network (CNN), and a hybrid CNN-MLP model. Results indicate that the proposed augmentation method enhances classification quality across different load levels. The hybrid CNN-MLP model achieved the best performance, with an F1-score of 0.98 when augmentation was employed. These findings demonstrate the practical efficacy of physics-guided spectral augmentation for induction motor fault diagnosis. Full article
Show Figures

Figure 1

17 pages, 8128 KB  
Article
Quantum Fisher Information Probing a Quantum-Gas Cavity QED
by Lehan Zhu, Qian Wang and Zhaoxin Liang
Symmetry 2025, 17(11), 1918; https://doi.org/10.3390/sym17111918 - 9 Nov 2025
Viewed by 550
Abstract
Motivated by recent efforts in simulating nonequilibrium scenarios of the Dicke model in quantum-gas cavity QED, we investigate direct probing of the normal-to-superradiant quantum phase transition via Quantum Fisher Information (QFI). This transition represents a paradigmatic example of spontaneous symmetry breaking in quantum [...] Read more.
Motivated by recent efforts in simulating nonequilibrium scenarios of the Dicke model in quantum-gas cavity QED, we investigate direct probing of the normal-to-superradiant quantum phase transition via Quantum Fisher Information (QFI). This transition represents a paradigmatic example of spontaneous symmetry breaking in quantum optics, where the system’s Z2 symmetry is broken in the superradiant phase. At zero temperature, we derive analytical expressions for the QFI in the limit where the atomic transition frequency—scaled by the cavity frequency—tends to infinity. Furthermore, we analyze the impact of finite temperature on the QFI in both the thermodynamic limit and the regime of a finite but large number of atoms. All results demonstrate that the QFI exhibits a singularity as the coupling crosses the critical point—a clear signature of quantum criticality associated with spontaneous symmetry breaking. The divergent behavior of the QFI across the quantum phase transition directly relates to measuring dynamic susceptibilities using experimentally accessible Bragg spectroscopy tools and resources. Full article
Show Figures

Figure 1

14 pages, 19249 KB  
Article
Topological Phase Transition in Two-Dimensional Magnetic Material CrI3 Bilayer Intercalated with Mo
by Chen-En Yin, Angus Huang and Horng-Tay Jeng
Materials 2025, 18(20), 4751; https://doi.org/10.3390/ma18204751 - 16 Oct 2025
Viewed by 736
Abstract
Motivated by the seminal discoveries in graphene, the exploration of novel physical phenomena in alternative two-dimensional (2D) materials has attracted tremendous attention. In this work, through theoretical investigation using first-principles calculations, we reveal that Mo-intercalated CrI3 bilayer exhibits ferromagnetic semiconductor behavior with [...] Read more.
Motivated by the seminal discoveries in graphene, the exploration of novel physical phenomena in alternative two-dimensional (2D) materials has attracted tremendous attention. In this work, through theoretical investigation using first-principles calculations, we reveal that Mo-intercalated CrI3 bilayer exhibits ferromagnetic semiconductor behavior with a small easy-plane magnetocrystalline anisotropy energy (MAE) of 0.618 meV/Cr(Mo) between (100) and (001) magnetizations. The spin–orbit coupling (SOC) opens a narrow band gap at the Fermi level for both magnetization orientations with nonzero Chern number for realizing the quantum anomalous Hall effect (QAHE) in the former and with trivial topology in the latter. The small MAE implies the efficient experimental manipulation of magnetization between distinct topologies through an external magnetic field. Our findings provide compelling evidence that the QAHE in this system originates from the quantum spin Hall effect (QSHE), driven by intrinsic magnetism under broken time-reversal symmetry. These unique properties position Mo-intercalated CrI3 as a promising candidate for tunable spintronic applications. Full article
Show Figures

