Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (31)

Search Parameters:
Keywords = bovine spongiform encephalopathy (BSE)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 2391 KiB  
Article
Characterisation of European Field Goat Prion Isolates in Ovine PrP Overexpressing Transgenic Mice (Tgshp IX) Reveals Distinct Prion Strains
by Sonja Ernst, Romolo Nonno, Jan Langeveld, Olivier Andreoletti, Cristina Acin, Penelope Papasavva-Stylianou, Theodoros Sklaviadis, Pier Luigi Acutis, Lucien van Keulen, John Spiropoulos, Markus Keller, Martin H. Groschup and Christine Fast
Pathogens 2024, 13(8), 629; https://doi.org/10.3390/pathogens13080629 - 27 Jul 2024
Cited by 1 | Viewed by 1262
Abstract
After the detection of bovine spongiform encephalopathy (BSE), and a zoonotic transmissible spongiform encephalopathy (TSE) caused by the pathological prion protein (PrPSc) in two goats, the investigation of goat prions became of greater interest. Therefore, a broad collection of European goat [...] Read more.
After the detection of bovine spongiform encephalopathy (BSE), and a zoonotic transmissible spongiform encephalopathy (TSE) caused by the pathological prion protein (PrPSc) in two goats, the investigation of goat prions became of greater interest. Therefore, a broad collection of European goat TSE isolates, including atypical scrapie, CH1641 and goat BSE as reference prion strains were biochemically characterised and subsequently inoculated into seven rodent models for further analysis (already published results of this comprehensive study are reviewed here for comparative reasons). We report here the histopathological and immunohistochemical data of this goat TSE panel, obtained after the first passage in Tgshp IX (tg-shARQ) mice, which overexpress the ovine prion protein. In addition to the clear-cut discrimination of all reference prion strains from the classical scrapie (CS) isolates, we were further able to determine three categories of CS strains. The investigation further indicates the occurrence of sub-strains that slightly resemble distant TSE strains, such as BSE or CH1641, reinforcing the theory that CS is not a single strain but a mixture of sub-strains, existing at varying extents in one isolate. This study further proved that Tgshp IX is a potent and reliable tool for the in-depth characterisation of prion strains. Full article
(This article belongs to the Collection Emerging and Re-emerging Pathogens)
Show Figures

Figure 1

12 pages, 763 KiB  
Article
Prion Seeding Activity in Plant Tissues Detected by RT-QuIC
by Kate Burgener, Stuart Siegfried Lichtenberg, Daniel P. Walsh, Heather N. Inzalaco, Aaron Lomax and Joel A. Pedersen
Pathogens 2024, 13(6), 452; https://doi.org/10.3390/pathogens13060452 - 26 May 2024
Cited by 2 | Viewed by 2421
Abstract
Prion diseases such as scrapie, bovine spongiform encephalopathy (BSE), and chronic wasting disease (CWD) affect domesticated and wild herbivorous mammals. Animals afflicted with CWD, the transmissible spongiform encephalopathy of cervids (deer, elk, and moose), shed prions into the environment, where they may persist [...] Read more.
Prion diseases such as scrapie, bovine spongiform encephalopathy (BSE), and chronic wasting disease (CWD) affect domesticated and wild herbivorous mammals. Animals afflicted with CWD, the transmissible spongiform encephalopathy of cervids (deer, elk, and moose), shed prions into the environment, where they may persist and remain infectious for years. These environmental prions may remain in soil, be transported in surface waters, or assimilated into plants. Environmental sampling is an emerging area of TSE research and can provide more information about prion fate and transport once shed by infected animals. In this study, we have developed the first published method for the extraction and detection of prions in plant tissue using the real-time quaking-induced conversion (RT-QuIC) assay. Incubation with a zwitterionic surfactant followed by precipitation with sodium phosphotungstate concentrates the prions within samples and allows for sensitive detection of prion seeding activity. Using this protocol, we demonstrate that prions can be detected within plant tissues and on plant surfaces using the RT-QuIC assay. Full article
(This article belongs to the Special Issue Advances in Chronic Wasting Disease)
Show Figures

