Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,048)

Search Parameters:
Keywords = brain ischemia

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 7973 KiB  
Article
Enhanced Response of ZnO Nanorod-Based Flexible MEAs for Recording Ischemia-Induced Neural Activity in Acute Brain Slices
by José Ignacio Del Río De Vicente, Valeria Marchetti, Ivano Lucarini, Elena Palmieri, Davide Polese, Luca Montaina, Francesco Maita, Jan Kriska, Jana Tureckova, Miroslava Anderova and Luca Maiolo
Nanomaterials 2025, 15(15), 1173; https://doi.org/10.3390/nano15151173 - 30 Jul 2025
Viewed by 6
Abstract
Brain ischemia is a severe condition caused by reduced cerebral blood flow, leading to the disruption of ion gradients in brain tissue. This imbalance triggers spreading depolarizations, which are waves of neuronal and glial depolarization propagating through the gray matter. Microelectrode arrays (MEAs) [...] Read more.
Brain ischemia is a severe condition caused by reduced cerebral blood flow, leading to the disruption of ion gradients in brain tissue. This imbalance triggers spreading depolarizations, which are waves of neuronal and glial depolarization propagating through the gray matter. Microelectrode arrays (MEAs) are essential for real-time monitoring of these electrophysiological processes both in vivo and in vitro, but their sensitivity and signal quality are critical for accurate detection of extracellular brain activity. In this study, we evaluate the performance of a flexible microelectrode array based on gold-coated zinc oxide nanorods (ZnO NRs), referred to as nano-fMEA, specifically for high-fidelity electrophysiological recording under pathological conditions. Acute mouse brain slices were tested under two ischemic models: oxygen–glucose deprivation (OGD) and hyperkalemia. The nano-fMEA demonstrated significant improvements in event detection rates and in capturing subtle fluctuations in neural signals compared to flat fMEAs. This enhanced performance is primarily attributed to an optimized electrode–tissue interface that reduces impedance and improves charge transfer. These features enabled the nano-fMEA to detect weak or transient electrophysiological events more effectively, making it a valuable platform for investigating neural dynamics during metabolic stress. Overall, the results underscore the promise of ZnO NRs in advancing electrophysiological tools for neuroscience research. Full article
(This article belongs to the Section Biology and Medicines)
Show Figures

Figure 1

8 pages, 206 KiB  
Comment
Gender-Dependent Modulation of Alzheimer’s Disease by Brain Ischemia. Comment on Lohkamp et al. Sex-Specific Adaptations in Alzheimer’s Disease and Ischemic Stroke: A Longitudinal Study in Male and Female APPswe/PS1dE9 Mice. Life 2025, 15, 333
by Ryszard Pluta
Life 2025, 15(7), 1146; https://doi.org/10.3390/life15071146 - 21 Jul 2025
Viewed by 224
Abstract
This comment focuses on the contribution of experimental brain ischemia to the overwhelming incidence of Alzheimer’s disease in women as presented by Lohkamp et al. in Life 2025, 15, 333. The authors showed that in Alzheimer’s disease and ischemic stroke there are sex-dependent [...] Read more.
This comment focuses on the contribution of experimental brain ischemia to the overwhelming incidence of Alzheimer’s disease in women as presented by Lohkamp et al. in Life 2025, 15, 333. The authors showed that in Alzheimer’s disease and ischemic stroke there are sex-dependent adaptations in the form of cross-links and vice versa. It was emphasized that the high longevity of women in itself does not explain the mechanisms underlying the biological differences between the sexes causing a female predominance in the development of Alzheimer’s disease. Differences were demonstrated between males and females: female APP/PS1 mice had greater amyloid deposition, hyperactivity, lower body weight, and reduced cerebral blood flow, as well as less neuroinflammation, which the authors suggest may have potential neuroprotection. It should be noted that some of the information presented in the article by Lohkamp et al. raises more questions than answers. Therefore, future studies should consider, for example, studies using single-cell technologies that can provide insight into the timing and sequence of cellular dysfunctions across sexes and analyze the continuity of changes over time, starting from short-term observations of a few days and ending with long-term observations of a year or more, to assess the continuity and differentiation of changes. Full article
(This article belongs to the Section Medical Research)
21 pages, 1099 KiB  
Review
The Roles of E3 Ubiquitin Ligases in Cerebral Ischemia–Reperfusion Injury
by Man Li, Xiaoxiao Yu, Qiang Liu, Zhi Fang and Haijun Wang
Int. J. Mol. Sci. 2025, 26(14), 6723; https://doi.org/10.3390/ijms26146723 - 13 Jul 2025
Viewed by 295
Abstract
The temporary or permanent occlusion of cerebral blood vessels results in ischemic stroke (IS). Ischemia per se causes focal neuronal damage, and the subsequent ischemia–reperfusion injury that occurs after blood flow restoration further compromises brain tissue and cells in the neurovascular unit, significantly [...] Read more.
The temporary or permanent occlusion of cerebral blood vessels results in ischemic stroke (IS). Ischemia per se causes focal neuronal damage, and the subsequent ischemia–reperfusion injury that occurs after blood flow restoration further compromises brain tissue and cells in the neurovascular unit, significantly contributing to poor patient outcomes and functional impairments. Current research indicates that the ubiquitin–proteasome system (UPS) plays a crucial role in the pathological processes associated with cerebral ischemia–reperfusion injury (CIRI). Notably, E3 ubiquitin (Ub) ligases, which are essential in the UPS, have garnered increasing attention as potential novel therapeutic targets for treating ischemia–reperfusion damage in the brain. This review focuses primarily on the background of E3 Ub ligases and explores their intricate relationships with the pathological processes of CIRI. Full article
(This article belongs to the Special Issue Latest Advances in Oxidative Stress and Brain Injury)
Show Figures

