Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (28)

Search Parameters:
Keywords = bridge ramp

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 8763 KB  
Article
An Integrated Approach to Real-Time 3D Sensor Data Visualization for Digital Twin Applications
by Hyungki Kim and Hyowon Suh
Electronics 2025, 14(15), 2938; https://doi.org/10.3390/electronics14152938 - 23 Jul 2025
Viewed by 782
Abstract
Digital twin technology is emerging as a core technology that models physical objects or systems in a digital space and links real-time data to accurately reflect the state and behavior of the real world. For the effective operation of such digital twins, high-performance [...] Read more.
Digital twin technology is emerging as a core technology that models physical objects or systems in a digital space and links real-time data to accurately reflect the state and behavior of the real world. For the effective operation of such digital twins, high-performance visualization methods that support an intuitive understanding of the vast amounts of data collected from sensors and enable rapid decision-making are essential. The proposed system is designed as a balanced 3D monitoring solution that prioritizes intuitive, real-time state observation. Conventional 3D-simulation-based systems, while offering high physical fidelity, are often unsuitable for real-time monitoring due to their significant computational cost. Conversely, 2D-based systems are useful for detailed analysis but struggle to provide an intuitive, holistic understanding of multiple assets within a spatial context. This study introduces a visualization approach that bridges this gap. By leveraging sensor data, our method generates a physically plausible representation 3D CAD models, enabling at-a-glance comprehension in a visual format reminiscent of simulation analysis, without claiming equivalent physical accuracy. The proposed method includes GPU-accelerated interpolation, the user-selectable application of geodesic and Euclidean distance calculations, the automatic resolution of CAD model connectivity issues, the integration of Physically Based Rendering (PBR), and enhanced data interpretability through ramp shading. The proposed system was implemented in the Unity3D environment. Through various experiments, it was confirmed that the system maintained high real-time performance, achieving tens to hundreds of Frames Per Second (FPS), even with complex 3D models and numerous sensor data. Moreover, the application of geodesic distance yielded a more intuitive representation of surface-based phenomena, while PBR integration significantly enhanced visual realism, thereby enabling the more effective analysis and utilization of sensor data in digital twin environments. Full article
(This article belongs to the Section Computer Science & Engineering)
Show Figures

Figure 1

12 pages, 4367 KB  
Article
Instability Risk Factors on Road Pavements of Bridge Ramps
by Nicoletta Rassu, Francesca Maltinti, Mario Lucio Puppio, Mauro Coni and Mauro Sassu
Geotechnics 2025, 5(3), 44; https://doi.org/10.3390/geotechnics5030044 - 1 Jul 2025
Viewed by 345
Abstract
This paper is devoted to determining the influence of some risk elements on the asphalted surfaces of bridge ramps, in order to detect possible damages or potential collapses of the embankment. The main factors will be characterized by (a) movements of floating reinforced [...] Read more.
This paper is devoted to determining the influence of some risk elements on the asphalted surfaces of bridge ramps, in order to detect possible damages or potential collapses of the embankment. The main factors will be characterized by (a) movements of floating reinforced concrete (r.c.) slab over the embankment connected to the border of the bridge; (b) longitudinal cracks on the asphalt produced by small sliding deformations; (c) emerging vegetation from the slope of the ramps. The authors propose a set of possible techniques to determine level of risk indicators, illustrating a set of case studies related to several asphalt roads approaching r.c. bridges. Full article
(This article belongs to the Special Issue Recent Advances in Geotechnical Engineering (3rd Edition))
Show Figures

