Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (64)

Search Parameters:
Keywords = brake rotor

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 8648 KB  
Article
Research on Dynamic Center-of-Mass Reconfiguration for Enhancement of UAV Performances Based on Simulations and Experiment
by Anas Ahmed, Guangjin Tong and Jing Xu
Drones 2025, 9(12), 854; https://doi.org/10.3390/drones9120854 - 12 Dec 2025
Viewed by 637
Abstract
The stability of unmanned aerial vehicles (UAVs) during propulsion failure remains a critical safety challenge. This study presents a center-of-mass (CoM) correction device, a compact, under-slung, and dual-axis prismatic stage, which can reposition a dedicated shifting mass within the UAV frame [...] Read more.
The stability of unmanned aerial vehicles (UAVs) during propulsion failure remains a critical safety challenge. This study presents a center-of-mass (CoM) correction device, a compact, under-slung, and dual-axis prismatic stage, which can reposition a dedicated shifting mass within the UAV frame to generate stabilizing gravitational torques by the closed-loop feedback from the inertial measurement unit (IMU). Two major experiments were conducted to evaluate the feasibility of the system. In a controlled roll test with varying payloads, the device produced a corrective torque up to 1.2375 N·m, reducing maximum roll deviations from nearly 90° without the device to less than 5° with it. In a dynamic free-fall simulation, the baseline UAV exhibited rapid tumbling and inverted impacts, whereas with the CoM system activated, the UAV maintained a near-level attitude to achieve the upright recovery and greatly reduced structural stress prior to ground contact. The CoM device, as a fail-safe stabilizer, can also enhance maneuverability by increasing control authority, enable a faster speed response and more efficient in-air braking without reliance on the rotor thrust, and achieve comprehensive energy saving, at about 7% of the total power budget. In summary, the roll stabilization and free-fall results show that the CoM device can work as a practical pathway toward the safer, more agile, and energy-efficient UAV platforms for civil, industrial, and defense applications. Full article
(This article belongs to the Special Issue Advanced Flight Dynamics and Decision-Making for UAV Operations)
Show Figures

Figure 1

44 pages, 20679 KB  
Article
Aero-Structural Analysis and Dimensional Optimization of a Prototype Hybrid Wind–Photovoltaic Rotor with 12 Pivoting Flat Blades and a Peripheral Stiffening Ring
by George Daniel Chiriță, Viviana Filip, Alexis Daniel Negrea and Dragoș Vladimir Tătaru
Appl. Sci. 2025, 15(24), 13027; https://doi.org/10.3390/app152413027 - 10 Dec 2025
Viewed by 246
Abstract
We present the first aero-structural evaluation of a 3 m-diameter hybrid wind-PV rotor employing flat-plate blades stiffened by a peripheral ring. Owing to the lack of prior data, we combine low-Reynolds BEM, elastic FEM sizing, and steady-state CFD (k-ω SST) to build a [...] Read more.
We present the first aero-structural evaluation of a 3 m-diameter hybrid wind-PV rotor employing flat-plate blades stiffened by a peripheral ring. Owing to the lack of prior data, we combine low-Reynolds BEM, elastic FEM sizing, and steady-state CFD (k-ω SST) to build a coherent preliminary load and performance dataset. After upsizing the hub pins (Ø 30 mm), ring (50 × 50 mm) and spokes (Ø 40 mm), von Mises stresses stay below 25% of the 6061-T6 yield limit and tip deflection remains within 0.5% R across Cut-in (3 m/s), Nominal (5 m/s) and Extreme (25 m/s) wind cases. CFD confirms a flat efficiency plateau at λ = 2.4–2.8 (β = 10°) and zero braking torque at β = 90°, validating a three-step pitch schedule (20° start-up → 10° nominal → 90° storm). The study addresses only the rotor; off-the-shelf generator, brake, screw-pitch and azimuth/tilt drives will be integrated later. These findings set a solid baseline for full-scale testing and future transient CFD/FEM iterations. Full article
(This article belongs to the Topic Solar and Wind Power and Energy Forecasting, 2nd Edition)
Show Figures