Figure 1

24 pages, 6571 KiB  
Article
Leech Extract Enhances the Pro-Angiogenic Effects of Endothelial Cell-Derived Exosomes in a Mouse Model of Ischemic Stroke
by Yushuang Cao, Jin Sun, Lichen Guo, Meng Wang, Linlin Su, Tong Zhang, Shaoxia Wang, Lijuan Chai, Qing Yuan and Limin Hu
Curr. Issues Mol. Biol. 2025, 47(7), 499; https://doi.org/10.3390/cimb47070499 - 1 Jul 2025
Viewed by 351
Abstract
Background: Intercellular communication, facilitated by exosomes (Exos) derived from endothelial cells (ECs), significantly influences the regulation of angiogenesis. Leech extract significantly reduces ischemia–reperfusion injury, promotes angiogenesis, and improves neurological function in mice with stroke. However, further investigation is required to determine whether leech [...] Read more.
Background: Intercellular communication, facilitated by exosomes (Exos) derived from endothelial cells (ECs), significantly influences the regulation of angiogenesis. Leech extract significantly reduces ischemia–reperfusion injury, promotes angiogenesis, and improves neurological function in mice with stroke. However, further investigation is required to determine whether leech promotes angiogenesis through EC-Exo. Objective: This study aims to further explore whether leech regulates Exos to promote the establishment of collateral circulation in mice with ischemic stroke (IS) and the specific mechanisms involved. Methods: Here, we utilized an in vitro co-culture system comprising ECs and pericytes to investigate the impact of Leech-EC-Exo on enhancing the proliferation and migration of mouse brain microvascular pericytes (MBVPs). We further established an in vivo mouse model of middle cerebral artery occlusion/reperfusion (MCAO/R) to investigate the effects and underlying mechanisms of leech on collateral circulation establishment. Results: The findings demonstrated that leech significantly enhanced the in vitro cell migration number and migration number of pericytes. Therefore, it can also enhance the effect of EC-Exo on improving the infarct area and gait of mice, as well as modulating the HIFα-VEGF-DLL4-Notch1 signaling pathway to promote cerebral angiogenesis and facilitating the stable maturation of neovascularization in vivo. Conclusions: These results suggest that leech has the potential to enhance collateral circulation establishment, and its mechanism may involve the modulation of miRNA content in Exos and the promotion of signaling pathways associated with angiogenesis and vascular maturation. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Figure 1

