Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (153)

Search Parameters:
Keywords = breaking wave impact

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 10042 KB  
Article
CFD Study of a Novel Wave Energy Converter in Survival Mode
by Cassandre Senocq, Daniel Clemente, Mailys Bertrand, Paulo Rosa-Santos and Gianmaria Giannini
Energies 2025, 18(19), 5189; https://doi.org/10.3390/en18195189 - 30 Sep 2025
Viewed by 308
Abstract
Harnessing Europe’s strong wave energy could support net-zero emissions goals, but extreme ocean loads still make wave energy expensive and delay the rollout of commercial wave-energy converters (WECs). To address this, the twin-floater CECO WEC has been redesigned into a single-pivot device called [...] Read more.
Harnessing Europe’s strong wave energy could support net-zero emissions goals, but extreme ocean loads still make wave energy expensive and delay the rollout of commercial wave-energy converters (WECs). To address this, the twin-floater CECO WEC has been redesigned into a single-pivot device called the Pivoting WEC (PWEC), which includes a passive duck diving survival mode to reduce extreme wave impacts. Its performance is evaluated using detailed wave simulations based on Reynolds-Averaged Navier–Stokes (RANS) equations and the Volume-of-Fluid (VoF) method in OpenFOAM-olaFlow, which is validated with data from small-scale (1:20) wave tank experiments. Extreme non-breaking and breaking waves are simulated based on 100-year hindcast data for the case study site of Matosinhos (Portugal) using a modified Miche criterion. These are validated using data of surface elevation and force sensors. Wave height errors averaged 5.13%, and period errors remain below 0.75%. The model captures well major wave loads with a root mean square error down to 47 kN compared to a peak load of 260 kN and an R2 up to 0.80. The most violent plunging waves increase peak forces by 5 to 30% compared to the highest non-breaking crests. The validated numerical approach provides accurate extreme load predictions and confirms the effectiveness of the PWEC’s passive duck diving survival mode. The results contribute to the development of structurally resilient WECs, supporting the progress of WECs toward higher readiness levels. Full article
(This article belongs to the Special Issue Advancements in Marine Renewable Energy and Hybridization Prospects)
Show Figures

Figure 1

21 pages, 2466 KB  
Review
Experimental Modeling of Three-Dimensional (3D) Partial Dam-Break Flows: A Review
by Chuke Meng, Weiyang Zhao, Zhipan Niu and Pengzhi Lin
Water 2025, 17(18), 2792; https://doi.org/10.3390/w17182792 - 22 Sep 2025
Viewed by 381
Abstract
The growing threat of dam-break events, fueled by aging infrastructure and climate change, necessitates comprehensive risk management and mitigation strategies. Experimental studies on partial dam-break flows are pivotal for understanding the complex dynamics of these events, particularly in assessing flood risk and refining [...] Read more.
The growing threat of dam-break events, fueled by aging infrastructure and climate change, necessitates comprehensive risk management and mitigation strategies. Experimental studies on partial dam-break flows are pivotal for understanding the complex dynamics of these events, particularly in assessing flood risk and refining predictive models. This review synthesizes current experimental investigations on three-dimensional (3D) partial dam-break flows, with an emphasis on breach dynamics, wave impacts, and the role of urban structures. It highlights the challenges in capturing high-resolution 3D flow characteristics and the advancements in measurement techniques such as particle tracking velocimetry and ultrasonic distance meters. The paper discusses the integration of experimental data with numerical models to validate and improve predictive capabilities, stressing the need for continuous refinement of experimental setups and computational approaches. Gaps in the current literature, including the under-representation of irregular breach geometries and complex terrain, are identified, and future research directions are proposed to address these shortcomings. This work underscores the importance of hybrid measurement techniques and interdisciplinary collaboration to enhance dam-break modeling accuracy and flood risk mitigation. Full article
(This article belongs to the Section Hydraulics and Hydrodynamics)
Show Figures