Figure 1

13 pages, 305 KB  
Article
The General Property of the Tensor Gravitational Memory Effect in Theories of Gravity: The Linearized Case
by Shaoqi Hou
Symmetry 2025, 17(10), 1703; https://doi.org/10.3390/sym17101703 - 11 Oct 2025
Cited by 1 | Viewed by 783
Abstract
In this work, it is shown that, based on the linear analysis, as long as a theory of gravity is diffeomorphism invariant and possesses the tensor degrees of freedom propagating at a constant, isotropic speed without dispersion, its asymptotic symmetry group of an [...] Read more.
In this work, it is shown that, based on the linear analysis, as long as a theory of gravity is diffeomorphism invariant and possesses the tensor degrees of freedom propagating at a constant, isotropic speed without dispersion, its asymptotic symmetry group of an isolated system contains the (extended/generalized) Bondi–Metzner–Sachs group. These asymptotic symmetries preserve the causal structure of the tensor degrees of freedom. They possess the displacement, spin and center-of-mass memory effects. These effects depend on the asymptotic shear tensor. The displacement memory effect is the vacuum transition and parameterized by a supertranslation transformation. All of these hold even when the Lorentz symmetry is broken by a special timelike direction. Full article
(This article belongs to the Special Issue Symmetry in Gravitational Waves and Astrophysics)
13 pages, 2995 KB  
Article
Gluon Condensation as a Unifying Mechanism for Special Spectra of Cosmic Gamma Rays and Low-Momentum Pion Enhancement at the Large Hadron Collider
by Wei Zhu, Jianhong Ruan, Xurong Chen and Yuchen Tang
Symmetry 2025, 17(10), 1664; https://doi.org/10.3390/sym17101664 - 6 Oct 2025
Viewed by 576
Abstract
Gluons within the proton may accumulate near a critical momentum due to nonlinear QCD effects, leading to a gluon condensation. Surprisingly, the pion distribution predicted by this gluon distribution could answer two puzzles in astronomy and high-energy physics. During ultra-high-energy cosmic ray collisions, [...] Read more.
Gluons within the proton may accumulate near a critical momentum due to nonlinear QCD effects, leading to a gluon condensation. Surprisingly, the pion distribution predicted by this gluon distribution could answer two puzzles in astronomy and high-energy physics. During ultra-high-energy cosmic ray collisions, gluon condensation may abruptly produce a large number of low-momentum pions, whose electromagnetic decays have the typical broken power law. On the other hand, the Large Hadron Collider (LHC) shows weak but recognizable signs of gluon condensation, which had been mistaken for BEC pions. Symmetry is one of the fundamental laws in natural phenomena. Conservation of energy stems from time symmetry, which is one of the most central principles in nature. In this study, we reveal that the connection between the above two apparently unrelated phenomena can be fundamentally explained from the fundamental principle of conservation of energy, highlighting the deep connection and unifying role symmetry plays in physical processes. Full article
(This article belongs to the Section Physics)
Show Figures

Figure 1

17 pages, 3839 KB  
Article
First-Principles Calculation of Mechanical Properties and Thermal Conductivity of C-Doped AlN
by Hongfei Shao, Ying Wang, Jiahe Song, Liwen Lei, Xia Liu, Xuejun Hou and Jinyong Zhang
Ceramics 2025, 8(3), 117; https://doi.org/10.3390/ceramics8030117 - 19 Sep 2025
Viewed by 1094
Abstract
Due to its good thermal conductivity and small thermal expansion coefficient, aluminum nitride (AlN) is an excellent material for thermal shock resistance. Recently, carbon (C) doping has emerged as a potential strategy for tailoring the properties of AlN, but its effects on the [...] Read more.
Due to its good thermal conductivity and small thermal expansion coefficient, aluminum nitride (AlN) is an excellent material for thermal shock resistance. Recently, carbon (C) doping has emerged as a potential strategy for tailoring the properties of AlN, but its effects on the mechanical properties and thermal conductivity of AlN remain unclear. In the present study, the mechanical properties and thermal conductivity of C-doped AlN (C@AlN) with various C-doping densities were investigated using first-principles calculations based on density functional theory. The results suggest that C doping often leads to an increase in the c lattice constant. When the C-doping concentration reaches 12.5%, the structural symmetry of 4C@AlN is fully broken. In addition, as the C-doping density increases, the strength and stiffness of C@AlN generally decrease while the ductility increases. Moreover, the thermal conductivity of C@AlN generally decreases as the C-doping density increases, mainly because of the structural distortion. Meanwhile, as the C-doping density reaches 12.5%, the thermal conductivity of 4C@AlN anomalously increases, due to the symmetry breakage. Full article
Show Figures