20 pages, 4908 KiB  
Article
Genes That Associated with Action of ACTH-like Peptides with Neuroprotective Potential in Rat Brain Regions with Different Degrees of Ischemic Damage
by Ivan B. Filippenkov, Yana Yu. Shpetko, Daria A. Ales, Vasily V. Stavchansky, Alina E. Denisova, Vadim V. Yuzhakov, Natalia K. Fomina, Leonid V. Gubsky, Lyudmila A. Andreeva, Nikolay F. Myasoedov, Svetlana A. Limborska and Lyudmila V. Dergunova
Int. J. Mol. Sci. 2025, 26(13), 6256; https://doi.org/10.3390/ijms26136256 - 28 Jun 2025
Viewed by 414
Abstract
In the treatment of ischemic stroke, an innovative approach is the use of neuroprotective compounds. Natural peptides, including adrenocorticotropic hormone (ACTH), can serve as the basis for such drugs. Previously, a significant effect of non-hormonal ACTH(4-7)PGP (Semax) and ACTH(6-9)PGP peptides on the functions [...] Read more.
In the treatment of ischemic stroke, an innovative approach is the use of neuroprotective compounds. Natural peptides, including adrenocorticotropic hormone (ACTH), can serve as the basis for such drugs. Previously, a significant effect of non-hormonal ACTH(4-7)PGP (Semax) and ACTH(6-9)PGP peptides on the functions of the nervous system was shown. Also, while using RNA-Seq, we firstly revealed differentially expressed genes (DEGs) that associated with peptides in the penumbra-associated region of the frontal cortex (FC) of rats at 24 h after transient middle cerebral artery occlusion (tMCAO) model. Peptides significantly reduced profile disturbances caused by ischemia for almost two-thousand DEGs in FC related to the neurotransmitter and inflammatory response. Here, we studied how peptides affected the expression of genes in the striatum with an ischemic focus, predominantly. The same animals from which we previously acquired FC were used to collect striatum samples. Peptides generated fewer DEGs in the striatum than in the FC. Both peptides tended to normalize the profile of disturbances caused by ischemia for hundreds of DEGs, whereas 152 genes showed an even more affected profile in the striatum under ACTH(6-9)PGP action. These DEGs were associated with inflammation, predominantly. About hundred genes were overlapped between both peptides in both tissues and were associated with neuroactive ligand-receptor interaction, predominantly. Thus, genes that are associated with the ACTH-like peptide action in rat brain regions with varying levels of ischemia injury were identified. Moreover, differential spatial regulation of the ischemia process in the rat brain at the transcriptome levels was discovered under peptides with different ACTH structures. We suppose that our results may be useful for selecting more effective neuroprotective drug structures in accordance with their specific tissue/damage therapeutic impact. Full article
(This article belongs to the Special Issue Nutraceuticals for the Maintenance of Brain Health)
Show Figures

Figure 1

18 pages, 4222 KiB  
Systematic Review
The Safety and Efficacy of Glibenclamide in Managing Cerebral Edema After Aneurysmal Subarachnoid Hemorrhage: A Systematic Review and Meta-Analysis
by Majd M. AlBarakat, Rana B. Altawalbeh, Khaled Mohamed Hamam, Ahmed A. Lashin, Ahmed Wadaa-Allah, Ayah J. Alkrarha, Mohamed Abuelazm and James Robert Brašić
Brain Sci. 2025, 15(7), 677; https://doi.org/10.3390/brainsci15070677 - 24 Jun 2025
Viewed by 588
Abstract
Background/Objectives: We sought to determine if glibenclamide, a sulfonylurea receptor 1-transient receptor potential melastatin 4 (SUR1-TRPM4) channel blocker, reduces cerebral edema and improves neurological functioning in aneurysmal subarachnoid hemorrhage (aSAH). Methods: Following Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines, a [...] Read more.
Background/Objectives: We sought to determine if glibenclamide, a sulfonylurea receptor 1-transient receptor potential melastatin 4 (SUR1-TRPM4) channel blocker, reduces cerebral edema and improves neurological functioning in aneurysmal subarachnoid hemorrhage (aSAH). Methods: Following Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines, a systematic search was conducted in PubMed, Cochrane Library, Web of Science, and SCOPUS for studies evaluating glibenclamide in aSAH patients. Primary outcomes included scores on the modified Rankin Scale (mRS) at discharge and the Subarachnoid Hemorrhage Early Brain Edema Score (SEBES) at ten days post-intervention. Secondary outcomes included adverse events, and safety and efficacy endpoints. Random-effects models were employed for meta-analyses. Results: Three studies utilizing oral glibenclamide (n = 245) met inclusion criteria. Oral glibenclamide demonstrated no significant improvements in mRS scores [MD −0.19 with 95% CI (−2.05, 1.66)] at discharge, [MD 0.06, (−0.60, 0.71)] at 3 months, and [MD 0.4, (−0.67, 0.87)] at 6 months; functional independence [risk ratio (RR) 1.05, (0.81, 1.36)]; independent ambulation [RR 1.07, (0.77, 1.48)]; mortality [RR 0.79, (0.42, 1.50)]; or delayed cerebral ischemia [RR 0.58, (0.31, 1.09]). Hypoglycemia risk was significantly higher in the glibenclamide group [RR 3.92, (1.14, 13.49)]. Conclusions: Oral glibenclamide offers a novel approach to addressing cerebral edema in aSAH but shows limited clinical efficacy in improving functional and neurological outcomes in subtherapeutic doses. Its safety profile is acceptable, though hypoglycemia risk necessitates careful monitoring. Further research is required to optimize dosing, timing of intervention, and patient selection to enhance therapeutic outcomes. By contrast, intravenous administration of therapeutic doses of glibenclamide offers a promising avenue for future studies in the management of aSAH by taking advantage of the favorable pharmacokinetics of this route of administration. Full article
Show Figures

