The General Property of the Tensor Gravitational Memory Effect in Theories of Gravity: The Linearized Case
Abstract
1. Introduction
2. What Is a Symmetry?
3. Quadratic Action for a Generic Theory of Gravity
4. Asymptotic Analysis and the Memory Effect
Hamiltonian Generators
5. Generalization
6. Discussion and Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zel’dovich, Y.B.; Polnarev, A.G. Radiation of gravitational waves by a cluster of superdense stars. Sov. Astron. 1974, 18, 17. [Google Scholar]
- Kovacs, S.J.; Thorne, K.S. The Generation of Gravitational Waves. 4. Bremsstrahlung. Astrophys. J. 1978, 224, 62–85. [Google Scholar] [CrossRef]
- Braginsky, V.; Grishchuk, L. Kinematic Resonance and Memory Effect in Free Mass Gravitational Antennas. Sov. Phys. JETP 1985, 62, 427–430. [Google Scholar]
- Braginskii, V.B.; Thorne, K.S. Gravitational-wave bursts with memory and experimental prospects. Nature 1987, 327, 123–125. [Google Scholar] [CrossRef]
- Christodoulou, D. Nonlinear nature of gravitation and gravitational-wave experiments. Phys. Rev. Lett. 1991, 67, 1486–1489. [Google Scholar] [CrossRef]
- Wiseman, A.G.; Will, C.M. Christodoulou’s nonlinear gravitational wave memory: Evaluation in the quadrupole approximation. Phys. Rev. D 1991, 44, R2945–R2949. [Google Scholar] [CrossRef]
- Blanchet, L.; Damour, T. Hereditary effects in gravitational radiation. Phys. Rev. D 1992, 46, 4304–4319. [Google Scholar] [CrossRef]
- Thorne, K.S. Gravitational-wave bursts with memory: The Christodoulou effect. Phys. Rev. D 1992, 45, 520–524. [Google Scholar] [CrossRef]
- Strominger, A.; Zhiboedov, A. Gravitational Memory, BMS Supertranslations and Soft Theorems. J. High Energy Phys. 2016, 2016, 86. [Google Scholar] [CrossRef]
- Flanagan, E.E.; Nichols, D.A. Conserved charges of the extended Bondi-Metzner-Sachs algebra. Phys. Rev. D 2017, 95, 044002. [Google Scholar] [CrossRef]
- Pasterski, S.; Strominger, A.; Zhiboedov, A. New Gravitational Memories. J. High Energy Phys. 2016, 2016, 53. [Google Scholar] [CrossRef]
- Strominger, A. Lectures on the Infrared Structure of Gravity and Gauge Theory; Princeton University Press: Princeton, NJ, USA, 2018. [Google Scholar]
- Nichols, D.A. Center-of-mass angular momentum and memory effect in asymptotically flat spacetimes. Phys. Rev. D 2018, 98, 064032. [Google Scholar] [CrossRef]
- Hou, S.; Zhu, Z.H. Gravitational memory effects and Bondi-Metzner-Sachs symmetries in scalar-tensor theories. J. High Energy Phys. 2021, 2021, 83. [Google Scholar] [CrossRef]
- Tahura, S.; Nichols, D.A.; Saffer, A.; Stein, L.C.; Yagi, K. Brans-Dicke theory in Bondi-Sachs form: Asymptotically flat solutions, asymptotic symmetries and gravitational-wave memory effects. Phys. Rev. D 2021, 103, 104026. [Google Scholar] [CrossRef]
- Seraj, A. Gravitational breathing memory and dual symmetries. J. High Energy Phys. 2021, 2021, 283. [Google Scholar] [CrossRef]
- Hou, S.; Zhu, Z.H. “Conserved charges” of the Bondi-Metzner-Sachs algebra in Brans-Dicke theory. Chin. Phys. C 2021, 45, 023122. [Google Scholar] [CrossRef]
- Hou, S. Gravitational memory effects in Brans-Dicke theory. Astron. Nachrichten 2021, 2021, 96–102. [Google Scholar] [CrossRef]
- Tahura, S.; Nichols, D.A.; Yagi, K. Gravitational-wave memory effects in Brans-Dicke theory: Waveforms and effects in the post-Newtonian approximation. Phys. Rev. D 2021, 104, 104010. [Google Scholar] [CrossRef]