Figure 1

27 pages, 5843 KB  
Article
Symmetry-Oriented Design Optimization for Enhancing Fatigue Life of Marine Liquid Hydrogen Storage Tanks Under Asymmetric Sloshing Loads
by Heng Xu, SoonKi Kwon, ManSoo Go and Ji-Qiang Li
Symmetry 2025, 17(9), 1497; https://doi.org/10.3390/sym17091497 - 9 Sep 2025
Viewed by 413
Abstract
Hydrogen fuel cells are gaining attention as an eco-friendly propulsion system for ships, but the structural safety of storage tanks, which store hydrogen at high pressure and supply it to the fuel cell, is a critical concern. Marine liquid hydrogen storage tanks, typically [...] Read more.
Hydrogen fuel cells are gaining attention as an eco-friendly propulsion system for ships, but the structural safety of storage tanks, which store hydrogen at high pressure and supply it to the fuel cell, is a critical concern. Marine liquid hydrogen storage tanks, typically designed as rotationally symmetric structures, face challenges when subjected to asymmetric wave-induced sloshing loads that break geometric symmetry and induce localized stress concentrations. This study conducted a fluid–structure interaction (FSI) analysis of a rotationally symmetric liquid hydrogen storage tank for marine applications to evaluate the impact of asymmetric liquid sloshing induced by wave loads on the tank structure and propose symmetry-guided structural improvement measures to ensure fatigue life. Sensitivity analysis using the finite difference method (FDM) revealed the asymmetric influences of design variables on stress distribution: increasing the thickness of triangular mounts (T1) reduced stress 3.57 times more effectively than circular ring thickness (T2), highlighting a critical symmetry-breaking feature in support geometry. This approach enables rapid and effective design modifications without complex optimization simulations. The study demonstrates that restoring structural symmetry through targeted reinforcement is essential to mitigate fatigue failure caused by asymmetric loading. Full article
(This article belongs to the Special Issue Symmetry in Power Systems and Thermal Engineering)
Show Figures

Figure 1

17 pages, 3941 KB  
Article
The Effect of Non-Breaking Wave Mixing on Ocean Modeling in the South China Sea
by Yujie Jing, Kejian Wu, Rui Li and Zipeng Yu
J. Mar. Sci. Eng. 2025, 13(8), 1548; https://doi.org/10.3390/jmse13081548 - 12 Aug 2025
Viewed by 427
Abstract
This study investigates the wave-induced vertical mixing mechanism and systematically compares the application of two non-breaking wave parameterization schemes (Bv and Pw) in oceanic numerical simulations of the South China Sea, according to two key physical variables: sea surface temperature (SST) [...] Read more.
This study investigates the wave-induced vertical mixing mechanism and systematically compares the application of two non-breaking wave parameterization schemes (Bv and Pw) in oceanic numerical simulations of the South China Sea, according to two key physical variables: sea surface temperature (SST) and the vertical mixing coefficient. The goal is to explore the effects of different parameterization methods on the upper-ocean temperature distribution in the South China Sea. The results indicate that although both schemes enhance vertical mixing in the upper ocean, they do so through different mechanisms. The Bv scheme directly increases the vertical mixing coefficient, demonstrating significantly stronger mixing intensity, while the Pw scheme impacts mixing indirectly by modulating turbulent kinetic energy generation, resulting in comparatively weaker mixing. SST simulation results show that the Bv scheme is more effective in reducing SST in both winter and summer, with broader spatial improvements. Further analysis of the mixing coefficient confirms that, compared to the Pw scheme, the Bv scheme not only strengthens surface mixing but also penetrates deeper into the water column. Full article
(This article belongs to the Section Physical Oceanography)
Show Figures

Figure 1

18 pages, 15284 KB  
Article
Two-Dimensional Flood Modeling of a Piping-Induced Dam Failure Triggered by Seismic Deformation: A Case Study of the Doğantepe Dam
by Fatma Demir, Suleyman Sarayli, Osman Sonmez, Melisa Ergun, Abdulkadir Baycan and Gamze Tuncer Evcil
Water 2025, 17(15), 2207; https://doi.org/10.3390/w17152207 - 24 Jul 2025
Viewed by 1254
Abstract
This study presents a scenario-based, two-dimensional flood modeling approach to assess the potential downstream impacts of a piping-induced dam failure triggered by seismic activity. The case study focuses on the Doğantepe Dam in northwestern Türkiye, located near an active branch of the North [...] Read more.
This study presents a scenario-based, two-dimensional flood modeling approach to assess the potential downstream impacts of a piping-induced dam failure triggered by seismic activity. The case study focuses on the Doğantepe Dam in northwestern Türkiye, located near an active branch of the North Anatolian Fault. Critical deformation zones were previously identified through PLAXIS 2D seismic analyses, which served as the physical basis for a dam break scenario. This scenario was modeled using the HEC-RAS 2D platform, incorporating high-resolution topographic data, reservoir capacity, and spatially varying Manning’s roughness coefficients. The simulation results show that the flood wave reaches downstream settlements within the first 30 min, with water depths exceeding 3.0 m in low-lying areas and flow velocities surpassing 6.0 m/s, reaching up to 7.0 m/s in narrow sections. Inundation extents and hydraulic parameters such as water depth and duration were spatially mapped to assess flood hazards. The study demonstrates that integrating physically based seismic deformation data with hydrodynamic modeling provides a realistic and applicable framework for evaluating flood risks and informing emergency response planning. Full article
(This article belongs to the Special Issue Disaster Analysis and Prevention of Dam and Slope Engineering)
Show Figures