Figure 1

19 pages, 1724 KiB  
Article
Administration of Ascorbic Acid Alleviates Neuronal Damage After Cerebral Ischemia in ODS Rats
by Naohiro Iwata, Naoto Ogawa, Tom Imai, Siti Sabirah Binti Ridzuan, Shinya Kamiuchi, Hirokazu Matsuzaki, Meiyan Xuan, Bo Yuan, Mari Okazaki and Yasuhide Hibino
Antioxidants 2025, 14(7), 773; https://doi.org/10.3390/antiox14070773 - 23 Jun 2025
Viewed by 414
Abstract
Reactive oxygen species (ROS) contribute to cerebral damage in transient cerebral ischemia, making their elimination a key therapeutic target. Osteogenic disorder Shionogi (ODS) rats, which lack endogenous L-ascorbic acid (AA) synthesis, serve as a useful model for investigating AA’s protective effects against ischemic [...] Read more.
Reactive oxygen species (ROS) contribute to cerebral damage in transient cerebral ischemia, making their elimination a key therapeutic target. Osteogenic disorder Shionogi (ODS) rats, which lack endogenous L-ascorbic acid (AA) synthesis, serve as a useful model for investigating AA’s protective effects against ischemic brain injury. ODS rats were given an AA-free diet (0% AA), 0.1% AA, or 1% AA in drinking water for two weeks before undergoing middle cerebral artery occlusion and reperfusion (MCAO/Re). The 0% AA group exhibited pronounced damage following MCAO/Re, characterized by the induction of lipid peroxidation, O2 production, inflammation-related gene expression, and extensive infarct formation. In contrast, the 1% AA group showed reductions in these markers, along with fewer TUNEL-positive cells and a smaller infarct volume. Notably, sodium-dependent vitamin C transporter 2 (SVCT2) expression increased in both two AA-supplemented groups, although the 0.1% AA group did not exhibit sufficient improvement in post-ischemic damage. A two-week intake of AA significantly alleviated MCAO/Re-mediated injuries associated with oxidative stress and inflammation in ODS rats. Sufficient AA intake is thus supposed to mitigate ischemic damage, possibly through SVCT2 upregulation and enhanced AA availability, leading to the suppression of oxidative stress and inflammation. Full article
Show Figures

Graphical abstract

16 pages, 4235 KiB  
Article
Feasibility of Xenogeneic Mitochondrial Transplantation in Neuronal Systems: An Exploratory Study
by Eriko Nakamura, Tomoaki Aoki, Cyrus E. Kuschner, Yusuke Endo, Jacob S. Kazmi, Tai Yin, Ryosuke Takegawa, Lance B. Becker and Kei Hayashida
Life 2025, 15(7), 998; https://doi.org/10.3390/life15070998 - 23 Jun 2025
Viewed by 491
Abstract
Mitochondrial transplantation (MTx) has emerged as a potential therapeutic approach for diseases associated with mitochondrial dysfunction, yet its scalability and cross-species feasibility remain underexplored. This study aimed to evaluate the dose-dependent uptake and molecular effects of xenogeneic mitochondrial transplantation (xeno-MTx) using rat-derived mitochondria [...] Read more.
Mitochondrial transplantation (MTx) has emerged as a potential therapeutic approach for diseases associated with mitochondrial dysfunction, yet its scalability and cross-species feasibility remain underexplored. This study aimed to evaluate the dose-dependent uptake and molecular effects of xenogeneic mitochondrial transplantation (xeno-MTx) using rat-derived mitochondria in mouse neuronal systems. HT-22 hippocampal neuronal cells and a murine model of cardiac arrest-induced global cerebral ischemia were used to assess mitochondrial uptake, gene expression, and mitochondrial DNA presence. Donor mitochondria were isolated from rat pectoralis muscle and labeled with MitoTracker dyes. Flow cytometry and confocal microscopy revealed a dose-dependent increase in donor mitochondrial uptake in vitro. Quantitative PCR demonstrated a corresponding increase in rat-specific mitochondrial DNA and upregulation of Mfn2 and Bak1, with no changes in other fusion, fission, or apoptotic genes. Inhibitor studies indicated that mitochondrial internalization may involve actin-dependent macropinocytosis and cholesterol-sensitive endocytic pathways. In vivo, rat mitochondrial DNA was detected in mouse brains post–xeno-MTx, confirming donor mitochondrial delivery to ischemic tissue. These findings support the feasibility of xeno-MTx and its dose-responsive biological effects in neuronal systems while underscoring the need for further research to determine long-term functional outcomes and clinical applicability. Full article
(This article belongs to the Special Issue Advances in Cardiac Arrest: Prognostic Performance and Management)
Show Figures