- Tahura, S.; Nichols, D.A.; Yagi, K. Gravitational-wave memory effects in the Damour-Esposito-Farèse extension of Brans-Dicke theory. arXiv 2025, arXiv:2501.07488. [Google Scholar]
- Hou, S.; Zhu, T.; Zhu, Z.H. Asymptotic analysis of Chern-Simons modified gravity and its memory effects. Phys. Rev. D 2022, 105, 024025. [Google Scholar] [CrossRef]
- Hou, S.; Zhu, T.; Zhu, Z.H. Conserved charges in Chern-Simons modified theory and memory effects. J. Cosmol. Astropart. Phys. 2022, 2022, 032. [Google Scholar] [CrossRef]
- Hou, S.; Wang, A.; Zhu, Z.H. Asymptotic analysis of Einstein-Æther theory and its memory effects: The linearized case. Phys. Rev. D 2024, 109, 044025. [Google Scholar] [CrossRef]
- Bondi, H.; van der Burg, M.G.J.; Metzner, A.W.K. Gravitational waves in general relativity. 7. Waves from axisymmetric isolated systems. Proc. Roy. Soc. Lond. A 1962, 269, 21–52. [Google Scholar] [CrossRef]
- Sachs, R.K. Gravitational waves in general relativity. 8. Waves in asymptotically flat space-times. Proc. Roy. Soc. Lond. A 1962, 270, 103–126. [Google Scholar] [CrossRef]
- Sachs, R. Asymptotic Symmetries in Gravitational Theory. Phys. Rev. 1962, 128, 2851–2864. [Google Scholar] [CrossRef]
- Barnich, G.; Troessaert, C. Symmetries of asymptotically flat 4 dimensional spacetimes at null infinity revisited. Phys. Rev. Lett. 2010, 105, 111103. [Google Scholar] [CrossRef]
- Barnich, G.; Troessaert, C. Aspects of the BMS/CFT correspondence. J. High Energy Phys. 2010, 2010, 62. [Google Scholar] [CrossRef]
- Campiglia, M.; Laddha, A. Asymptotic symmetries and subleading soft graviton theorem. Phys. Rev. D 2014, 90, 124028. [Google Scholar] [CrossRef]
- Campiglia, M.; Laddha, A. New symmetries for the Gravitational S-matrix. J. High Energy Phys. 2015, 2015, 76. [Google Scholar] [CrossRef]
- Campiglia, M.; Coito, L. Asymptotic charges from soft scalars in even dimensions. Phys. Rev. D 2018, 97, 066009. [Google Scholar] [CrossRef]
- Compère, G.; Fiorucci, A.; Ruzziconi, R. Superboost transitions, refraction memory and super-Lorentz charge algebra. J. High Energy Phys. 2018, 2018, 200, Erratum in: J. High Energy Phys. 2020, 2020, 172. [Google Scholar] [CrossRef]
- Ashtekar, A. Radiative Degrees of Freedom of the Gravitational Field in Exact General Relativity. J. Math. Phys. 1981, 22, 2885–2895. [Google Scholar] [CrossRef]
- Nichols, D.A. Spin memory effect for compact binaries in the post-Newtonian approximation. Phys. Rev. D 2017, 95, 084048. [Google Scholar] [CrossRef]
- Heisenberg, L.; Yunes, N.; Zosso, J. Gravitational wave memory beyond general relativity. Phys. Rev. D 2023, 108, 024010. [Google Scholar] [CrossRef]
- Blanchet, L. Radiative gravitational fields in general relativity. 2. Asymptotic behaviour at future null infinity. Proc. Roy. Soc. Lond. A 1987, 409, 383–399. [Google Scholar] [CrossRef]
- Blanchet, L.; Compére, G.; Faye, G.; Oliveri, R.; Seraj, A. Multipole expansion of gravitational waves: From harmonic to Bondi coordinates. J. High Energy Phys. 2021, 2021, 29. [Google Scholar] [CrossRef]
- Cohen-Tannoudji, C.; Diu, B.; Laloë, F. Quantum Mechanics, 1st ed.; Wiley: New York, NY, USA, 1977. [Google Scholar]
- Weinberg, S. The Quantum Theory of Fields. Volume 1: Foundations; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar] [CrossRef]
- Wald, R.M. General Relativity; University of Chicago Press: Chicago, IL, USA, 1984. [Google Scholar] [CrossRef]