Figure 1

30 pages, 14479 KB  
Article
Exploring Dissipation Terms in the SPH Momentum Equation for Wave Breaking on a Vertical Pile
by Corrado Altomare, Yuzhu Pearl Li and Angelantonio Tafuni
J. Mar. Sci. Eng. 2025, 13(6), 1005; https://doi.org/10.3390/jmse13061005 - 22 May 2025
Cited by 1 | Viewed by 974
Abstract
Accurate simulation of fluid flow around vertical cylinders is essential in numerous engineering applications, particularly in the design and assessment of offshore structures, bridge piers, and coastal defenses. This study employs the smoothed particle hydrodynamics (SPH) method to investigate the complex dynamics of [...] Read more.
Accurate simulation of fluid flow around vertical cylinders is essential in numerous engineering applications, particularly in the design and assessment of offshore structures, bridge piers, and coastal defenses. This study employs the smoothed particle hydrodynamics (SPH) method to investigate the complex dynamics of breaking waves impacting a vertical pile, a scenario marked by strong free-surface deformation, turbulence, and the wave–structure interaction. The mesh-free nature of SPH makes it especially suitable for capturing such highly nonlinear and transient hydrodynamic phenomena. The primary objective of the research is to evaluate the performance of different SPH dissipation schemes, namely artificial viscosity, laminar viscosity, and sub-particle scale (SPS) turbulence models, in reproducing key hydrodynamic features. Numerical results obtained with each scheme are systematically compared against experimental data to assess their relative accuracy and physical fidelity. Specifically, the laminar + SPS model reproduced the peak horizontal wave force within 5% of experimental values, while the artificial viscosity model overestimated the force by up to 25%. The predicted wave impact occurred at a non-dimensional time of t/T0.28, closely matching the experimental observation. Furthermore, force and elevation predictions with the laminar + SPS model remained consistent across three particle spacings (dp=0.05m,0.065m,0.076m), demonstrating good numerical convergence. This work provides critical insights into the suitability of SPH for modeling wave–structure interactions under breaking wave conditions and highlights the importance of proper dissipation modeling in achieving realistic simulations. The performance of the dissipation schemes remained robust across three tested particle spacings, confirming consistency in force and elevation predictions. Additionally, it underscores the sensitivity of SPH predictions to spatial resolution, highlighting the need for careful calibration to ensure robust and reliable outcomes. The study contributes to advancing SPH as a practical tool for engineering design and hazard assessment in coastal and offshore environments. Full article
Show Figures