Figure 1

21 pages, 6344 KB  
Article
Overturning and Reinforcement of Single-Column Pier Curved Girder Bridge Considering the Secondary Effect of Overturning
by Xinglian Huang, Lan Chen, Yang Quan and Xinfeng Yin
Buildings 2025, 15(11), 1773; https://doi.org/10.3390/buildings15111773 - 22 May 2025
Viewed by 545
Abstract
The overturning resistance of curved single-column pier bridges has garnered increasing attention with the rise in infrastructure demands. However, aspects such as the secondary effects of overturning and the dynamic interactions between vehicles and bridges have not been fully explored. Hence, a refined [...] Read more.
The overturning resistance of curved single-column pier bridges has garnered increasing attention with the rise in infrastructure demands. However, aspects such as the secondary effects of overturning and the dynamic interactions between vehicles and bridges have not been fully explored. Hence, a refined finite element model incorporating Vehicle–Bridge Interaction (VBI) dynamics has been applied to a highway ramp bridge in this study, aiming to elucidate how VBI-induced vibrations contribute to bridge overturning and to develop effective reinforcement strategies for enhanced stability under eccentric loads. The analysis suggests that the rotation of the main girder, influenced by eccentric overload, is a significant factor in the overturning process. The initial overturning stability coefficient was found to be 0.948, pointing to potential areas for improvement. By implementing targeted reinforcement measures, specifically the addition of cover beams, the stability coefficient was improved to 2.626. The study provides insights into VBI-induced overturning in curved single-column pier bridges, offering a reinforcement strategy aimed at enhancing stability under eccentric loads. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

19 pages, 2658 KB  
Article
Pit-Stop Manufacturing: Decision Support for Complexity and Uncertainty Management in Production Ramp-Up Planning
by Oleksandr Melnychuk, Jonas Baum, Amon Göppert, Robert H. Schmitt and Tullio Tolio
Systems 2025, 13(5), 393; https://doi.org/10.3390/systems13050393 - 19 May 2025
Viewed by 817
Abstract
The current research presents an extension of the Pit-Stop Manufacturing framework. It addresses the challenges of managing complexity and uncertainty in the production ramp-up phase of manufacturing systems, bridging the gap in existing approaches that lack comprehensive, quantitative, and system-level solutions. This research [...] Read more.
The current research presents an extension of the Pit-Stop Manufacturing framework. It addresses the challenges of managing complexity and uncertainty in the production ramp-up phase of manufacturing systems, bridging the gap in existing approaches that lack comprehensive, quantitative, and system-level solutions. This research integrates state-of-the-art methodologies, utilising such metrics as Overall Equipment Effectiveness and Effective Throughput Loss to enhance ramp-up management. The developed framework is represented by a conceptual model, which is translated into a digital product combining multiple artefacts for comprehensive ramp-up research, namely a digital twin of the production system, a Custom Experiment Manager for multiple simulation runs, and a Graph Solver that uses the stochastic dynamic programming approach to address the decision-making issues during the production system ramp-up evolution. This work provides a robust decision-support tool to optimise production transitions under dynamic conditions by combining stochastic dynamic programming and discrete event simulation. The framework enables manufacturers to model, simulate, and optimise system evolution, reducing throughput losses, improving equipment efficiency, and enhancing decision-making precision. This paper demonstrates the framework’s potential to streamline ramp-up processes and boost competitiveness in volatile manufacturing environments. Full article
Show Figures

Figure 1

10 pages, 4177 KB  
Article
Intensity Modulation Effects on Ultrafast Laser Ablation Efficiency and Defect Formation in Fused Silica
by Dai Yoshitomi, Hideyuki Takada, Shinichi Kinugasa, Hiroshi Ogawa, Yohei Kobayashi and Aiko Narazaki
Nanomaterials 2025, 15(5), 377; https://doi.org/10.3390/nano15050377 - 28 Feb 2025
Viewed by 1155
Abstract
Ultrafast laser processing is a critical technology for micro- and nano-fabrication due to its ability to minimize heat-affected zones. The effects of intensity variation on the ultrafast laser ablation of fused silica were investigated to gain fundamental insights into the dynamic modulation of [...] Read more.
Ultrafast laser processing is a critical technology for micro- and nano-fabrication due to its ability to minimize heat-affected zones. The effects of intensity variation on the ultrafast laser ablation of fused silica were investigated to gain fundamental insights into the dynamic modulation of pulse intensity. This study revealed significant enhancement in ablation efficiency for downward ramp intensity modulation compared to the upward ramp. This effect was independent of the repetition rate ranging from 100 Hz to 1 MHz, which suggested that it originates from persistent residual effects of preceding pulses. Photoluminescence experiments indicated that the observed effect is primarily attributed to the dynamic reduction in the ablation threshold caused by the formation of defects such as non-bridging oxygen hole centers. The correlation between the sequence of intensity-modulated pulses and defect formation has been clarified. The knowledge of these correlations, combined with machine learning-based optimization methods, is useful for the optimization of the throughput and quality of ultrafast laser processing. Full article
(This article belongs to the Special Issue Trends and Prospects in Laser Nanofabrication)
Show Figures