Figure 1

29 pages, 2689 KiB  
Review
Cellular and Molecular Interactions in CNS Injury: The Role of Immune Cells and Inflammatory Responses in Damage and Repair
by Jai Chand Patel, Meenakshi Shukla and Manish Shukla
Cells 2025, 14(12), 918; https://doi.org/10.3390/cells14120918 - 18 Jun 2025
Cited by 1 | Viewed by 884
Abstract
The central nervous system (CNS) is highly susceptible to damage due to its limited ability to regenerate. Injuries to the CNS, whether from trauma, ischemia, or neurodegenerative diseases, disrupt both cellular and vascular structures, leading to immediate (primary) and subsequent (secondary) damage. Primary [...] Read more.
The central nervous system (CNS) is highly susceptible to damage due to its limited ability to regenerate. Injuries to the CNS, whether from trauma, ischemia, or neurodegenerative diseases, disrupt both cellular and vascular structures, leading to immediate (primary) and subsequent (secondary) damage. Primary damage involves the physical disruption of cells and blood vessels, weakening the blood–brain barrier (BBB) and triggering excitotoxicity and calcium overload. Secondary damage develops over hours to days and is marked by ionic imbalance, mitochondrial dysfunction, oxidative stress, and chronic inflammation, which further aggravates tissue damage. Inflammation plays a dual role: acute inflammation helps in repair, while chronic inflammation accelerates neurodegeneration. Microglia and astrocytes play key roles in this inflammatory response, with M1-like microglia promoting pro-inflammatory responses and M2-like microglia supporting anti-inflammatory and repair processes. Neurodegenerative diseases are characterized by the accumulation of misfolded proteins such as Tau, amyloid-beta, TDP-43, and α-synuclein, which impair cellular function and lead to neuronal loss. Neurodegenerative diseases are characterized by the accumulation of misfolded proteins and influenced by genetic risk factors (e.g., APOE4, TARDBP). Despite the CNS’s limited regenerative abilities, processes like synaptogenesis, neurogenesis, axonal regeneration, and remyelination offer potential for recovery. Therapeutic approaches aim to target inflammatory pathways, enhance repair mechanisms, and develop neuroprotective treatments to counter excitotoxicity, oxidative stress, and apoptosis. Advances in stem cell therapy, gene therapy, and personalized medicine hold promise for improving outcomes. Future research should focus on combining strategies, utilizing advanced technologies, and conducting translational studies to bridge the gap between preclinical research and clinical application. By better understanding and leveraging the complex processes of CNS injury and repair, researchers hope to develop effective therapies to restore function and enhance the quality of life for individuals with CNS disorders. Full article
(This article belongs to the Collection Advances in Neurodegenerative Disease)
Show Figures

Figure 1

20 pages, 574 KiB  
Review
The Regulatory Role of Non-Coding RNAs in Autophagy-Dependent Ischemia–Reperfusion Injury of the Brain
by Irina O. Zakharova, Liubov V. Bayunova and Natalia F. Avrova
Curr. Issues Mol. Biol. 2025, 47(6), 462; https://doi.org/10.3390/cimb47060462 - 17 Jun 2025
Viewed by 436
Abstract
In recent years, it has become clear that non-coding RNAs play an important role in regulating the development of various organs and pathological conditions, including cerebral ischemia and reperfusion. Non-coding RNAs are mainly represented by long non-coding RNAs (lncRNAs), microRNAs (miRNAs), and circular [...] Read more.
In recent years, it has become clear that non-coding RNAs play an important role in regulating the development of various organs and pathological conditions, including cerebral ischemia and reperfusion. Non-coding RNAs are mainly represented by long non-coding RNAs (lncRNAs), microRNAs (miRNAs), and circular RNAs (circRNAs). Most of the human genome is transcribed into such RNAs. Excessive activation of autophagy during cerebral ischemia and reperfusion results in autophagic neuronal death in addition to apoptotic death. This review shows that regulation occurs via the lncRNA (or circRNA)/miRNA/target protein signaling axes. A knockdown or a decrease in lncRNA level can lead to a significant increase in miRNA levels, followed by a decrease in the levels of messenger RNA (mRNA) of autophagy-related protein (ATG) and ATG protein itself. This leads to inhibition of autophagy and alleviation of brain ischemia–reperfusion injury. Changes in miRNA and mRNA levels of the target protein occur due to the presence of complementary nucleotide sequences with lncRNA and miRNA, respectively. If the target protein is not an ATG protein, neuroprotection during cerebral ischemia and reperfusion can result from both inhibition and activation of autophagy. The further study of the regulatory role of non-coding RNAs is important as it may help to counteract the effects of excessive autophagy activation and other adverse effects of ischemia–reperfusion injury Full article
(This article belongs to the Special Issue Molecular Mechanisms and Treatment of Ischemia–Reperfusion Injury)
Show Figures