Figure 1

18 pages, 943 KB  
Article
Dual-Tree-Guided Aspect-Based Sentiment Analysis Incorporating Structure-Aware Semantic Refinement and Graph Attention
by Xinyu Wang, Yuhang Gao, Lv Xiao, Kun Zhong, Peisen Tan and Zhaobin Tan
Symmetry 2025, 17(9), 1492; https://doi.org/10.3390/sym17091492 - 9 Sep 2025
Viewed by 801
Abstract
This work addresses the broken symmetry in syntactic–semantic representations for Aspect-Based Sentiment Analysis, where advancements have been driven by the use of pre-trained language models to achieve contextual understanding and graph neural networks capturing aspect–opinion dependencies using syntactic trees. However, long-distance aspect–opinion pairs [...] Read more.
This work addresses the broken symmetry in syntactic–semantic representations for Aspect-Based Sentiment Analysis, where advancements have been driven by the use of pre-trained language models to achieve contextual understanding and graph neural networks capturing aspect–opinion dependencies using syntactic trees. However, long-distance aspect–opinion pairs pose challenges: the structural noise in dependency trees often causes erroneous associations, while the discrete structure of the constituent trees leads to constituent fragmentation. In this paper, we propose DySynGAT and introduce a Localized Graph Attention Network (LGAT) to fuse bi-gram syntactic and semantic information from both dependency and constituent trees, effectively mitigating interference from dependency tree noise. A dynamic semantic enhancement module efficiently integrates local and global semantics, alleviating constituent fragmentation caused by constituent trees. An aspect–context interaction graph (ACIG), built upon minimal semantic segmentation and jointly enhanced features, filters out noisy cross-clause edges. Spatial reduction attention (SRA) with mean pooling compresses the redundant sequential features, reducing the noise under long-range dependencies. Experiments on foods and beverages, electronics, and user review datasets demonstrate F1 score improvements of 0.55%, 3.55%, and 1.75% over SAGAT-BERT, demonstrating strong cross-domain robustness. Full article
(This article belongs to the Section Computer)
Show Figures

Figure 1

16 pages, 17204 KB  
Article
Enhanced High-Order Harmonic Generation from Ethylbenzene in Circularly Polarized Laser Fields
by Shushan Zhou, Nan Xu, Hao Wang, Yue Qiao, Yujun Yang and Muhong Hu
Symmetry 2025, 17(9), 1433; https://doi.org/10.3390/sym17091433 - 2 Sep 2025
Viewed by 733
Abstract
We theoretically investigate high-order harmonic generation from ethylbenzene (C8H10), toluene (C7H8), and benzene (C6H6) molecules driven by a circularly polarized laser field using time-dependent density functional theory. By comparing the harmonic [...] Read more.
We theoretically investigate high-order harmonic generation from ethylbenzene (C8H10), toluene (C7H8), and benzene (C6H6) molecules driven by a circularly polarized laser field using time-dependent density functional theory. By comparing the harmonic spectra of these structurally related molecules, we find that ethylbenzene, which features a larger molecular size due to the ethyl group, exhibits a higher harmonic cutoff and stronger harmonic intensity than toluene and benzene. Time-resolved electron density distributions, together with the probability current density analysis, indicate that under long-wavelength conditions (e.g., 1200 nm), the ethyl group in ethylbenzene and the methyl group in toluene significantly enhance the probability of ionized electrons from neighboring nuclei colliding with nearby nuclei, thereby leading to stronger harmonic emission, with ethylbenzene > toluene > benzene. In contrast, under short-wavelength conditions (e.g., 200 nm), the harmonic intensities of the three molecules show little difference, and the effects of the ethyl and methyl groups on the harmonic yield can be neglected. The influence of laser intensity and wavelength on high-order harmonic generation is further analyzed, confirming the robustness of the structural enhancement effect. Additionally, we study the harmonic ellipticity of ethylbenzene under different carrier-envelope phases, and find that while circularly polarized harmonics can be obtained, their spectral continuity is insufficient for synthesizing isolated circularly polarized attosecond pulses. This limitation is attributed to the broken ring symmetry caused by the ethyl substitution. Our findings offer insight into the relationship between molecular structure and harmonic response in strong-field physics, and provide a pathway for designing efficient circularly polarized attosecond pulse sources. Full article
(This article belongs to the Section Physics)
Show Figures