Figure 1

17 pages, 6738 KB  
Article
Dynamic Response Analysis of Overpass Ramp Based on Grey System Theory Model
by Yongcheng Ji, Guangwen Liao and Wenyuan Xu
Appl. Sci. 2024, 14(24), 11739; https://doi.org/10.3390/app142411739 - 16 Dec 2024
Cited by 1 | Viewed by 867
Abstract
An interchange is a pivotal traffic facility that connects highways and controls access. It is necessary to study their dynamic response characteristics to analyze the operational safety of ramp bridges on interchanges. Based on the numerical simulation results of the finite element model [...] Read more.
An interchange is a pivotal traffic facility that connects highways and controls access. It is necessary to study their dynamic response characteristics to analyze the operational safety of ramp bridges on interchanges. Based on the numerical simulation results of the finite element model of the Fuxing Interchange Bridge, non-destructive measurement techniques were used to conduct field dynamic load tests on the bridge, including ramp strain testing and acceleration testing. These tests aimed to study the dynamic response characteristics of the ramp bridge under moving loads. Due to the design speed limitation of the ramp bridge, the grey prediction GM(1, 1) model was used to predict the maximum dynamic deflection, maximum dynamic strain, and vibration acceleration when the vehicle speed was 60 km/h. Subsequently, finite element software was used to simulate the dynamic deflection under vehicle speeds ranging from 30 to 60 km/h. The simulated value was compared with the predicted value, and the difference between the simulated value and the predicted value was slight. This model can evaluate the operational safety performance of off-ramps at different speeds. Full article
Show Figures

Figure 1

8 pages, 2670 KB  
Proceeding Paper
Internet of Things Enabled Adjustable Ramp System for Productivity Enhancement of Micro, Small and Medium Enterprises
by Akhil Sharma, Balbir Singh and Prabir Sarkar
Eng. Proc. 2024, 66(1), 4; https://doi.org/10.3390/engproc2024066004 - 27 Jun 2024
Viewed by 1891
Abstract
The industry usually faces a problem during the loading/unloading of finished products and raw materials from one place to another when both places are at different elevations. As trucks are of variable height and industry loading bays are at different elevations, it is [...] Read more.
The industry usually faces a problem during the loading/unloading of finished products and raw materials from one place to another when both places are at different elevations. As trucks are of variable height and industry loading bays are at different elevations, it is not possible to drive the pallets effectively into freight, which results in decreasing loading/unloading efficiency of small concerns. In this paper, an adjustable height ramp system for increasing production efficiency and improving the industrial working environment was developed using a linear actuator and automation system for the safe loading and unloading of pallets. This adjustable ramp will help to increase the productivity of micro, small and medium enterprises (MSMEs), and it will provide a safe working environment. Using an adjustable ramp will help create a bridge between industry loading bays and freight, and it will also resolve the issue of different heights of both by making a path between them. The Internet of things (IoT)-enabled lifting and downward movement of the ramp is attempted for oil/air filter MSMEs. Full article
Show Figures