Figure 1

33 pages, 11216 KB  
Article
Comparative Performance Evaluation of Wind Energy Systems Using Doubly Fed Induction Generator and Permanent Magnet Synchronous Generator
by Areeg Ebrahiem Elngar, Asmaa Sobhy Sabik, Ahmed Hassan Adel and Adel S. Nada
Wind 2025, 5(4), 31; https://doi.org/10.3390/wind5040031 - 21 Nov 2025
Viewed by 586
Abstract
Wind energy has become a cornerstone of sustainable electricity generation, yet the reliable integration of wind energy conversion systems (WECSs) into modern grids remains challenged by dynamic variations in wind speed and stringent fault ride-through (FRT) requirements. Among the available technologies, the Doubly [...] Read more.
Wind energy has become a cornerstone of sustainable electricity generation, yet the reliable integration of wind energy conversion systems (WECSs) into modern grids remains challenged by dynamic variations in wind speed and stringent fault ride-through (FRT) requirements. Among the available technologies, the Doubly Fed Induction Generator (DFIG) and the Permanent Magnet Synchronous Generator (PMSG) dominate commercial applications; however, a comprehensive comparative assessment under diverse grid and fault scenarios is still limited. This study addresses this gap by systematically evaluating the performance of DFIG- and PMSG-based WECSs across three operating stages: (i) normal operation at constant speed, (ii) variable wind speed operation, and (iii) grid fault conditions including single-line-to-ground, line-to-line, and three-phase faults. To enhance fault resilience, a DC-link Braking Chopper is integrated into both systems, ensuring a fair evaluation of transient stability and compliance with low-voltage ride-through (LVRT) requirements. The analysis, performed using MATLAB/Simulink, focuses on active and reactive power, rotor speed, pitch angle, and DC-link voltage dynamics. The results reveal that PMSG exhibits smoother transient responses and lower overshoot compared to DFIG. Under fault conditions, the DC-link Braking Chopper effectively suppresses voltage spikes in both systems, with DFIG achieving faster reactive power recovery in line with grid code requirements, while PMSG ensures more stable rotor dynamics with lower oscillations. The findings highlight the complementary strengths of both technologies and provide useful insights for selecting appropriate WECS configurations to improve grid integration and fault ride-through capability. Full article
(This article belongs to the Topic Wind Energy in Multi Energy Systems)
Show Figures

Figure 1

28 pages, 60612 KB  
Article
Reduction in Brake Wear Emissions with Cr2O3 and WC-CoCr Coatings for Cast Iron Discs
by Marie Hoff, Christophe Bressot, Yan-Ming Chen, Laurent Meunier and Martin Morgeneyer
Environments 2025, 12(10), 341; https://doi.org/10.3390/environments12100341 - 24 Sep 2025
Viewed by 925
Abstract
The present contribution showcases the potential brake emission reduction with Cr2O3 (chromium oxide) and WC-CoCr (tungsten carbide–chromium–cobalt) rotor coatings, as realized in our joint public–private research consortium. Particulate matter (PM) emissions from automotive braking systems have been characterized using a [...] Read more.
The present contribution showcases the potential brake emission reduction with Cr2O3 (chromium oxide) and WC-CoCr (tungsten carbide–chromium–cobalt) rotor coatings, as realized in our joint public–private research consortium. Particulate matter (PM) emissions from automotive braking systems have been characterized using a pin-on-disc tribometer equipped with particle measurement devices: a CPC (Condensation Particle Counter), an APS (Aerodynamic Particle Sizer), an SMPS (Scanning Mobility Particle Sizer), and a PM2.5 sampling unit. Brake pad samples made from the same low-steel friction material were tested against a grey flake cast iron disc and two types of custom coated discs: a Cr2O3-coated disc and a WC-CoCr-coated disc. The friction pairs were investigated at a constant contact pressure of 1.2 MPa while the sliding velocity varied during the test, starting with 25 sequences at 3.6 m/s, followed by 19 sequences at 6.1 m/s, and finishing with 6 sequences at 11.2 m/s. The test results show encouraging 64% to 84% reductions in particle number (PN) emissions between 4 nm and 3 µm and 84% to 95% reductions in mass emissions (PM2.5) thanks to the respective coated discs. SEM-EDXS (Scanning Electron Microscopy and Energy Dispersive X-ray Spectroscopy) analyses show that the hardness and roughness of the discs, the chemical reactivity (oxidation), and the abrasiveness of the three friction pairs are parameters that might explain this reduction in emission. Full article
(This article belongs to the Special Issue Advances in Urban Air Pollution: 2nd Edition)
Show Figures