Figure 1

28 pages, 13615 KiB  
Article
The Anti-Parkinsonian A2A Receptor Antagonist Istradefylline (KW-6002) Attenuates Behavioral Abnormalities, Neuroinflammation, and Neurodegeneration in Cerebral Ischemia: An Adenosinergic Signaling Link Between Stroke and Parkinson’s Disease
by Michael G. Zaki, Elisabet Jakova, Mahboubeh Pordeli, Elina Setork, Changiz Taghibiglou and Francisco S. Cayabyab
Int. J. Mol. Sci. 2025, 26(12), 5680; https://doi.org/10.3390/ijms26125680 - 13 Jun 2025
Viewed by 1369
Abstract
Stroke, the third leading cause of death worldwide, is a major cause of functional disability. Cerebral ischemia causes a rapid elevation of adenosine, the main neuromodulator in the brain. The inhibition of adenosine A2A receptors (A2ARs) has been introduced as a potential target [...] Read more.
Stroke, the third leading cause of death worldwide, is a major cause of functional disability. Cerebral ischemia causes a rapid elevation of adenosine, the main neuromodulator in the brain. The inhibition of adenosine A2A receptors (A2ARs) has been introduced as a potential target in neurodegenerative disorders involving extracellular adenosine elevation. Istradefylline, a selective A2AR antagonist, has been approved for Parkinson’s disease (PD) adjunctive therapy and showed neuroprotective effects in PD and Alzheimer’s disease. However, the role of A2ARs in post-stroke neuronal damage and behavioral deficits remains unclear. We recently showed that A2AR antagonism prevented the adenosine-induced post-hypoxia synaptic potentiation of glutamatergic neurotransmission following the hypoxia/reperfusion of hippocampal slices. Here, we investigated the potential neuroprotective effects of istradefylline in male Sprague-Dawley rats subjected to pial vessel disruption (PVD) used to model a small-vessel stroke. Rats were treated with either a vehicle control or istradefylline (3 mg/kg i.p.) following PVD surgery for three days. Istradefylline administration prevented anxiety and depressive-like behaviors caused by PVD stroke. In addition, istradefylline significantly attenuated ischemia-induced cognitive impairment and motor deficits. Moreover, istradefylline markedly reduced hippocampal neurodegeneration, as well as GFAP/Iba-1, TNF-α, nNOS, and iNOS levels after PVD, but prevented the downregulation of anti-inflammatory markers TGF-β1 and IL-4. Together, these results suggest a molecular link between stroke and PD and that the anti-PD drug istradefylline displays translational potential for drug repurposing as a neuroprotective agent for cerebral ischemic damage. Full article
Show Figures