Figure 1

28 pages, 17917 KB  
Review
Research Progress on Shear Characteristics and Rapid Post-Disaster Construction of Narrow-Width Steel Box–UHPC Composite Beams
by Yunteng Chen, Jiawei Xu, Peilong Yuan, Qiang Wang, Guanhua Cui and Xulin Su
Buildings 2024, 14(7), 1930; https://doi.org/10.3390/buildings14071930 - 25 Jun 2024
Cited by 1 | Viewed by 1441
Abstract
The narrow-width steel box girder is an important type of steel–concrete composite bridge structure, which is usually composed of reinforced concrete wing plates, narrow steel boxes partially injected with concrete, and shear connectors that promote shear force transfer. The utilization of narrow-width steel [...] Read more.
The narrow-width steel box girder is an important type of steel–concrete composite bridge structure, which is usually composed of reinforced concrete wing plates, narrow steel boxes partially injected with concrete, and shear connectors that promote shear force transfer. The utilization of narrow-width steel box girders, augmented by partially filled concrete, embodies the synthesis of steel and concrete elements, fostering structural efficiency. Moreover, its attributes, including reduced structural weight, diminished vertical profile, enhanced load-bearing capacity, and augmented stiffness, have prompted its gradual integration into bridge engineering applications. In this study, the calculated values of shear strength under three current design codes were reviewed, and the shear failure phenomena and its determinants of narrow-width steel box–ultra-high-performance concrete (UHPC) composite beams under negative bending moment conditions were investigated, which were mainly determined by shear span ratio, concrete wing plate, UHPC steel fiber content, UHPC plate thickness, and transverse partition inside the box. Concurrently, this paper evaluates two innovative structural designs, including a double-narrow steel box girder and a three-narrow steel box girder. In addition, strategies to reduce crack formation under the negative bending moment of long-span continuous narrow and wide box girder abutments are discussed, and we show that this measure can effectively control the formation of cracks to support the negative bending moment zone. At the same time, the scope of the application of a narrow-width steel box girder composite bridge is reviewed, and the conclusion is that a narrow-width steel box girder is mainly used in small-radius flat-curved bridges or widened-ramp bridges with a span of 30 m or more in interworking areas and in the main line with a 60–100 m span in mountainous or urban areas. Finally, the research direction of the shear resistance of the UHPC–narrow steel box girder under negative bending moments is proposed. Full article
(This article belongs to the Special Issue Advances in Steel–Concrete Composite Structures)
Show Figures

Figure 1

16 pages, 1134 KB  
Article
Developing Problematic Performance Value Scores: Binding Routine Activity Performance, Environmental Barriers, and Health Conditions
by Jimin Choi and JiYoung Park
Int. J. Environ. Res. Public Health 2024, 21(6), 764; https://doi.org/10.3390/ijerph21060764 - 13 Jun 2024
Cited by 1 | Viewed by 1342
Abstract
Background: Community design features, such as sidewalks and street crossings, present significant challenges for individuals with disabilities, hindering their physical performance and social integration. However, limited research has been conducted on the application of Universal Design (UD) to address these challenges, particularly concerning [...] Read more.
Background: Community design features, such as sidewalks and street crossings, present significant challenges for individuals with disabilities, hindering their physical performance and social integration. However, limited research has been conducted on the application of Universal Design (UD) to address these challenges, particularly concerning specific demographic groups and population cohorts. Understanding the influence of environmental features on physical performance is crucial for developing inclusive solutions like UD, which can enhance usability and social integration across diverse populations. Objective: This study aims to bridge this gap by investigating the complex relationships between environmental barriers, health conditions, and routine activity performance. An index was developed to evaluate users’ UD performance based on functional capacity, providing scientifically rigorous and objectively measured evidence of UD effectiveness in creating inclusive built environments. Method: Using data from the Problematic Activities Survey (PAS) conducted in the U.S., Canada, and Australia and targeting individuals with and without functional limitations, multinomial logit models were employed to estimate the probabilities of encountering performance problems. This analysis led to the development of the Problematic Performance Value (PPV) score. Results: The results demonstrated significant disparities in PPVs across various health conditions, particularly concerning curb ramps. Individuals facing mobility issues in their legs/feet, arms/hands, or back/neck encounter more pronounced challenges, especially when curb ramps lack proper design elements. Similarly, individuals with vision impairments face heightened difficulties with traffic signals, particularly due to issues with audible signal systems. These findings underscore the importance of addressing micro-level environmental challenges to accommodate individuals with varying functional capacities effectively. Conclusions: By providing insights into the most problematic daily activities encountered by diverse populations, the PPV score serves as a valuable indicator for guiding environmental design improvements and promoting equitable space usage. This can be used to guide improved UD solutions and decide areas of concentration by providing generalized information on specific environmental features that contribute to user performance. Full article
(This article belongs to the Special Issue Application of Big Data Analysis to Health Risk Assessment)
Show Figures