Figure 1

21 pages, 2401 KB  
Article
Comparative Evaluation of the Tribological Performance of Al-MMC and GCI Brake Rotors Through AK Master Dynamometer Testing
by Samuel A. Awe and Lucia Lattanzi
Lubricants 2025, 13(9), 380; https://doi.org/10.3390/lubricants13090380 - 26 Aug 2025
Viewed by 1193
Abstract
The increasing demand for lightweight and high-performance brake rotors has led to the exploration of aluminum–metal matrix composites (Al-MMCs) as alternatives to conventional cast iron rotors. This study evaluated the tribological performance of squeeze-cast Al-MMC brake rotors using an AK Master dynamometer test [...] Read more.
The increasing demand for lightweight and high-performance brake rotors has led to the exploration of aluminum–metal matrix composites (Al-MMCs) as alternatives to conventional cast iron rotors. This study evaluated the tribological performance of squeeze-cast Al-MMC brake rotors using an AK Master dynamometer test and compared it with that of conventional gray cast iron (GCI) rotors. The Al-MMC rotors demonstrated stable coefficients of friction (CoFs) with reduced wear rates, compared to the GCI rotors. Surface analysis identified the predominant wear mechanisms, including abrasive and oxidative wear. The Al-MMC rotors exhibited sensitivity to pressure and speed, with a CoF range of 0.35–0.47 that decreased at higher pressures and speeds, whereas the GCI rotors maintained a stable CoF range of 0.38–0.44. At elevated temperatures, the GCI rotors displayed superior thermal stability and fade resistance compared to the Al-MMCs, which experienced a 40–60% loss in CoF. Wear analysis indicated material transfer from brake pads to Al-MMC rotors, resulting in protective tribofilm formation, whereas GCI rotors exhibited conventional abrasive wear. These findings highlight the potential of squeeze-cast Al-MMCs for automotive braking applications, offering advantages in weight reduction and wear resistance, but also suggest the need for further material optimization to enhance high-temperature performance and friction stability. Full article
(This article belongs to the Special Issue Recent Advancements in Friction Research for Disc Brake Systems)
Show Figures