Figure 1

33 pages, 2003 KiB  
Review
Acute Compartment Syndrome and Intra-Abdominal Hypertension, Decompression, Current Pharmacotherapy, and Stable Gastric Pentadecapeptide BPC 157 Solution
by Predrag Sikiric, Sven Seiwerth, Anita Skrtic, Mario Staresinic, Sanja Strbe, Antonia Vuksic, Suncana Sikiric, Dinko Bekic, Toni Penovic, Dominik Drazenovic, Tomislav Becejac, Marijan Tepes, Zrinko Madzar, Luka Novosel, Lidija Beketic Oreskovic, Ivana Oreskovic, Mirjana Stupnisek, Alenka Boban Blagaic and Ivan Dobric
Pharmaceuticals 2025, 18(6), 866; https://doi.org/10.3390/ph18060866 - 10 Jun 2025
Viewed by 972
Abstract
In this study, pharmacotherapies of abdominal compartment syndrome (ACS) and intra-abdominal hypertension (IAH) in animal studies were reviewed from the perspective of ACS/IAH as failed cytoprotection issues, as non-specific injuries, and from the point of view of the cytoprotection concept as resolution. Therefore, [...] Read more.
In this study, pharmacotherapies of abdominal compartment syndrome (ACS) and intra-abdominal hypertension (IAH) in animal studies were reviewed from the perspective of ACS/IAH as failed cytoprotection issues, as non-specific injuries, and from the point of view of the cytoprotection concept as resolution. Therefore, this review challenges the unresolved theoretical and practical issues of severe multiorgan failure, acknowledged significance in clinics, and resolving outcomes (i.e., open abdomen). Generally, the reported agents not aligned with cytoprotection align with current pharmacotherapy limitations and have (non-)confirmed effectiveness, mostly in only one organ, mild/moderate IAH, prophylactic application, and provide only a tentative resolution. Contrarily, stable gastric pentadecapeptide BPC 157 therapy, as a novel and relevant cytoprotective mediator having pleiotropic beneficial effects, simultaneously resolves many targets, resolving established disturbances, specifically compression/ischemia (grade III and grade IV), and decompression/advanced reperfusion. BPC 157 therapy rapidly activates collateral bypassing pathways, and, in ACS and IAH, and later, in reperfusion, there is a “bypassing key” (i.e., azygos vein direct blood flow delivery). This serves to counteract multiorgan and vessel failure, including lesions and hemorrhages in the brain, heart, lung, liver, kidney and gastrointestinal tract, thrombosis, peripherally and centrally, intracranial (superior sagittal sinus), portal and caval hypertension and aortal hypotension, occlusion/occlusion-like syndrome, advanced Virchow triad circumstances, and free radical formation acting as a membrane stabilizer and free radical scavenger. Likewise, not only in ACS/IAH resolving, but also in other occlusion/occlusion-like syndromes, this “bypassing key” could be an effect of the essential endothelial cytoprotective capacity of BPC 157 and a particular modulatory effect on the NO-system, and a rescuing impact on vasomotor tone. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Graphical abstract

14 pages, 1321 KiB  
Article
Infection Associated with Global Cerebral Edema and Delayed Cerebral Ischemia in Patients with Aneurysmal Subarachnoid Hemorrhage
by Daina Kashiwazaki, Kunitaka Maruyama, Saori Hamada, Shusuke Yamamoto, Emiko Hori, Naoki Akioka, Kyo Noguchi and Satoshi Kuroda
J. Clin. Med. 2025, 14(11), 3808; https://doi.org/10.3390/jcm14113808 - 29 May 2025
Viewed by 419
Abstract
Background/Objectives: Patients with aneurysmal subarachnoid hemorrhage (SAH) experience functional impairment due to early brain injury and delayed complications. We aimed to clarify the association between cerebral edema and post-SAH infection. We investigated whether this association leads to delayed cerebral ischemia (DCI) and poor [...] Read more.
Background/Objectives: Patients with aneurysmal subarachnoid hemorrhage (SAH) experience functional impairment due to early brain injury and delayed complications. We aimed to clarify the association between cerebral edema and post-SAH infection. We investigated whether this association leads to delayed cerebral ischemia (DCI) and poor clinical outcomes. Methods: We included 189 patients diagnosed with aneurysmal SAH at our institution. Demographic data and data on World Federation of Neurological Surgeons (WFNS) grade, modified Fisher grade, aneurysm location, treatment methods, global cerebral edema (GCE) assessed according to Subarachnoid Hemorrhage Early Brain Edema Score (SEBES), DCI, infection, duration of hospital stay, and modified Rankin Scale at 3 months were collected. Results: Overall, 88 patients (46.6%) developed GCE ([SEBES] 3 or 4), while 101 patients (53.4%) did not. DCI was observed in 58 (30.7%) patients. Infectious complications occurred in 80 (42.3%) patients. Kaplan–Meier analysis results suggested a higher frequency of DCI among patients with GCE and infection than those without (p < 0.01). Logistic regression analysis identified GCE (p < 0.001, odds ratio [OR] 3.3, 95% confidence interval [CI] [1.3–8.6]), older age (p = 0.02, OR 2.5, 95%CI [1.2–4.9]), higher WFNS grade (p = 0.01, OR 3.9, 95%CI [1.5–9.5]), and mechanical ventilation use (p = 0.04, OR 1.4, 95%CI [1.1–3.9]) as risk factors for infection, while age (p = 0.03, OR 2.3, 95%CI [1.1–4.6]), WFNS grade (p < 0.001, OR 4.5, 95%CI [1.5–9.2]), and GCE + infection (p < 0.001, OR 4.1, 95%CI [1.3–8.9]) were independent risk factors for DCI. Conclusions: GCE–infection linkage is associated with DCI, poor clinical outcomes, and longer hospital stays in patients with aneurysmal SAH. Therefore, the EBI-DCI chain plays an important role in the postsurgical management of these patients. Full article
(This article belongs to the Section Clinical Neurology)
Show Figures