Figure 1

23 pages, 11765 KB  
Article
Traffic Flow Optimization at Toll Plaza Using Proactive Deep Learning Strategies
by Habib Talha Hashmi, Sameer Ud-Din, Muhammad Asif Khan, Jamal Ahmed Khan, Muhammad Arshad and Muhammad Usman Hassan
Infrastructures 2024, 9(5), 87; https://doi.org/10.3390/infrastructures9050087 - 15 May 2024
Cited by 4 | Viewed by 3110
Abstract
Global urbanization and increasing traffic volume have intensified traffic congestion throughout transportation infrastructure, particularly at toll plazas, highlighting the critical need to implement proactive transportation infrastructure solutions. Traditional toll plaza management approaches, often relying on manual interventions, suffer from inefficiencies that fail to [...] Read more.
Global urbanization and increasing traffic volume have intensified traffic congestion throughout transportation infrastructure, particularly at toll plazas, highlighting the critical need to implement proactive transportation infrastructure solutions. Traditional toll plaza management approaches, often relying on manual interventions, suffer from inefficiencies that fail to adapt to dynamic traffic flow and are unable to produce preemptive control strategies, resulting in prolonged queues, extended travel times, and adverse environmental effects. This study proposes a proactive traffic control strategy using advanced technologies to combat toll plaza congestion and optimize traffic management. The approach involves deep learning convolutional neural network models (YOLOv7–Deep SORT) for vehicle counting and an extended short-term memory model for short-term arrival rate prediction. When projected arrival rates exceed a threshold, the strategy proactively activates variable speed limits (VSLs) and ramp metering (RM) strategies during peak hours. The novelty of this study lies in its predictive and adaptive capabilities, ensuring efficient traffic flow management. Validated through a case study at Ravi Toll Plaza Lahore using PTV VISSIMv7, the proposed method reduces queue length by 57% and vehicle delays by 47% while cutting fuel consumption and pollutant emissions by 28.4% and 34%, respectively. Additionally, by identifying the limitations of conventional approaches, this study presents a novel framework alongside the proposed strategy to bridge the gap between theory and practice, making it easier for toll plaza operators and transportation authorities to adopt and benefit from advanced traffic management techniques. Ultimately, this study underscores the importance of integrated and proactive traffic control strategies in enhancing traffic management, minimizing congestion, and fostering a more sustainable transportation system. Full article
Show Figures

Figure 1

22 pages, 9841 KB  
Article
A Multifunctional Cementitious Composite for Pavement Subgrade
by Mohammad Jawed Roshan, Mohammadmahdi Abedi, António Gomes Correia, Raul Fangueiro and Paulo Mateus Mendes
Materials 2024, 17(3), 621; https://doi.org/10.3390/ma17030621 - 27 Jan 2024
Cited by 9 | Viewed by 2255
Abstract
Premature failure and degradation of layers are the main problems for transportation infrastructure. Addressing these issues necessitates implementing structural health monitoring (SHM) for pavement construction layers. To this end, this research investigated the stress/strain and damage detection capabilities of a self-sensing cementitious composite [...] Read more.
Premature failure and degradation of layers are the main problems for transportation infrastructure. Addressing these issues necessitates implementing structural health monitoring (SHM) for pavement construction layers. To this end, this research investigated the stress/strain and damage detection capabilities of a self-sensing cementitious composite developed for potential utilization in the construction of an intelligent subgrade layer. The prepared self-sensing cementitious composite consisted of 10% cement and hybrid conductive fillers, including multiwalled carbon nanotubes (MWCNTs) and graphene nanoplatelets (GNPs) in sand. Initial findings reveal that the electrical resistivity of the composite is significantly affected by the concentration of MWCNTs/GNPs, with a minimum concentration of more than 0.5% needed to achieve a responsive cementitious composite. Moreover, the piezoresistive analysis indicates that an increase in the concentration of MWCNTs/GNPs and stress levels leads to an improvement in the stress/strain-sensing performance. When the self-sensing cementitious composite is subjected to equivalent stress levels, variations in the fractional changes in resistivity (FCR) exhibit an increasing trend with decreasing resilient modulus, stemming from a decrease in stiffness due to the increased concentration of MWCNTs/GNPs. Additionally, the electrochemical impedance spectroscopy (EIS) analysis demonstrates a contraction for the Nyquist plots under compressive ramp loading prior to failure, followed by the expansion of these curves post-failure. Scanning electron microscopy (SEM) images visually showcase the bridging effects of MWCNTs and the filling effects of GNPs within the composite structure. Full article
(This article belongs to the Special Issue Design, Application and Performance Improvement of Pavement Materials)
Show Figures