Graphical abstract

29 pages, 2173 KB  
Review
A Review and Prototype Proposal for a 3 m Hybrid Wind–PV Rotor with Flat Blades and a Peripheral Ring
by George Daniel Chiriță, Viviana Filip, Alexis Daniel Negrea and Dragoș Vladimir Tătaru
Appl. Sci. 2025, 15(16), 9119; https://doi.org/10.3390/app15169119 - 19 Aug 2025
Viewed by 1223
Abstract
This paper presents a literature review of low-power hybrid wind–photovoltaic (PV) systems and introduces a 3 m diameter prototype rotor featuring twelve PV-coated pivoting blades stiffened by a peripheral rim. Existing solutions—foldable umbrella concepts, Darrieus rotors with PV-integrated blades, and morphing blades—are surveyed, [...] Read more.
This paper presents a literature review of low-power hybrid wind–photovoltaic (PV) systems and introduces a 3 m diameter prototype rotor featuring twelve PV-coated pivoting blades stiffened by a peripheral rim. Existing solutions—foldable umbrella concepts, Darrieus rotors with PV-integrated blades, and morphing blades—are surveyed, and current gaps in simultaneous wind + PV co-generation on a single moving structure are highlighted. Key performance indicators such as power coefficient (Cp), DC ripple, cell temperature difference (ΔT), and levelised cost of energy (LCOE) are defined, and an integrated assessment methodology is proposed based on blade element momentum (BEM) and computational fluid dynamics (CFD) modelling, dynamic current–voltage (I–V) testing, and failure modes and effects analysis (FMEA) to evaluate system performance and reliability. Preliminary results point to moderate aerodynamic penalties (ΔCp ≈ 5–8%), PV output during rotation equal to 15–25% of the nominal PV power (PPV), and an estimated 70–75% reduction in blade–root bending moment when the peripheral ring converts each blade from a cantilever to a simply supported member, resulting in increased blade stiffness. Major challenges include the collective pitch mechanism, dynamic shading, and wear of rotating components (slip rings); however, the suggested technical measures—maximum power point tracking (MPPT), string segmentation, and redundant braking—keep performance within acceptable limits. This study concludes that the concept shows promise for distributed microgeneration, provided extensive experimental validation and IEC 61400-2-compliant standardisation are pursued. This paper has a dual scope: (i) a concise literature review relevant to low-Re flat-blade aerodynamics and ring-stiffened rotor structures and (ii) a multi-fidelity aero-structural study that culminates in a 3 m prototype proposal. We present the first evaluation of a hybrid wind–PV rotor employing untwisted flat-plate blades stiffened by a peripheral ring. Using low-Re BEM for preliminary loading, steady-state RANS-CFD (k-ω SST) for validation, and elastic FEM for sizing, we assemble a coherent load/performance dataset. After upsizing the hub pins (Ø 30 mm), ring (50 × 50 mm), and spokes (Ø 40 mm), von Mises stresses remain < 25% of the 6061-T6 yield limit and tip deflection ≤ 0.5%·R acrosscut-in (3 m s−1), nominal (5 m s−1), and extreme (25 m s−1) cases. CFD confirms a broad efficiency plateau at λ = 2.4–2.8 for β ≈ 10° and near-zero shaft torque at β = 90°, supporting a three-step pitch schedule (20° start-up → 10° nominal → 90° storm). Cross-model deviations for Cp, torque, and pressure/force distributions remain within ± 10%. This study addresses only the rotor; off-the-shelf generator, brake, screw-pitch, and azimuth/tilt drives are intended for later integration. The results provide a low-cost manufacturable architecture and a validated baseline for full-scale testing and future transient CFD/FEM iterations. Full article
(This article belongs to the Topic Solar and Wind Power and Energy Forecasting, 2nd Edition)
Show Figures

Figure 1

18 pages, 12535 KB  
Article
A Synchronization of Permanent Magnet Synchronous Generator Dedicated for Small and Medium Hydroelectric Plants
by Adam Gozdowiak and Maciej Antal
Energies 2025, 18(8), 2128; https://doi.org/10.3390/en18082128 - 21 Apr 2025
Viewed by 1787
Abstract
This article presents the simulation results of synchronization of a permanent magnet synchronous generator (PMSG) dedicated for a hydroelectric plant without power converter devices. The proposed machine design allows to connect a generator to the grid in two different ways. With the first [...] Read more.
This article presents the simulation results of synchronization of a permanent magnet synchronous generator (PMSG) dedicated for a hydroelectric plant without power converter devices. The proposed machine design allows to connect a generator to the grid in two different ways. With the first method, the machine is connected to the grid in a similar way as in the case of an electrically excited synchronous generator. The second method is a direct line-start process based on asynchronous torque—similar to asynchronous motor start. Both methods can be used alternately. The advantages of the presented design are elimination of converter devices for starting the PMSG, possibility of use in small and medium hydroelectric power plants, operation with a high efficiency and high power factor in a wide range of generated power, and smaller dimensions in comparison to the generators currently used. The described rotor design allows for the elimination of capacitor batteries for compensation of reactive power drawn by induction generators commonly used in small hydroelectric plants. In addition, due to the high efficiency of the PMSG, high power factor, and appropriately selected design, the starting current during synchronization is smaller than in the case of an induction generator, which means that the structural elements wear out more slowly, and thus, the generator’s service life is increased. In this work, it is shown that PMSG with a rotor cage should have permanent magnets with an increased temperature class in order to avoid demagnetization of the magnets during asynchronous start-up. In addition, manufacturers of such generators should provide the number of start-up cycles from cold and warm states in order to avoid shortening the service life of the machine. The main objective of the article is to present the methods of synchronizing a generator of such a design (a rotor with permanent magnets and a starting cage) and their consequences on the behavior of the machine. The presented design allows synchronization of the generator with the network in two ways. The first method enables synchronization of the generator with the power system by asynchronous start-up, i.e., obtaining a starting torque exceeding the braking torque from the magnets. The second method of synchronization is similar to the method used in electromagnetically excited generators, i.e., before connecting, the rotor is accelerated to synchronous speed by means of a water turbine, and then, the machine is connected to the grid by switching on the circuit breaker. This paper presents electromagnetic phenomena occurring in both cases of synchronization and describes the influence of magnet temperature on physical quantities. Full article
(This article belongs to the Section F: Electrical Engineering)
Show Figures