Figure 1

14 pages, 1661 KiB  
Article
Comparative Analysis of PRNP Gene Indel Polymorphism and Expression among Zhongdian Yellow Cattle, Zhongdian Yak, and Their Hybrids
by Xiaoming He, Sameeullah Memon, Dan Yue, Junhong Zhu, Ying Lu, Xingneng Liu, Heli Xiong, Guozhi Li, Weidong Deng and Dongmei Xi
Animals 2023, 13(23), 3627; https://doi.org/10.3390/ani13233627 - 23 Nov 2023
Viewed by 1499
Abstract
Bovine spongiform encephalopathy (BSE) is a fatal disease in cattle caused by misfolded prion proteins and linked to indel polymorphisms in the promoter and intron 1 of the PRNP gene. The aim of this study was to determine the allele, genotype, and haplotype [...] Read more.
Bovine spongiform encephalopathy (BSE) is a fatal disease in cattle caused by misfolded prion proteins and linked to indel polymorphisms in the promoter and intron 1 of the PRNP gene. The aim of this study was to determine the allele, genotype, and haplotype frequencies of PRNP indel polymorphisms and to investigate the effect of PRNP gene expressions of 23 bp and 12 bp indels via polymerase chain reaction (PCR) in Zhongdian Yak (Bos-grunniens) (YK), Zhongdian Yellow cattle (Bos-taurus) (YC), and Zhongdian Yakow (Bos-primigenius taurus × Bos-grunniens) (PK). Resultant high allelic frequencies were found in 23− and 12+, while haplotype frequencies were very low in 23+/12 in YK, YC, and PK. PRNP expression was higher in the +−/−− diplotype of the PK and (mean ± SE) was 3.6578 ± 1.85964. Furthermore, two variable sites were investigated—a 23 bp indel polymorphism holding AP1 binding site and a 12 bp indel polymorphism holding SP1 binding site. Additionally, reporter gene assays revealed a link between two proposed transcription factors and lower expression levels of the +/+ allele compared with the −/− allele. The expression level of PRNP was shown to be dependent on two indel polymorphisms in the bovine PRNP promoter, which includes binding sites for RP58 and SP1 transcription factors. These findings raised the possibility that the PRNP genotype may contribute to the high variation in PRNP expression. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

36 pages, 3444 KiB  
Review
Conventional and State-of-the-Art Detection Methods of Bovine Spongiform Encephalopathy (BSE)
by Monika Olech
Int. J. Mol. Sci. 2023, 24(8), 7135; https://doi.org/10.3390/ijms24087135 - 12 Apr 2023
Cited by 7 | Viewed by 5356
Abstract
Bovine spongiform encephalopathy (BSE) is a fatal neurodegenerative disease that belongs to a group of diseases known as transmissible spongiform encephalopathies (TSEs). It is believed that the infectious agent responsible for prion diseases is abnormally folded prion protein (PrPSc), which derives [...] Read more.
Bovine spongiform encephalopathy (BSE) is a fatal neurodegenerative disease that belongs to a group of diseases known as transmissible spongiform encephalopathies (TSEs). It is believed that the infectious agent responsible for prion diseases is abnormally folded prion protein (PrPSc), which derives from a normal cellular protein (PrPC), which is a cell surface glycoprotein predominantly expressed in neurons. There are three different types of BSE, the classical BSE (C-type) strain and two atypical strains (H-type and L-type). BSE is primarily a disease of cattle; however, sheep and goats also can be infected with BSE strains and develop a disease clinically and pathogenically indistinguishable from scrapie. Therefore, TSE cases in cattle and small ruminants require discriminatory testing to determine whether the TSE is BSE or scrapie and to discriminate classical BSE from the atypical H- or L-type strains. Many methods have been developed for the detection of BSE and have been reported in numerous studies. Detection of BSE is mainly based on the identification of characteristic lesions or detection of the PrPSc in the brain, often by use of their partial proteinase K resistance properties. The objective of this paper was to summarize the currently available methods, highlight their diagnostic performance, and emphasize the advantages and drawbacks of the application of individual tests. Full article
(This article belongs to the Special Issue Prions and Prion Diseases 3.0)
Show Figures