Figure 1

17 pages, 11680 KB  
Article
Global Prediction of Whitecap Coverage Using Transfer Learning and Satellite-Derived Data
by Jinpeng Qi, Yongzeng Yang and Jie Zhang
Remote Sens. 2025, 17(7), 1152; https://doi.org/10.3390/rs17071152 - 24 Mar 2025
Viewed by 683
Abstract
Whitecaps formed by breaking waves and air entrainment are readily visible on the ocean surface, with their high albedo significantly impacting the accuracy of remote sensing retrievals. While most traditional whitecap parameterizations rely only on wind speed, these approaches fail to explain complex [...] Read more.
Whitecaps formed by breaking waves and air entrainment are readily visible on the ocean surface, with their high albedo significantly impacting the accuracy of remote sensing retrievals. While most traditional whitecap parameterizations rely only on wind speed, these approaches fail to explain complex variations in whitecap coverage. Satellite-derived whitecap data, based on brightness temperature variations from the WindSat radiometer, provide valuable global observations of whitecap coverage. To effectively utilize these satellite-derived data, we propose a transfer learning approach for predicting global whitecap coverage. The model is first pre-trained using modeling data based on statistical wave-breaking theory and subsequently fine-tuned with satellite-derived observations. The fine-tuned model demonstrates significant improvements over both the pre-trained model and traditional wind speed parameterizations when evaluated on independent satellite-derived test data. Through explainable deep learning methods, we identify that whitecap coverage is modulated by various atmospheric and wave parameters. The variable contribution analysis reveals the significant impacts of wind–wave interaction, wave states, and atmospheric stability on whitecap formation and coverage. Full article
(This article belongs to the Special Issue Observations of Atmospheric and Oceanic Processes by Remote Sensing)
Show Figures

Figure 1

17 pages, 15459 KB  
Article
Integrated CFD and Experimental Analysis on Slinger Ring Condensate Discharge Mechanism for Energy-Efficient Window Air Conditioners
by Chin Hyuk Chang, Adarsh Rajasekharan Nair, Man Yeong Ha, Hyun Sik Yoon and Seok Beom Hong
Energies 2025, 18(7), 1622; https://doi.org/10.3390/en18071622 - 24 Mar 2025
Cited by 1 | Viewed by 713
Abstract
As global demand for energy-efficient cooling technologies grows, optimizing window air conditioners (WACs) is crucial. This study integrates computational fluid dynamics (CFD) and experimental fluid dynamics (EFD) to analyze condensate transport induced by the slinger ring in a WAC system. To investigate condensate [...] Read more.
As global demand for energy-efficient cooling technologies grows, optimizing window air conditioners (WACs) is crucial. This study integrates computational fluid dynamics (CFD) and experimental fluid dynamics (EFD) to analyze condensate transport induced by the slinger ring in a WAC system. To investigate condensate behavior, the WAC domain is divided into six regions based on the slinger ring’s rotational direction and impact. In the initial impact zone, large liquid structures adhere to the slinger ring before breaking into ligaments. In the upward transport region, condensate films rise along the wall due to centrifugal forces, forming short ligaments. In the rebound region, condensate impacts the top surface and transitions into droplets. In the accumulation zone, droplet coalescence occurs in a confined space, leading to localized mass buildup. In the dispersion region, condensate spreads widely due to increased rotational speed. In the splash zone, splashing and wave-like structures form near the reservoir surface. A newly identified mechanism of condensate mass discharge shows that mass ejection is concentrated in four key regions near the condenser coils. These findings offer insights into optimizing a slinger ring design for improved condensate dispersion. Future research should explore airflow variations and alternative slinger ring configurations to enhance WAC performance. Full article
(This article belongs to the Section G: Energy and Buildings)
Show Figures

Figure 1

24 pages, 12892 KB  
Article
The Impact of a Clay-Core Embankment Dam Break on the Flood Wave Characteristics
by Cristina-Sorana Ionescu, Daniela-Elena Gogoașe-Nistoran, Constantin Alexandru Baciu, Andrei Cozma, Iana Motovilnic and Livioara Brașovanu
Hydrology 2025, 12(3), 56; https://doi.org/10.3390/hydrology12030056 - 10 Mar 2025
Cited by 1 | Viewed by 1866
Abstract
Flood hazard studies for dam break cases are of utmost importance for understanding potential risks and minimizing the impact of such accidents. Siriu Dam, which has a clay core, is ranked as the third highest embankment dam in Romania. A fully dynamic 2D [...] Read more.
Flood hazard studies for dam break cases are of utmost importance for understanding potential risks and minimizing the impact of such accidents. Siriu Dam, which has a clay core, is ranked as the third highest embankment dam in Romania. A fully dynamic 2D hydraulic numerical model was developed using HEC-RAS software to simulate the routing of the flood waves formed by breaching this dam. Four different failure scenarios were considered: two for overtopping and two for piping. The breach parameters were chosen based on the dam characteristics in accordance with appropriate empirical relationships. The flood hazard was quantified and analyzed in terms of depths, velocities, depth x velocity values, and flooded areas. The results provide useful information concerning flood risk mitigation, such as the dam break wave routing, peak discharges, arrival time, travel velocity, and inundation boundary. The influence of the scenario and site characteristics (topography, river morphology, and constructions) on the results was analyzed. Depths and velocities over 10 m and 15 m/s, respectively, were obtained close to the dam, while those in Buzău City (90 km away) were under 1 m and 2 m/s, respectively. The city was flooded 7–8.5 h after the breach (depending on the scenario), and over 15 to 50% of its total area was affected. Moreover, the flood hazard parameters were compared for the different scenarios, providing the practical details necessary to develop flood risk management plans and the associated response measures for the inhabited areas. This is the first numerical study to simulate the impact of a potential break accident that can occur for this dam. Full article
(This article belongs to the Section Hydrological and Hydrodynamic Processes and Modelling)
Show Figures