Figure 1

14 pages, 3609 KB  
Article
Morphology and Composition of Brake Wear Particles Ameliorated by an Alumina Coating Approach
by Ran Cai, Jingzeng Zhang and Xueyuan Nie
Chemistry 2025, 7(2), 60; https://doi.org/10.3390/chemistry7020060 - 4 Apr 2025
Cited by 2 | Viewed by 1765
Abstract
A plasma-assisted electrochemical deposition (PAECD) technology was introduced to coat a cast iron brake disc for the possible reduction of brake wear and brake wear particle (BWP) emission. The majority of the coating consisted of alumina (Al2O3), determined by [...] Read more.
A plasma-assisted electrochemical deposition (PAECD) technology was introduced to coat a cast iron brake disc for the possible reduction of brake wear and brake wear particle (BWP) emission. The majority of the coating consisted of alumina (Al2O3), determined by energy dispersive X-ray (EDX) analysis and X-ray diffraction (XRD) analysis. To validate the above strategy of the coating technology for automotive brake corners, one brake stock rotor was replaced by a PAECD-coated rotor for a vehicle road test. After the road test, weight loss of the brake components (rotors and pads) was measured, showing that the alumina coating can reduce the brake wear by more than 70%. BWPs were also collected from wheel barrels, spokes, and brake friction rings of the coated and uncoated rotors during the road test. A morphology and chemical composition analysis of the collected BWPs indicated that the coating could reduce BWP generation from the original sources and avoid a metal pick-up (MPU) issue, leading to less metallic content in BWPs. This alumina coating may provide the auto sector with a sustainable approach to overcome the brake dust emission problem, evidenced by less wear of the brake pads, minimal wear of the coated brake rotor, less MPUs, and a clean wheel rim on the coated brake corner. Full article
(This article belongs to the Section Green and Environmental Chemistry)
Show Figures

Figure 1

12 pages, 2261 KB  
Article
A Study on the Design of a Variable Power Electromagnetic Brake for Industrial Applications
by Ye-Ji Park, Jae-Kwang Lee, Ki-Doek Lee and Dong-Hoon Jung
Machines 2025, 13(3), 181; https://doi.org/10.3390/machines13030181 - 24 Feb 2025
Cited by 2 | Viewed by 1836
Abstract
This paper discusses a permanent-magnet electromagnetic brake for the semiconductor process of hollow integrated modules. This permanent-magnet electromagnetic brake is characterized by permanent magnets arranged at the bottom of the stator and coils positioned in the middle portion of the stator. The attractive [...] Read more.
This paper discusses a permanent-magnet electromagnetic brake for the semiconductor process of hollow integrated modules. This permanent-magnet electromagnetic brake is characterized by permanent magnets arranged at the bottom of the stator and coils positioned in the middle portion of the stator. The attractive force is generated by the magnetic energy from the permanent magnet, and to counteract the holding force, a current must be applied to the coils. In the case of a permanent-magnet electromagnetic brake, the maximum holding force that can be generated is fixed by the permanent magnet inserted at the bottom, and even if the load conditions vary, the holding force cannot be altered. This study investigated a method to secure an additional holding force by inducing iron losses at the moment when the holding force is required through improvements in the structure of both the stator and rotor of a permanent-magnet electromagnetic brake. To validate the feasibility of this study, prototypes of permanent-magnet brakes were fabricated, and dynamometer tests were conducted. Full article
(This article belongs to the Section Advanced Manufacturing)
Show Figures