Figure 1

20 pages, 1414 KiB  
Article
Discrimination of Classical and Atypical BSE by a Distinct Immunohistochemical PrPSc Profile
by Christine Fast, Catherine Graham, Martin Kaatz, Kristina Santiago-Mateo, Tammy Kaatz, Kendra MacPherson, Anne Balkema-Buschmann, Ute Ziegler, Martin H. Groschup and Stefanie Czub
Pathogens 2023, 12(2), 353; https://doi.org/10.3390/pathogens12020353 - 20 Feb 2023
Cited by 2 | Viewed by 2421
Abstract
Bovine spongiform encephalopathy (BSE) belongs to the group of transmissible spongiform encephalopathies and is associated with the accumulation of a pathological isoform of the host-encoded glycoprotein, designated prion protein (PrPSc). Classical BSE (C-type) and two atypical BSE forms (L- and H-type) [...] Read more.
Bovine spongiform encephalopathy (BSE) belongs to the group of transmissible spongiform encephalopathies and is associated with the accumulation of a pathological isoform of the host-encoded glycoprotein, designated prion protein (PrPSc). Classical BSE (C-type) and two atypical BSE forms (L- and H-type) are known, and can be discriminated by biochemical characteristics. The goal of our study was to identify type-specific PrPSc profiles by using Immunohistochemistry. In our study, brain samples from 21 cattle, intracerebrally inoculated with C-, H-, and L-type BSE, were used. In addition, the corresponding samples from three orally C-type BSE infected animals were also included. From all animals, a lesion and PrPSc-profiles of six brain regions were determined. The lesion profile and the neuroanatomical distribution of PrPSc was highly consistent between the groups, but the immunohistochemical analysis revealed a distinct PrPSc profile for the different BSE-types, which included both the topographic and cellular pattern of PrPSc. This qualitative and quantitative analysis of PrPSc affected structures sheds new light into the pathogenesis of the different BSE types. Furthermore, immunohistochemical characterization is supported as an additional diagnostic tool in BSE surveillance programs, especially when only formalin-fixed tissue samples are available. Full article
(This article belongs to the Special Issue Prions and Prion-Like Transmissible Protein Pathogens)
Show Figures

Figure 1

20 pages, 334 KiB  
Review
The Zoonotic Potential of Chronic Wasting Disease—A Review
by Michael A. Tranulis and Morten Tryland
Foods 2023, 12(4), 824; https://doi.org/10.3390/foods12040824 - 15 Feb 2023
Cited by 16 | Viewed by 6389
Abstract
Prion diseases are transmissible neurodegenerative disorders that affect humans and ruminant species consumed by humans. Ruminant prion diseases include bovine spongiform encephalopathy (BSE) in cattle, scrapie in sheep and goats and chronic wasting disease (CWD) in cervids. In 1996, prions causing BSE were [...] Read more.
Prion diseases are transmissible neurodegenerative disorders that affect humans and ruminant species consumed by humans. Ruminant prion diseases include bovine spongiform encephalopathy (BSE) in cattle, scrapie in sheep and goats and chronic wasting disease (CWD) in cervids. In 1996, prions causing BSE were identified as the cause of a new prion disease in humans; variant Creutzfeldt-Jakob disease (vCJD). This sparked a food safety crisis and unprecedented protective measures to reduce human exposure to livestock prions. CWD continues to spread in North America, and now affects free-ranging and/or farmed cervids in 30 US states and four Canadian provinces. The recent discovery in Europe of previously unrecognized CWD strains has further heightened concerns about CWD as a food pathogen. The escalating CWD prevalence in enzootic areas and its appearance in a new species (reindeer) and new geographical locations, increase human exposure and the risk of CWD strain adaptation to humans. No cases of human prion disease caused by CWD have been recorded, and most experimental data suggest that the zoonotic risk of CWD is very low. However, the understanding of these diseases is still incomplete (e.g., origin, transmission properties and ecology), suggesting that precautionary measures should be implemented to minimize human exposure. Full article
(This article belongs to the Special Issue Foodborne Pathogens Management: From Farm and Pond to Fork)
8 pages, 421 KiB  
Article
The First Evaluation of Proteinase K-Resistant Prion Protein (PrPSc) in Korean Appendix Specimens
by Sae-Young Won, Yong-Chan Kim, Yu-Ni Lee, Chan-Gyun Park, Woo-Young Kim and Byung-Hoon Jeong
Medicina 2022, 58(7), 947; https://doi.org/10.3390/medicina58070947 - 18 Jul 2022
Viewed by 2325
Abstract
Background and Objectives: Prion diseases are fatal neurodegenerative disorders caused by the abnormal proteinase K-resistant prion protein (PrPSc). Since variant Creutzfeldt–Jakob disease (CJD) was first reported in the United Kingdom (UK) in 1996, the occurrence of variant CJD has been reported [...] Read more.
Background and Objectives: Prion diseases are fatal neurodegenerative disorders caused by the abnormal proteinase K-resistant prion protein (PrPSc). Since variant Creutzfeldt–Jakob disease (CJD) was first reported in the United Kingdom (UK) in 1996, the occurrence of variant CJD has been reported in over 10 countries. To date, variant CJD has not been reported in Korea. However, the E211K somatic mutation in the prion protein gene (PRNP), which is related to bovine spongiform encephalopathy (BSE), was reported in Korean Holstein cattle, and atypical BSE, which is supposed to be sporadic BSE, has been occurring in many countries, including Japan and the USA. These results suggest that BSE may occur naturally in Korea. Thus, we performed a preemptive PrPSc test in appendix specimens to diagnose variant CJD in a Korean population. Materials and Methods: In the present study, we investigated CJD-related mutations and polymorphisms of the PRNP gene and carried out an examination on PrPSc in appendix specimens of Korean patients after appendectomy. Results: In all Korean appendix specimens tested, PrPSc bands were not detected. Conclusion: To the best of our knowledge, this was the first evaluation of PrPSc in Korean appendix specimens. Full article
(This article belongs to the Section Neurology)
Show Figures