- Poisson, E.; Will, C.M. Gravity: Newtonian, Post-Newtonian, Relativistic; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar] [CrossRef]
- Ashtekar, A.; Hansen, R.O. A unified treatment of null and spatial infinity in general relativity. I-Universal structure, asymptotic symmetries, and conserved quantities at spatial infinity. J. Math. Phys. 1978, 19, 1542–1566. [Google Scholar] [CrossRef]
- Beig, R.; Schmidt, B.G. Einstein’s Equations Near Spatial Infinity. Commun. Math. Phys. 1982, 87, 65–80. [Google Scholar] [CrossRef]
- Beig, R. Integration of Einstein’s Equations Near Spatial Infinity. Proc. R. Soc. Lond. Ser. A 1984, 391, 295–304. [Google Scholar] [CrossRef]
- Penrose, R. Asymptotic properties of fields and space-times. Phys. Rev. Lett. 1963, 10, 66–68. [Google Scholar] [CrossRef]
- Geroch, R. Asymptotic Structure of Space-Time. In Asymptotic Structure of Space-Time; Esposito, F.P., Witten, L., Eds.; Springer US: Boston, MA, USA, 1977; pp. 1–105. [Google Scholar] [CrossRef]
- Prabhu, K.; Shehzad, I. Asymptotic symmetries and charges at spatial infinity in general relativity. Class. Quant. Grav. 2020, 37, 165008. [Google Scholar] [CrossRef]
- Flanagan, E.E.; Prabhu, K.; Shehzad, I. Extensions of the asymptotic symmetry algebra of general relativity. J. High Energy Phys. 2020, 2020, 2. [Google Scholar] [CrossRef]
- Freidel, L.; Oliveri, R.; Pranzetti, D.; Speziale, S. The Weyl BMS group and Einstein’s equations. J. High Energy Phys. 2021, 2021, 170. [Google Scholar] [CrossRef]
- Chandrasekaran, V.; Flanagan, E.E.; Shehzad, I.; Speranza, A.J. A general framework for gravitational charges and holographic renormalization. Int. J. Mod. Phys. A 2022, 37, 2250105. [Google Scholar] [CrossRef]
- de Rham, C. Massive Gravity. Living Rev. Rel. 2014, 17, 7. [Google Scholar] [CrossRef]
- Schmidt-May, A.; von Strauss, M. Recent developments in bimetric theory. J. Phys. A 2016, 49, 183001. [Google Scholar] [CrossRef]
- Ponomarev, D. Basic Introduction to Higher-Spin Theories. Int. J. Theor. Phys. 2023, 62, 146. [Google Scholar] [CrossRef]
- Flanagan, E.E.; Hughes, S.A. The Basics of gravitational wave theory. New J. Phys. 2005, 7, 204. [Google Scholar] [CrossRef]
- Brans, C.; Dicke, R. Mach’s principle and a relativistic theory of gravitation. Phys. Rev. 1961, 124, 925–935. [Google Scholar] [CrossRef]
- Eardley, D.M.; Lee, D.L.; Lightman, A.P. Gravitational-wave observations as a tool for testing relativistic gravity. Phys. Rev. D 1973, 8, 3308–3321. [Google Scholar] [CrossRef]
- Liang, D.; Gong, Y.; Hou, S.; Liu, Y. Polarizations of gravitational waves in f(R) gravity. Phys. Rev. D 2017, 95, 104034. [Google Scholar] [CrossRef]
- Horndeski, G.W. Second-order scalar-tensor field equations in a four-dimensional space. Int. J. Theor. Phys. 1974, 10, 363–384. [Google Scholar] [CrossRef]
- Hou, S.; Gong, Y.; Liu, Y. Polarizations of Gravitational Waves in Horndeski Theory. Eur. Phys. J. C 2018, 78, 378. [Google Scholar] [CrossRef]
- Kobayashi, T.; Yamaguchi, M.; Yokoyama, J. Generalized G-inflation: Inflation with the most general second-order field equations. Prog. Theor. Phys. 2011, 126, 511–529. [Google Scholar] [CrossRef]
- Jacobson, T.; Mattingly, D. Gravity with a dynamical preferred frame. Phys. Rev. D 2001, 64, 024028. [Google Scholar] [CrossRef]
- Jacobson, T.; Mattingly, D. Einstein-Aether waves. Phys. Rev. D 2004, 70, 024003. [Google Scholar] [CrossRef]