Figure 1

13 pages, 2027 KB  
Data Descriptor
Global Dataset of Extreme Sea Levels and Coastal Flood Impacts over the 21st Century
by Ebru Kirezci, Ian Young, Roshanka Ranasinghe, Yiqun Chen, Yibo Zhang and Abbas Rajabifard
Data 2025, 10(2), 15; https://doi.org/10.3390/data10020015 - 28 Jan 2025
Viewed by 3293
Abstract
A global database of coastal flooding impacts resulting from extreme sea levels is developed for the present day and for the years 2050 and 2100. The database consists of three sub-datasets: the extreme sea levels, the coastal areas flooded by these extreme sea [...] Read more.
A global database of coastal flooding impacts resulting from extreme sea levels is developed for the present day and for the years 2050 and 2100. The database consists of three sub-datasets: the extreme sea levels, the coastal areas flooded by these extreme sea levels, and the resulting socioeconomic implications. The extreme sea levels consider the processes of storm surge, tide levels, breaking wave setup and relative sea level rise. The socioeconomic implications are expressed in terms of Expected Annual Population Affected (EAPA) and Expected Annual Damage (EAD), and presented at the global, regional and national scales. The EAPA and EAD are determined both for existing coastal defence levels and assuming two plausible adaptation scenarios, along with socioeconomic development narratives. All the sub-datasets can be visualized with a Digital Twin platform based on a GIS-based mapping host. This publicly available database provides a first-pass assessment, enabling users to extract and identify global and national coastal hotspots under different projections of sea level rise and socioeconomic developments. Full article
Show Figures

Figure 1

35 pages, 14568 KB  
Article
Past and Future Storm-Driven Changes to a Dynamic Sandy Barrier System: Outer Cape Cod, Massachusetts
by Daniel J. Harrington, John P. Walsh, Annette R. Grilli, Isaac Ginis, Deborah Crowley, Stephan T. Grilli, Christopher Damon, Roland Duhaime, Peter Stempel and Pam Rubinoff
Water 2025, 17(2), 245; https://doi.org/10.3390/w17020245 - 16 Jan 2025
Viewed by 1684
Abstract
Sandy barrier systems are highly dynamic, with the most significant natural morphological changes to these systems occurring during high-energy storm conditions. These systems provide a range of economic and ecosystem benefits and protect inland areas from flooding and storm impacts, but the persistence [...] Read more.
Sandy barrier systems are highly dynamic, with the most significant natural morphological changes to these systems occurring during high-energy storm conditions. These systems provide a range of economic and ecosystem benefits and protect inland areas from flooding and storm impacts, but the persistence of many coastal barriers is threatened by storms and sea-level rise (SLR). This study employed observations and modeling to examine recent and potential future influences of storms on a sandy coastal barrier system in Nauset Beach, MA. Drone-derived imagery and digital elevation models (DEMs) of the study area collected throughout the 2023–2024 winter revealed significant alongshore variability in the geomorphic response to storms. Severe, highly localized erosion (i.e., an erosional “hotspot”) occurred immediately south of the Nauset Bay spit as the result of a group of storms in December and January. Modeling results demonstrated that the location of the hotspot was largely controlled by the location of a break in a nearshore sandbar system, which induced larger waves and stronger currents that affected the foreshore, backshore and dune. Additionally, model simulations of the December and January storms assuming 0.3 m (1 ft) of SLR showed the system to be relatively resistant to major geomorphic changes in response to an isolated storm event, but more susceptible to significant overwash and breaching in response to consecutive storms. This research suggests that both very strong isolated storm events and sequential moderate storms pose an enhanced risk of major overwash, breaching, and possibly inlet formation today and into the future, raising concern for adjacent communities and resource managers. Full article
Show Figures