Figure 1

18 pages, 5124 KiB  
Article
Strain Typing of Classical Scrapie and Bovine Spongiform Encephalopathy (BSE) by Using Ovine PrP (ARQ/ARQ) Overexpressing Transgenic Mice
by Olanrewaju I. Fatola, Markus Keller, Anne Balkema-Buschmann, James Olopade, Martin H. Groschup and Christine Fast
Int. J. Mol. Sci. 2022, 23(12), 6744; https://doi.org/10.3390/ijms23126744 - 16 Jun 2022
Cited by 3 | Viewed by 2497
Abstract
Transmissible spongiform encephalopathies (TSE), caused by abnormal prion protein (PrPSc), affect many species. The most classical scrapie isolates harbor mixtures of strains in different proportions. While the characterization of isolates has evolved from using wild-type mice to transgenic mice, no standardization [...] Read more.
Transmissible spongiform encephalopathies (TSE), caused by abnormal prion protein (PrPSc), affect many species. The most classical scrapie isolates harbor mixtures of strains in different proportions. While the characterization of isolates has evolved from using wild-type mice to transgenic mice, no standardization is established yet. Here, we investigated the incubation period, lesion profile and PrPSc profile induced by well-defined sheep scrapie isolates, bovine spongiform encephalopathy (BSE) and ovine BSE after intracerebral inoculation into two lines of ovine PrP (both ARQ/ARQ) overexpressing transgenic mice (Tgshp IX and Tgshp XI). All isolates were transmitted to both mouse models with an attack rate of almost 100%, but genotype-dependent differences became obvious between the ARQ and VRQ isolates. Surprisingly, BSE induced a much longer incubation period in Tgshp XI compared to Tgshp IX. In contrast to the histopathological lesion profiles, the immunohistochemical PrPSc profiles revealed discriminating patterns in certain brain regions in both models with clear differentiation of both BSE isolates from scrapie. These data provide the basis for the use of Tgshp IX and XI mice in the characterization of TSE isolates. Furthermore, the results enable a deeper appreciation of TSE strain diversity using ovine PrP overexpressing transgenic mice as a biological prion strain typing approach. Full article
(This article belongs to the Special Issue Prions and Prion Diseases 3.0)
Show Figures

Figure 1

3 pages, 179 KiB  
Editorial
Prion Pathogenesis Revealed in a Series of the Special Issues “Prions and Prion Diseases”
by Suehiro Sakaguchi
Int. J. Mol. Sci. 2022, 23(12), 6490; https://doi.org/10.3390/ijms23126490 - 10 Jun 2022
Viewed by 2211
Abstract
Prion diseases are a group of devastating neurodegenerative disorders, which include Creutzfeldt–Jakob disease (CJD) in humans, and scrapie and bovine spongiform encephalopathy (BSE) in animals [...] Full article
(This article belongs to the Special Issue Prions and Prion Diseases)
11 pages, 1670 KiB  
Article
Experimental Bovine Spongiform Encephalopathy in Squirrel Monkeys: The Same Complex Proteinopathy Appearing after Very Different Incubation Times
by Pedro Piccardo, Juraj Cervenak, Wilfred Goldmann, Paula Stewart, Kitty L. Pomeroy, Luisa Gregori, Oksana Yakovleva and David M. Asher
Pathogens 2022, 11(5), 597; https://doi.org/10.3390/pathogens11050597 - 20 May 2022
Viewed by 3258
Abstract
Incubation periods in humans infected with transmissible spongiform encephalopathy (TSE) agents can exceed 50 years. In humans infected with bovine spongiform encephalopathy (BSE) agents, the effects of a “species barrier,” often observed when TSE infections are transmitted from one species to another, would [...] Read more.
Incubation periods in humans infected with transmissible spongiform encephalopathy (TSE) agents can exceed 50 years. In humans infected with bovine spongiform encephalopathy (BSE) agents, the effects of a “species barrier,” often observed when TSE infections are transmitted from one species to another, would be expected to increase incubation periods compared with transmissions of same infectious agents within the same species. As part of a long-term study investigating the susceptibility to BSE of cell cultures used to produce vaccines, we inoculated squirrel monkeys (Saimiri sp., here designated SQ) with serial dilutions of a bovine brain suspension containing the BSE agent and monitored them for as long as ten years. Previously, we showed that SQ infected with the original “classical” BSE agent (SQ-BSE) developed a neurological disease resembling that seen in humans with variant CJD (vCJD). Here, we report the final characterization of the SQ-BSE model. We observed an unexpectedly marked difference in incubation times between two animals inoculated with the same dilution and volume of the same C-BSE bovine brain extract on the same day. SQ-BSE developed, in addition to spongiform changes and astrogliosis typical of TSEs, a complex proteinopathy with severe accumulations of protease-resistant prion protein (PrPTSE), hyperphosphorylated tau (p-tau), ubiquitin, and α-synuclein, but without any amyloid plaques or β-amyloid protein (Aβ) typical of Alzheimer’s disease. These results suggest that PrPTSE enhanced the accumulation of several key proteins characteristically seen in human neurodegenerative diseases. The marked variation in incubation periods in the same experimental TSE should be taken into account when modeling the epidemiology of human TSEs. Full article
(This article belongs to the Special Issue Human Prion Disease)
Show Figures