Graphical abstract

17 pages, 1691 KB  
Review
The Accessible Design of Pedestrian Bridges
by Ivana Štimac Grandić, Paulo Šćulac, Davor Grandić and Iva Vodopija
Sustainability 2024, 16(3), 1063; https://doi.org/10.3390/su16031063 - 26 Jan 2024
Cited by 4 | Viewed by 11899
Abstract
Pedestrian bridges are an important component of an active transportation system. As part of digital and green transformation, active travel is recognized as an essential strategy for reducing vehicle fuel consumption and exhaust emissions, but also for improving public health. Pedestrian bridges and [...] Read more.
Pedestrian bridges are an important component of an active transportation system. As part of digital and green transformation, active travel is recognized as an essential strategy for reducing vehicle fuel consumption and exhaust emissions, but also for improving public health. Pedestrian bridges and other active travel infrastructure must be designed to be accessible to all users. Bridges that do not meet the conditions for comfortable use can force detours that discourage walking and bicycling. Adapting bridges that are not universally accessible requires challenging and expensive construction work. When accessibility issues are considered in the planning and design of new bridges, cost-effective, and often cost-neutral solutions, can be found. Some countries ensure the accessible design of pedestrian bridges through national regulations, but it is important to educate and raise awareness among all bridge designers about the importance of accessible design to achieve sustainable structures. Therefore, this paper provides an overview, comparison and commentary on the most comprehensive current standards, guidelines and manuals for pedestrian bridges that contain information on accessible design. Special attention is given to the design of stairs and ramps as critical elements of bridge accessibility. Full article
Show Figures

Figure 1

57 pages, 2070 KB  
Review
A Holistic Analysis of Internet of Things (IoT) Security: Principles, Practices, and New Perspectives
by Mahmud Hossain, Golam Kayas, Ragib Hasan, Anthony Skjellum, Shahid Noor and S. M. Riazul Islam
Future Internet 2024, 16(2), 40; https://doi.org/10.3390/fi16020040 - 24 Jan 2024
Cited by 32 | Viewed by 11515
Abstract
Driven by the rapid escalation of its utilization, as well as ramping commercialization, Internet of Things (IoT) devices increasingly face security threats. Apart from denial of service, privacy, and safety concerns, compromised devices can be used as enablers for committing a variety of [...] Read more.
Driven by the rapid escalation of its utilization, as well as ramping commercialization, Internet of Things (IoT) devices increasingly face security threats. Apart from denial of service, privacy, and safety concerns, compromised devices can be used as enablers for committing a variety of crime and e-crime. Despite ongoing research and study, there remains a significant gap in the thorough analysis of security challenges, feasible solutions, and open secure problems for IoT. To bridge this gap, we provide a comprehensive overview of the state of the art in IoT security with a critical investigation-based approach. This includes a detailed analysis of vulnerabilities in IoT-based systems and potential attacks. We present a holistic review of the security properties required to be adopted by IoT devices, applications, and services to mitigate IoT vulnerabilities and, thus, successful attacks. Moreover, we identify challenges to the design of security protocols for IoT systems in which constituent devices vary markedly in capability (such as storage, computation speed, hardware architecture, and communication interfaces). Next, we review existing research and feasible solutions for IoT security. We highlight a set of open problems not yet addressed among existing security solutions. We provide a set of new perspectives for future research on such issues including secure service discovery, on-device credential security, and network anomaly detection. We also provide directions for designing a forensic investigation framework for IoT infrastructures to inspect relevant criminal cases, execute a cyber forensic process, and determine the facts about a given incident. This framework offers a means to better capture information on successful attacks as part of a feedback mechanism to thwart future vulnerabilities and threats. This systematic holistic review will both inform on current challenges in IoT security and ideally motivate their future resolution. Full article
(This article belongs to the Special Issue Cyber Security in the New "Edge Computing + IoT" World)
Show Figures