Figure 1

25 pages, 11967 KB  
Article
Quadrature-Phase-Locked-Loop-Based Back-Electromotive Force Observer for Sensorless Brushless DC Motor Drive Control in Solar-Powered Electric Vehicles
by Biswajit Saha, Aryadip Sen, Bhim Singh, Kumar Mahtani and José A. Sánchez-Fernández
Appl. Sci. 2025, 15(2), 574; https://doi.org/10.3390/app15020574 - 9 Jan 2025
Cited by 1 | Viewed by 2481
Abstract
This work presents a sensorless brushless DC motor (BLDCM) drive control, optimized for solar photovoltaic (PV)- and battery-fed light electric vehicles (LEVs). A back-electromotive force (EMF) observer integrated with an enhanced quadrature-phase-locked-loop (QPLL) structure is proposed for accurate rotor position estimation, addressing limitations [...] Read more.
This work presents a sensorless brushless DC motor (BLDCM) drive control, optimized for solar photovoltaic (PV)- and battery-fed light electric vehicles (LEVs). A back-electromotive force (EMF) observer integrated with an enhanced quadrature-phase-locked-loop (QPLL) structure is proposed for accurate rotor position estimation, addressing limitations of existing control methods at low speeds and under dynamic conditions. The study replaces the conventional arc-tangent technique with a QPLL-based approach, eliminating low-pass filters to enhance system adaptability and reduce delays. The experimental results demonstrate a significant reduction in commutation error, with a nearly flat value at 0 degrees during steady-state and less than 8 degrees under dynamic conditions. Furthermore, the performance of a modified single-ended primary-inductor converter (SEPIC) for maximum power point tracking (MPPT) in solar-powered LEVs is verified, minimizing current ripple and ensuring smooth motor operation. The system also incorporates a regenerative braking mechanism, extending the vehicle’s range by efficiently recovering kinetic energy through the battery with 30.60% efficiency. The improved performance of the proposed method and system over conventional approaches contributes to the advancement of efficient and sustainable solar-powered BLDC motor-based EV technologies. Full article
(This article belongs to the Special Issue Design and Synthesis of Electric Energy Conversion Systems)
Show Figures

Figure 1

19 pages, 12297 KB  
Article
Multipole Multi-Layered Magnetorheological Brake with Intermediate Slots
by Yaojung Shiao and Mahendra Babu Kantipudi
Appl. Sci. 2024, 14(24), 11763; https://doi.org/10.3390/app142411763 - 17 Dec 2024
Cited by 1 | Viewed by 1402
Abstract
Magnetorheological (MR) brakes are flourishing in low-torque applications due to their dynamic controllability nature. Researchers have introduced multi-layer and multipole concepts to increase the torque–volume ratio (TVR) of the MR brake. However, the combination of these two ideas did not exist due to [...] Read more.
Magnetorheological (MR) brakes are flourishing in low-torque applications due to their dynamic controllability nature. Researchers have introduced multi-layer and multipole concepts to increase the torque–volume ratio (TVR) of the MR brake. However, the combination of these two ideas did not exist due to the design limitations. Therefore, this study aims to design a brake that combines the multipole magnetic field and multi-layered structure concepts. The axial slots were introduced on the brake rotor and the stator drum axial surfaces to achieve a high TVR. These slots stop the flux bypass in the inner layers; therefore, the magnetic flux can also reach the brake’s outer layers. This brake was designed with multiple stator and rotor drums and MR fluid layers. The number of poles was placed so that the magnetic field from these poles traveled in a closed loop via the stator, rotor, and MR layers. A 3D model of the brake was prepared for the virtual study. Electromagnetic simulations were conducted to analyze the effect of axial slots’ and other design parameters of the brake. According to those simulation results, the axial slots’ width and position significantly affect the brake output torque. The maximum torque obtained from the brake is 38 Nm, and the TVR value of the brake is 41 Nm/dm3. Additionally, multiphysics simulations were performed to understand the Joule-heating effect of the magnetic coil and the frictional heating in MR fluid. Results showed that the maximum possible temperature in the brake is under the MR fluid temperature limits. Therefore, this multipole multi-layered (MPML) MR brake with axial slots idea is very useful for high-torque MR brake growth. Full article
Show Figures