Figure 1

26 pages, 2057 KiB  
Review
Regulation of Blood–Brain Barrier Permeability via JNK Signaling Pathway: Mechanisms and Potential Therapeutic Strategies for Ischemic Stroke, Alzheimer’s Disease and Brain Tumors
by Mark B. Plotnikov, Anna M. Anishchenko, Andrei I. Khlebnikov and Igor A. Schepetkin
Molecules 2025, 30(11), 2353; https://doi.org/10.3390/molecules30112353 - 28 May 2025
Viewed by 1088
Abstract
Disruption of the blood–brain barrier (BBB) accompanies many brain diseases, including stroke, neurodegenerative diseases, and brain tumors, leading to swelling, increased neuroinflammation, and neuronal death. In recent years, it has become clear that the c-Jun N-terminal kinase (JNK) signaling pathway is involved in [...] Read more.
Disruption of the blood–brain barrier (BBB) accompanies many brain diseases, including stroke, neurodegenerative diseases, and brain tumors, leading to swelling, increased neuroinflammation, and neuronal death. In recent years, it has become clear that the c-Jun N-terminal kinase (JNK) signaling pathway is involved in disruption of the structural integrity of the BBB. Activation of the JNK signaling pathway has a negative effect on the functioning of the cellular elements of the neurovascular unit that form the BBB. The aim of this review is to assess the role of the JNK signaling pathway in the disruption of the structural integrity of the BBB in animal models of stroke (MCAO/R, middle cerebral artery occlusion with reperfusion), Alzheimer’s disease, and brain tumors and to analyze the effects of compounds of various natures that directly or indirectly affect the activity of the JNK signaling pathway. These compounds can reduce damage to the BBB and brain edema, reduce neuroinflammation and oxidative stress, reduce the expression of proapoptotic factors, and increase the expression of tight junction proteins. Certain compounds mitigate BBB dysfunction, being promising candidates for neuroprotective therapies. These agents exert their effects, in part, through inhibition of the c-Jun N-terminal kinase (JNK) signaling pathway, a mechanism linked to reduced neuronal damage and improved BBB integrity. Full article
Show Figures

Figure 1

20 pages, 3567 KiB  
Article
In Vivo Neuroprotective Effects of Alpinetin Against Experimental Ischemic Stroke Damage Through Antioxidant and Anti-Inflammatory Mechanisms
by Ratchaniporn Kongsui, Sitthisak Thongrong and Jinatta Jittiwat
Int. J. Mol. Sci. 2025, 26(11), 5093; https://doi.org/10.3390/ijms26115093 - 26 May 2025
Viewed by 1356
Abstract
Ischemic stroke is the most common type of stroke and poses a major global health challenge due to its high mortality and lasting disability impact. The onset and progression of ischemic stroke are largely linked to oxidative stress and inflammatory responses. Alpinetin, a [...] Read more.
Ischemic stroke is the most common type of stroke and poses a major global health challenge due to its high mortality and lasting disability impact. The onset and progression of ischemic stroke are largely linked to oxidative stress and inflammatory responses. Alpinetin, a natural flavonoid found in the ginger family, exhibits various pharmacological properties, including antioxidant and anti-inflammatory activities. In this study, the neuroprotective potential of alpinetin in attenuating oxidative stress and inflammation against cerebral ischemic stroke was evaluated. Ninety male Wistar rats were randomly assigned to the sham operation group, the Rt.MCAO group, the Rt.MCAO+piracetam group, and the Rt.MCAO+alpinetin groups (25, 50, and 100 mg/kg BW). Cerebral infarction size, neuronal density, and antioxidant and anti-inflammatory activities were measured. Three days of treatment with alpinetin markedly reduced the infarct volume by 30% compared to the Rt.MCAO+vehicle-treated group. Additionally, rats treated with alpinetin exhibited a significant increase in neuronal density in the cortex, as well as in the CA1 and CA3 regions of the hippocampus. Furthermore, treatment with alpinetin ameliorated both the Rt.MCAO-induced increase in malondialdehyde (MDA) activity and the Rt.MCAO-induced decrease in catalase (CAT), glutathione peroxidase (GSH-Px), and superoxide dismutase (SOD) activities in the cortex and hippocampus. Moreover, COX-2 and IL-6 protein levels were assessed using western blotting. The results showed that treatment with alpinetin (100 mg/kg BW) significantly reduced the expression levels of COX-2 and IL-6 in both the cortex and hippocampus. Our findings suggest that alpinetin significantly mitigates the effects of cerebral ischemia-induced brain damage through its antioxidant and anti-inflammatory properties and could potentially be developed as a therapeutic agent for stroke treatment. Full article
(This article belongs to the Special Issue Advanced Research in Antioxidant Activity)
Show Figures

Figure 1

Back to TopTop