Figure 1

23 pages, 26348 KB  
Article
Numerical Analysis of Wave Interaction with a New Ecological Quadrangular Hollow Block
by Yu Wang, Dongfeng Li, Junwei Ye, Haitao Zhao, Miaohua Mao, Fuqing Bai, Jianyong Hu and Hongwu Zhang
Water 2025, 17(1), 96; https://doi.org/10.3390/w17010096 - 1 Jan 2025
Cited by 1 | Viewed by 1178
Abstract
Armor blocks are extensively deployed to shield vital coastal facilities against wave erosion. Evaluating the wave run-up and reflection under wave impact is essential for the engineering design of new ecological quadrangular hollow blocks. This study constructs a three-dimensional numerical model employing the [...] Read more.
Armor blocks are extensively deployed to shield vital coastal facilities against wave erosion. Evaluating the wave run-up and reflection under wave impact is essential for the engineering design of new ecological quadrangular hollow blocks. This study constructs a three-dimensional numerical model employing the open-source CFD software OpenFOAM-v2206 to analyze these processes for the new blocks. The model’s accuracy was confirmed by comparing its predictions with physical modelling tests. Model results accurately captured the variation in hydrodynamic parameters, as well as the energy dissipation properties of the new blocks. Sensitivity analysis indicated that both the wave reflection coefficients and run-up are considerably affected by mesh sizes, while velocity distributions and pressure fields were less affected by mesh. Finally, the model was utilized to examine how wave run-up and reflection for the new ecological quadrilateral hollow block are influenced by factors such as wave period, water depth, wave height, wave breaking characteristics, and wave steepness. The findings in this study provide valuable insights into novel design and safety assessment of new ecological quadrangular hollow blocks. Full article
(This article belongs to the Special Issue Coastal Management and Nearshore Hydrodynamics)
Show Figures

Figure 1

19 pages, 7232 KB  
Article
Finite Element Simulation of Acoustic Emissions from Different Failure Mechanisms in Composite Materials
by Manoj Rijal, David Amoateng-Mensah and Mannur J. Sundaresan
Materials 2024, 17(24), 6085; https://doi.org/10.3390/ma17246085 - 12 Dec 2024
Cited by 3 | Viewed by 1790
Abstract
Damage in composite laminates evolves through complex interactions of different failure modes, influenced by load type, environment, and initial damage, such as from transverse impact. This paper investigates damage growth in cross-ply polymeric matrix laminates under tensile load, focusing on three primary failure [...] Read more.
Damage in composite laminates evolves through complex interactions of different failure modes, influenced by load type, environment, and initial damage, such as from transverse impact. This paper investigates damage growth in cross-ply polymeric matrix laminates under tensile load, focusing on three primary failure modes: transverse matrix cracks, delaminations, and fiber breaks in the primary loadbearing 0-degree laminae. Acoustic emission (AE) techniques can monitor and quantify damage in real time, provided the signals from these failure modes can be distinguished. However, directly observing crack growth and related AE signals is challenging, making numerical simulations a useful alternative. AE signals generated by the three failure modes were simulated using modified step impulses of appropriate durations based on incremental crack growth. Linear elastic finite element analysis (FEA) was applied to model the AE signal propagating as Lamb waves. Experimental attenuation data were used to modify the simulated AE waveforms by designing arbitrary magnitude response filters. The propagating waves can be detected as surface displacements or surface strains depending upon the type of sensor employed. This paper presents the signals corresponding to surface strains measured by surface-bonded piezoelectric sensors. Fiber break events showed higher-order Lamb wave modes with frequencies over 2 MHz, while matrix cracks primarily exhibited the fundamental S0 and A0 modes with frequencies ranging up to 650 kHz, with delaminations having a dominant A0 mode and frequency content less than 250 kHz. The amplitude and frequency content of signals from these failure modes are seen to change significantly with source–sensor distance, hence requiring an array of dense sensors to acquire the signals effectively. Furthermore, the reasonable correlation between the simulated waveforms and experimental acoustic emission signals obtained during quasi-static tensile test highlights the effectiveness of FEA in accurately modeling these failure modes in composite materials. Full article
Show Figures