Figure 1

21 pages, 3848 KB  
Article
Development of a Multi-Motor Asynchronous Electric Drive with Changes in the Coordinated Rotation of the Supply Voltages of the Motors
by Kazhybek Tergemes, Nurgali Nalibayev, Algazy Zhauyt, Altyn Besterekova, Rassim Nigmatullin, Olga Zhivayeva and Irina Kazanina
Appl. Sci. 2024, 14(22), 10133; https://doi.org/10.3390/app142210133 - 5 Nov 2024
Viewed by 1781
Abstract
This study considered the issue of increasing the synchronizing capacity of a system for the coordinated rotation of asynchronous motors. Electromechanical relationships were obtained for changes in the value of the supply voltage of individual motors, the total rotor resistance (Ra), [...] Read more.
This study considered the issue of increasing the synchronizing capacity of a system for the coordinated rotation of asynchronous motors. Electromechanical relationships were obtained for changes in the value of the supply voltage of individual motors, the total rotor resistance (Ra), and the angular positions of the rotors (φ1, φ2, and φ3), with possible changes in angular misalignment. Additionally, we created an algorithm for calculating the currents and torques of the system’s motors within 0 and 90° and constructed the relevant mechanical characteristics. Ultimately, we developed various versions of multi-motor asynchronous electric drives with regulation and supply voltages (Un = 0.7 ÷ 1.0), featuring increasing and equalizing torques (Mn = 1.0 ÷ 1.4) in the system as a whole, along with the preliminary synchronization and synchronous braking of all motors. Full article
Show Figures

Figure 1

16 pages, 4527 KB  
Article
High-Transparency Linear Actuator Using an Electromagnetic Brake for Damping Modulation in Physical Human–Robot Interaction
by Zahid Ullah, Thachapan Sermsrisuwan, Khemwutta Pornpipatsakul, Ronnapee Chaichaowarat and Witaya Wannasuphoprasit
J. Sens. Actuator Netw. 2024, 13(5), 65; https://doi.org/10.3390/jsan13050065 - 10 Oct 2024
Cited by 9 | Viewed by 2748
Abstract
Enhancing the transparency of high-transmission-ratio linear actuators is crucial for improving the safety and capability of high-force robotic systems having physical contact with humans in unstructured environments. However, realizing such enhancement is challenging. A proposed solution for active body weight support systems involves [...] Read more.
Enhancing the transparency of high-transmission-ratio linear actuators is crucial for improving the safety and capability of high-force robotic systems having physical contact with humans in unstructured environments. However, realizing such enhancement is challenging. A proposed solution for active body weight support systems involves employing a macro–mini linear actuator incorporating an electrorheological-fluid brake to connect a high-force unit with an agile, highly back-drivable unit. This paper introduces the use of an electromagnetic (EM) brake with reduced rotor inertia to address this challenge. The increased torque capacity of the EM brake enables integration with a low-gear-ratio linear transmission. The agile translation of the endpoint is propelled by a low-inertia motor (referred to as the “mini”) via a pulley-belt mechanism to achieve high transparency. The rotor of the EM brake is linked to the pulley. Damping modulation under high driving force is achieved through the adjustment of the brake torque relative to the rotational speed of the pulley. When the brake is engaged, it prevents any relative motion between the endpoint and the moving carrier. The endpoint is fully controlled by the ball screw of the high-force unit, referred to as the “macro”. A scaled prototype was constructed to experimentally characterize the damping force generated by the mini motor and the EM brake. The macro–mini linear actuator, equipped with an intrinsic failsafe feature, can be utilized for active body weight support systems that demand high antigravity force. Full article
(This article belongs to the Section Actuators, Sensors and Devices)
Show Figures