Figure 1

7 pages, 200 KB  
Editorial
Topological Objects in Ordered Electronic Systems
by Serguei Brazovskii and Natasha Kirova
Symmetry 2025, 17(8), 1174; https://doi.org/10.3390/sym17081174 - 23 Jul 2025
Viewed by 531
Abstract
Most of correlated electronic systems possess ground states with broken crystal symmetries [...] Full article
(This article belongs to the Special Issue Topological Objects in Correlated Electronic Systems)
26 pages, 38696 KB  
Review
Altermagnetism and Altermagnets: A Brief Review
by Rupam Tamang, Shivraj Gurung, Dibya Prakash Rai, Samy Brahimi and Samir Lounis
Magnetism 2025, 5(3), 17; https://doi.org/10.3390/magnetism5030017 - 23 Jul 2025
Cited by 8 | Viewed by 11942
Abstract
Recently, a new class of magnetic material, termed altermagnets, has caught the attention of the magnetism and spintronics community. The magnetic phenomenon arising from these materials differs from traditional ferromagnetism and antiferromagnetism. It generally lacks net magnetization and is characterized by unusual non-relativistic [...] Read more.
Recently, a new class of magnetic material, termed altermagnets, has caught the attention of the magnetism and spintronics community. The magnetic phenomenon arising from these materials differs from traditional ferromagnetism and antiferromagnetism. It generally lacks net magnetization and is characterized by unusual non-relativistic spin-splitting and broken time-reversal symmetry. This leads to novel transport properties, such as the anomalous Hall effect, the crystal Nernst effect, and spin-dependent phenomena. Spin-dependent phenomena such as spin currents, spin-splitter torques, and high-frequency dynamics emerge as key characteristics in altermagnets. This paper reviews the main aspects pertaining to altermagnets by providing an overview of theoretical investigations and experimental realizations. We discuss the most recent developments in altermagnetism and prospects for exploiting its unique properties in next-generation devices. Full article
Show Figures

Figure 1

13 pages, 3092 KB  
Article
Carbon Dioxide Gas Sensor Based on Terahertz Metasurface with Asymmetric Cross-Shaped Holes Empowered by Quasi-Bound States in the Continuum
by Kai He and Tian Ma
Sensors 2025, 25(13), 4178; https://doi.org/10.3390/s25134178 - 4 Jul 2025
Cited by 2 | Viewed by 1048
Abstract
In this paper, a novel type of polarization-insensitive terahertz metal metasurface with cross-shaped holes is presented, which is designed based on the theory of bound states in continuous media. The fundamental unit of the metasurface comprises a metal tungsten sheet with a cross-shaped [...] Read more.
In this paper, a novel type of polarization-insensitive terahertz metal metasurface with cross-shaped holes is presented, which is designed based on the theory of bound states in continuous media. The fundamental unit of the metasurface comprises a metal tungsten sheet with a cross-shaped hole structure. A thorough analysis of the optical properties and the quasi-BIC response is conducted using the finite element method. Utilizing the symmetry-breaking theory, the symmetry of the metal metasurface is broken, allowing the excitation of double quasi-BIC resonance modes with a high quality factor and high sensitivity to be achieved. Analysis of the multipole power distribution diagram and the spatial distribution of the electric field at the two quasi-BIC resonances verifies that the two quasi-BIC resonances of the metasurface are excited by electric dipoles and electric quadrupoles, respectively. Further simulation analysis demonstrates that the refractive index sensitivities of the two quasi-BIC modes of the metasurface reach 404.5 GHz/RIU and 578.6 GHz/RIU, respectively. Finally, the functional material PHMB is introduced into the metasurface to achieve highly sensitive sensing and detection of CO2 gas concentrations. The proposed metallic metasurface structure exhibits significant advantages, including high sensitivity, ease of preparation, and a high Q-value, which renders it highly promising for a broad range of applications in the domains of terahertz biosensing and highly sensitive gas sensing. Full article
(This article belongs to the Special Issue The Advanced Flexible Electronic Devices: 2nd Edition)
Show Figures