Figure 1

36 pages, 10546 KB  
Article
Shore-Side Downfall Pressures Due to Waves Impacting a Vertical Seawall: An Experimental Study
by Annelie Baines, Lee S. Cunningham and Benedict D. Rogers
J. Mar. Sci. Eng. 2024, 12(12), 2149; https://doi.org/10.3390/jmse12122149 - 25 Nov 2024
Viewed by 1428
Abstract
As part of an investigation into downfall impacts from violent overtopping waves, experimental data are presented for the impact pressures and forces generated by regular and focused waves breaking onto a vertical wall and impacting a landward horizontal deck at a scale of [...] Read more.
As part of an investigation into downfall impacts from violent overtopping waves, experimental data are presented for the impact pressures and forces generated by regular and focused waves breaking onto a vertical wall and impacting a landward horizontal deck at a scale of 1:38. Particular attention is given to the wave-by-wave uprush and impact downfall events. By selecting regular and focused wave conditions that produce impacts, new trends are identified for violent downfall phenomena that could easily be underestimated in current practice. The characteristics of the downfall impacts are investigated and three different types of downfall impact are identified and discussed. Using a Wavelet Filter to denoise the signal from pressure probes without losing the peak impact pressures or introducing a phase shift, the distinctive features and dynamic behaviours of the white-water impacts are considered, and it is shown that downfall pressure magnitudes of 3040 ρgH are regularly achieved. Dynamic impulse times of the events are also presented with higher-impact events generally relating to shorter impulse times, highlighting the dynamic character of these impacts. The largest downfall pressures are found to occur further from the vertical wall than previously measured. Importantly, the spray travelling furthest from the point of the initial wave impact on the vertical wall causes some of the largest downfall pressures on the deck. The paper concludes that, while the dataset is small, there are strong indications that the effects of these types of impacts are structurally significant and present a risk to infrastructure located landward of seawalls. Full article
(This article belongs to the Section Coastal Engineering)
Show Figures

Figure 1

14 pages, 2302 KB  
Article
Possible Missing Sources of Atmospheric Glyoxal Part II: Oxidation of Toluene Derived from the Primary Production of Marine Microorganisms
by Renee T. Williams, Annika Caspers-Brown, Jennifer Michaud, Natalie Stevens, Michael Meehan, Camille M. Sultana, Christopher Lee, Francesca Malfatti, Yanyan Zhou, Farooq Azam, Kimberly A. Prather, Pieter Dorrestein, Michael D. Burkart and Robert S. Pomeroy
Metabolites 2024, 14(11), 631; https://doi.org/10.3390/metabo14110631 - 16 Nov 2024
Viewed by 1096
Abstract
Background: Glyoxal has been implicated as a significant contributor to the formation of secondary organic aerosols, which play a key role in our ability to estimate the impact of aerosols on climate. Elevated concentrations of glyoxal over open ocean waters suggest that there [...] Read more.
Background: Glyoxal has been implicated as a significant contributor to the formation of secondary organic aerosols, which play a key role in our ability to estimate the impact of aerosols on climate. Elevated concentrations of glyoxal over open ocean waters suggest that there exists an additional source, different from urban and forest environments, which has yet to be identified. Methods: Based on mass spectrometric analyses of nascent sea spray aerosols (SSAs) and gas-phase molecules generated during the course of a controlled algal bloom, the work herein suggests that marine microorganisms are capable of excreting toluene in response to environmental stimuli. Additional culture flask experiments demonstrated that pathogenic attack could also serve as a trigger for toluene formation. Using solid-phase microextraction methods, the comparison of samples collected up-channel and over the breaking wave suggests it was transferred across the air–water interface primarily through SSA formation. Results: The presence and then absence of phenylacetic acid in the SSA days prior to the appearance of toluene support previous reports that proposed toluene is produced as a metabolite of phenylalanine through the Shikimate pathway. As a result, once in the atmosphere, toluene is susceptible to oxidation and subsequent degradation into glyoxal. Conclusions: This work adds to a minimal collection of literature that addresses the primary production of aromatic hydrocarbons from marine microorganisms and provides a potential missing source of glyoxal that should be considered when accounting for its origins in remote ocean regions. Full article
Show Figures

Figure 1

Back to TopTop