- Gong, Y.; Hou, S.; Liang, D.; Papantonopoulos, E. Gravitational waves in Einstein-æther and generalized TeVeS theory after GW170817. Phys. Rev. D 2018, 97, 084040. [Google Scholar] [CrossRef]
- Blanchet, L.; Damour, T. Radiative gravitational fields in general relativity I. general structure of the field outside the source. Phil. Trans. Roy. Soc. Lond. A 1986, 320, 379–430. [Google Scholar] [CrossRef]
- Hawking, S.W.; Ellis, G.F.R. The Large Scale Structure of Space-Time; Cambridge Monographs on Mathematical Physics; Cambridge University Press: Cambridge, UK, 2011; Chapter 3.2. [Google Scholar] [CrossRef]
- Carroll, S.M. Spacetime and Geometry: An Introduction to General Relativity; Addison-Wesley: San Francisco, CA, USA, 2004; 513p. [Google Scholar]
- Schwartz, M.D. Quantum Field Theory and the Standard Model; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Horava, P. Quantum Gravity at a Lifshitz Point. Phys. Rev. D 2009, 79, 084008. [Google Scholar] [CrossRef]
- Newman, E.T.; Unti, T.W.J. Behavior of Asymptotically Flat Empty Spaces. J. Math. Phys. 1962, 3, 891. [Google Scholar] [CrossRef]
- Campiglia, M.; Freidel, L.; Hopfmueller, F.; Soni, R.M. Scalar Asymptotic Charges and Dual Large Gauge Transformations. J. High Energy Phys. 2019, 2019, 3. [Google Scholar] [CrossRef]
- Campiglia, M.; Peraza, J. Generalized BMS charge algebra. Phys. Rev. D 2020, 101, 104039. [Google Scholar] [CrossRef]
- Barnich, G.; Troessaert, C. BMS charge algebra. J. High Energy Phys. 2011, 2011, 105. [Google Scholar] [CrossRef]
- Hou, S.; Lin, K.; Zhu, Z.H. Finitely supertranslated Schwarzschild black hole and its perturbations. Phys. Rev. D 2025, 111, 044029. [Google Scholar] [CrossRef]
- Liu, W.B.; Long, J. Symmetry group at future null infinity III: Gravitational theory. J. High Energy Phys. 2023, 2023, 117. [Google Scholar] [CrossRef]
- Duval, C.; Gibbons, G.; Horvathy, P. Conformal Carroll groups and BMS symmetry. Class. Quant. Grav. 2014, 31, 092001. [Google Scholar] [CrossRef]
- Kostelecky, V.A. Gravity, Lorentz violation, and the standard model. Phys. Rev. D 2004, 69, 105009. [Google Scholar] [CrossRef]
- Kostelecký, V.A.; Mewes, M. Testing local Lorentz invariance with gravitational waves. Phys. Lett. B 2016, 757, 510–514. [Google Scholar] [CrossRef]
- Hou, S.; Fan, X.L.; Zhu, T.; Zhu, Z.H. Nontensorial gravitational wave polarizations from the tensorial degrees of freedom: Linearized Lorentz-violating theory of gravity. Phys. Rev. D 2024, 109, 084011. [Google Scholar] [CrossRef]
- Stelle, K.S. Renormalization of Higher Derivative Quantum Gravity. Phys. Rev. D 1977, 16, 953–969. [Google Scholar] [CrossRef]
- Weinberg, S. Infrared Photons and Gravitons. Phys. Rev. 1965, 140, B516–B524. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hou, S. The General Property of the Tensor Gravitational Memory Effect in Theories of Gravity: The Linearized Case. Symmetry 2025, 17, 1703. https://doi.org/10.3390/sym17101703
Hou S. The General Property of the Tensor Gravitational Memory Effect in Theories of Gravity: The Linearized Case. Symmetry. 2025; 17(10):1703. https://doi.org/10.3390/sym17101703
Chicago/Turabian StyleHou, Shaoqi. 2025. "The General Property of the Tensor Gravitational Memory Effect in Theories of Gravity: The Linearized Case" Symmetry 17, no. 10: 1703. https://doi.org/10.3390/sym17101703
APA StyleHou, S. (2025). The General Property of the Tensor Gravitational Memory Effect in Theories of Gravity: The Linearized Case. Symmetry, 17(10), 1703. https://doi.org/10.3390/sym17101703