Figure 1

25 pages, 11981 KB  
Article
An Experimental Performance Assessment of a Passively Controlled Wind Turbine Blade Concept: Part B—Material Oriented with Glass-Fiber-Reinforced Polymer
by Nikolaos Papadakis and Constantinos Condaxakis
Energies 2024, 17(13), 3286; https://doi.org/10.3390/en17133286 - 4 Jul 2024
Cited by 3 | Viewed by 1730
Abstract
This paper is the second in a two-part series presenting preliminary results on a passively controlled wind turbine rotor system using a flexible curved blade concept. Building on the initial findings, this segment explores the application of glass-fiber-reinforced polymer (GFRP) composites with strategically [...] Read more.
This paper is the second in a two-part series presenting preliminary results on a passively controlled wind turbine rotor system using a flexible curved blade concept. Building on the initial findings, this segment explores the application of glass-fiber-reinforced polymer (GFRP) composites with strategically oriented layers to enhance blade flexibility and aerodynamic performance and ensure operational safety. Previously, we demonstrated that flexible blades fabricated from isotropic materials with an NACA4415 airfoil profile could self-regulate rotor RPM and power output in response to aerodynamic loads, offering a glimpse of controlled operational behavior, in contrast to straight blades of similar material geometry and aerodynamic characteristics. However, they did not fully meet the design objectives, particularly in achieving nominal power at the intended wind speeds and in safely halting operation at high wind speeds. The current study employs a GFRP blade with a simpler, flat geometry due to manufacturing constraints, diverging from traditional airfoil contours to focus on material behavior under aerodynamic loads. Despite these changes, the blade exhibited all desired operational characteristics: quick startup, stable power output across operational wind speeds, and effective shutdown mechanisms at high speeds. This success illustrates the potential of passively controlled blades designed with appropriately oriented composite layers. Challenges with load application methods—that were identified in the first installment—were addressed by adopting a generator connected to a rheostat, offering improved control over load variations compared to the mechanical brakes used previously. This advancement enabled more consistent data collection, particularly at lower Tip–Speed Ratio (TSR) values, although real-time control for maximum power point tracking was still out of reach. These findings not only confirm the effectiveness of the flexible blade concept but also highlight the need for further refinement in blade design and testing methodology to optimize performance and ease of manufacturing. Future work will continue to refine these designs and explore their scalability and economic viability for broader applications in wind energy technology and in particular to those of small Wind Energy Converter Systems (WECSs). Full article
(This article belongs to the Special Issue Optimal Control of Wind and Wave Energy Converters)
Show Figures

Figure 1

13 pages, 2006 KB  
Article
Development of Active Wind Vane for Low-Power Wind Turbines
by Roberto Adrián González Domínguez, Orlando Lastres Danguillecourt, Antonio Verde Añorve, Guillermo Rogelio Ibáñez Duharte, Andrés López López, Javier Alonso Ramírez Torres and Neín Farrera Vázquez
Energies 2024, 17(13), 3123; https://doi.org/10.3390/en17133123 - 25 Jun 2024
Viewed by 1991
Abstract
This paper proposes the development of an active control system to control the power output of a low-power horizontal-axis wind turbine (HAWT) when operating at wind speeds above the rated wind speed. The system is composed of an active articulated vane (AAV) in [...] Read more.
This paper proposes the development of an active control system to control the power output of a low-power horizontal-axis wind turbine (HAWT) when operating at wind speeds above the rated wind speed. The system is composed of an active articulated vane (AAV) in charge of the orientation of the wind turbine, which is driven by an electric actuator that changes the angle of the AAV to maintain a constant power output. Compared with the passive power regulation systems most often used in low-power HAWTs, active systems allow for better control and, therefore, greater stability of the delivered power, which reduces the structural stresses and allows for controlled braking in any wind condition or during system failures. The control system was designed and simulated using MATLAB R2022b software, and then built and evaluated under laboratory conditions. For the control design, the transfer function (TF) between the pulse width modulation (PWM) and the AAV angle (θ) was determined via laboratory tests using MATLAB’s PIDTurner tool. For the simulation, the relationship between the power output and the AAV angle was determined using the vector decomposition of the wind speed and wind rotor area. Wind speed step and ramp response tests were performed for proportional–integral–derivative (PID) control. The results obtained demonstrate the technical feasibility of this type of control, obtaining settling times (ts) of 6.7 s in the step response and 2.8 s in the ramp response. Full article
(This article belongs to the Section A3: Wind, Wave and Tidal Energy)
Show Figures

Figure 1

Back to TopTop