Figure 1

22 pages, 323 KB  
Article
Bridge, Reverse Bridge, and Their Control
by Andrea Baldassarri and Andrea Puglisi
Entropy 2025, 27(7), 718; https://doi.org/10.3390/e27070718 - 2 Jul 2025
Viewed by 709
Abstract
We investigate the bridge problem for stochastic processes, that is, we analyze the statistical properties of trajectories constrained to begin and terminate at a fixed position within a time interval τ. Our primary focus is the time-reversal symmetry of these trajectories: under [...] Read more.
We investigate the bridge problem for stochastic processes, that is, we analyze the statistical properties of trajectories constrained to begin and terminate at a fixed position within a time interval τ. Our primary focus is the time-reversal symmetry of these trajectories: under which conditions do the statistical properties remain invariant under the transformation tτt? To address this question, we compare the stochastic differential equation describing the bridge, derived equivalently via Doob’s transform or stochastic optimal control, with the corresponding equation for the time-reversed bridge. We aim to provide a concise overview of these well-established derivation techniques and subsequently obtain a local condition for the time-reversal asymmetry that is specifically valid for the bridge. We are specifically interested in cases in which detailed balance is not satisfied and aim to eventually quantify the bridge asymmetry and understand how to use it to derive useful information about the underlying out-of-equilibrium dynamics. To this end, we derived a necessary condition for time-reversal symmetry, expressed in terms of the current velocity of the original stochastic process and a quantity linked to detailed balance. As expected, this formulation demonstrates that the bridge is symmetric when detailed balance holds, a sufficient condition that was already known. However, it also suggests that a bridge can exhibit symmetry even when the underlying process violates detailed balance. While we did not identify a specific instance of complete symmetry under broken detailed balance, we present an example of partial symmetry. In this case, some, but not all, components of the bridge display time-reversal symmetry. This example is drawn from a minimal non-equilibrium model, namely Brownian Gyrators, that are linear stochastic processes. We examined non-equilibrium systems driven by a "mechanical” force, specifically those in which the linear drift cannot be expressed as the gradient of a potential. While Gaussian processes like Brownian Gyrators offer valuable insights, it is known that they can be overly simplistic, even in their time-reversal properties. Therefore, we transformed the model into polar coordinates, obtaining a non-Gaussian process representing the squared modulus of the original process. Despite this increased complexity and the violation of detailed balance in the full process, we demonstrate through exact calculations that the bridge of the squared modulus in the isotropic case, constrained to start and end at the origin, exhibits perfect time-reversal symmetry. Full article
(This article belongs to the Special Issue Control of Driven Stochastic Systems: From Shortcuts to Optimality)
38 pages, 1810 KB  
Article
Symmetric Responses to Diet by Plumage Carotenoids in Violet-Sensitive Piciform–Coraciiform Birds
by Robert Bleiweiss
Diversity 2025, 17(6), 379; https://doi.org/10.3390/d17060379 - 27 May 2025
Viewed by 1476
Abstract
Biological studies on symmetry can be expanded to consider red (longer wavelengths) and blue (shorter wavelengths) shifts as antisymmetries (opposite-pattern symmetries), which may arise from similar underlying causes (invariant process symmetries). In this context, classic shift asymmetries of redder plumage in response to [...] Read more.
Biological studies on symmetry can be expanded to consider red (longer wavelengths) and blue (shorter wavelengths) shifts as antisymmetries (opposite-pattern symmetries), which may arise from similar underlying causes (invariant process symmetries). In this context, classic shift asymmetries of redder plumage in response to higher dietary carotenoids appear conceptually incomplete, as potential blue-shifted counterparts were not considered. A latent symmetric response is highlighted by recent evidence showing that the maximum absorbance bands of various colorful plumage pigments are red-shifted in birds with ultraviolet-sensitive (UVS) color vision but blue-shifted in those with violet-sensitive (VS) color vision. Blue-shifted responses to increased dietary carotenoid contents may also be underestimated, as relevant studies have focused on species-rich but uniformly UVS Passerida passerines. This study explored the relationship between pattern–process symmetries and diets of VS Piciformes–Coraciiformes by gauging the responses of their plumage reflectance to a modified diet index (Dietc), where the overall rank carotenoid contents of food items were weight-averaged by three levels of importance in a species’ diet. In the case of both sexes, the main long-wavelength reflectance band for the three carotenoid-based pigment classes defined the same graded series of blue shifts in response to higher Dietc. Yellow showed a strong absolute (negative slope) blue shift, orange showed a weaker absolute blue shift, and red exhibited only a blue shift (flat, non-significant slope) relative to absolute red shifts (positive slope). The secondary shorter-wavelength reflectance band was also unresponsive to Dietc in the VS Piciformes–Coraciiformes (relative blue shift) compared with earlier evidence for it decreasing (absolute red shift) at higher Dietc in UVS species. Results for the intervening minimum reflectance (maximum absorbance) band were intermediate between those for the other reflectance bands. No pigment class monopolized lower or higher Dietc, but red was less variable overall. Phylogenetic independence, sexually similar responses, and specimen preservation reinforced characterizations. A review of avian perceptual studies suggested that VS models discriminate yellows and oranges extremely well, consistent with the importance of the corresponding carotenoids as Dietc indicators. Both UVS and VS species appear to produce putatively more costly and possibly beneficial carotenoid metabolites and/or concentrations in response to higher Dietc, supporting underlying invariant processes in relation to carotenoid limitations and honest signaling despite opposite plumage shifts and their different chemical bases. In symmetry parlance, pigment classes (red) or wavebands (short) that lack responses to Dietc suggest broken pattern and process symmetry. The biology of VS Piciformes–Coraciiformes may favor such exceptions owing to selection for visual resemblance and tuning specializations, although universal constraints on physical and chemical properties of (particularly red) carotenoids may favor certain functional tendencies. Thus, symmetry principles organize carotenoid diversity into a simplified and predictive framework linked to color vision. Full article
(This article belongs to the Collection Feature Papers in Animal Diversity)
Show Figures

Graphical abstract

Back to TopTop