Figure 1

13 pages, 5535 KB  
Article
Reducing Distracted Driving and Improving Consistency with Brine Truck Automation
by Justin Anthony Mahlberg, Jijo K. Mathew, Jairaj Desai and Darcy M. Bullock
Electronics 2024, 13(2), 327; https://doi.org/10.3390/electronics13020327 - 12 Jan 2024
Viewed by 1253
Abstract
Salt brine is routinely used by transportation agencies to pre-treat critical infrastructure such as bridges, ramps, and underpasses in advance of winter storms. This requires an operator turning on and off brine controls while driving at highway speeds, introducing driver distraction and consistency [...] Read more.
Salt brine is routinely used by transportation agencies to pre-treat critical infrastructure such as bridges, ramps, and underpasses in advance of winter storms. This requires an operator turning on and off brine controls while driving at highway speeds, introducing driver distraction and consistency challenges. In urban areas, such as Indianapolis, a 5500-gallon tractor trailer with a gross vehicle weight of 80,000 pounds is typically used and the driver may have 1200 on/off activations while covering 318 miles during a pre-treatment shift. This study conducted in collaboration with Indiana Department of Transportation has worked with their truck upfitters to adapt geo-fenced agriculture spraying controls to seven trucks that use the Global Positioning System (GPS) position of the truck to activate the sprayer valves when the trucks enter and exit geo-fenced areas that require pre-treatment. This automated brine system enhances safety, reduces driver workload, and ensures the consistent application of brine in designated areas. Furthermore, as additional environmental constraints and reporting requirements evolve, this system has the capability of reducing application rates in sensitive areas and provides a comprehensive geo-coded application history. The Indiana Department of Transportation has scaled deployment for treating interstates and major arterials with brine. This deployment on 5500-gallon tankers, used on I-64/65/69/70/74, and 465, eliminates over 10,000 driver distraction events during every statewide pre-treatment event. Full article
(This article belongs to the Special Issue Smart Vehicles and Smart Transportation Research Trends)
Show Figures

Figure 1

19 pages, 10471 KB  
Article
Robust Input Shapers for Acceleration-Limit Actuators
by Chang-Lae Kim and Yoon-Gyung Sung
Appl. Sci. 2023, 13(22), 12499; https://doi.org/10.3390/app132212499 - 20 Nov 2023
Cited by 3 | Viewed by 1582
Abstract
In this study, robust input shapers consisting of only three impulses are proposed for reducing the residual deflection of flexible systems with acceleration-limit actuators, while maintaining the robust control performance associated with system parameter uncertainties. The unequal acceleration and braking delays of such [...] Read more.
In this study, robust input shapers consisting of only three impulses are proposed for reducing the residual deflection of flexible systems with acceleration-limit actuators, while maintaining the robust control performance associated with system parameter uncertainties. The unequal acceleration and braking delays of such actuators can produce large residual oscillations owing to the distortion of shaped commands in undamped flexible systems during rest-to-rest operations. Thus, two types of robust input shapers are analytically developed using a phase vector approach with the adoption of the ramp-step function to approximate the dynamics of acceleration-limit actuators and with the utilization of conventional robust shapers. The proposed robust input shapers are numerically evaluated with respect to the command completeness effect, and the residual deflection and parameter uncertainties are experimentally validated using a mini bridge crane. The proposed robust shapers exhibit a higher robustness performance than classical robust input shapers. Full article
(This article belongs to the Special Issue Machine Automation: System Design, Analysis and Control)
Show Figures

Figure 1

Back to TopTop