Figure 1

20 pages, 2884 KiB  
Review
Variant CJD: Reflections a Quarter of a Century on
by Diane L. Ritchie, Alexander H. Peden and Marcelo A. Barria
Pathogens 2021, 10(11), 1413; https://doi.org/10.3390/pathogens10111413 - 30 Oct 2021
Cited by 26 | Viewed by 6313
Abstract
Twenty-five years has now passed since variant Creutzfeldt-Jakob disease (vCJD) was first described in the United Kingdom (UK). Early epidemiological, neuropathological and biochemical investigations suggested that vCJD represented a new zoonotic form of human prion disease resulting from dietary exposure to the bovine [...] Read more.
Twenty-five years has now passed since variant Creutzfeldt-Jakob disease (vCJD) was first described in the United Kingdom (UK). Early epidemiological, neuropathological and biochemical investigations suggested that vCJD represented a new zoonotic form of human prion disease resulting from dietary exposure to the bovine spongiform encephalopathy (BSE) agent. This hypothesis has since been confirmed though a large body of experimental evidence, predominantly using animal models of the disease. Today, the clinical, pathological and biochemical phenotype of vCJD is well characterized and demonstrates a unique and remarkably consistent pattern between individual cases when compared to other human prion diseases. While the numbers of vCJD cases remain reassuringly low, with 178 primary vCJD cases reported in the UK and a further 54 reported worldwide, concerns remain over the possible appearance of new vCJD cases in other genetic cohorts and the numbers of asymptomatic individuals in the population harboring vCJD infectivity. This review will provide a historical perspective on vCJD, examining the origins of this acquired prion disease and its association with BSE. We will investigate the epidemiology of the disease along with the unique clinicopathological and biochemical phenotype associated with vCJD cases. Additionally, this review will examine the impact vCJD has had on public health in the UK and the ongoing concerns raised by this rare group of disorders. Full article
(This article belongs to the Special Issue Human Prion Disease)
Show Figures

Figure 1

16 pages, 2713 KiB  
Article
Prion Infectivity and PrPBSE in the Peripheral and Central Nervous System of Cattle 8 Months Post Oral BSE Challenge
by Ivett Ackermann, Reiner Ulrich, Kerstin Tauscher, Olanrewaju I. Fatola, Markus Keller, James C. Shawulu, Mark Arnold, Stefanie Czub, Martin H. Groschup and Anne Balkema-Buschmann
Int. J. Mol. Sci. 2021, 22(21), 11310; https://doi.org/10.3390/ijms222111310 - 20 Oct 2021
Cited by 3 | Viewed by 2842
Abstract
After oral exposure of cattle with classical bovine spongiform encephalopathy (C-BSE), the infectious agent ascends from the gut to the central nervous system (CNS) primarily via the autonomic nervous system. However, the timeline of this progression has thus far remained widely undetermined. Previous [...] Read more.
After oral exposure of cattle with classical bovine spongiform encephalopathy (C-BSE), the infectious agent ascends from the gut to the central nervous system (CNS) primarily via the autonomic nervous system. However, the timeline of this progression has thus far remained widely undetermined. Previous studies were focused on later time points after oral exposure of animals that were already 4 to 6 months old when challenged. In contrast, in this present study, we have orally inoculated 4 to 6 weeks old unweaned calves with high doses of BSE to identify any possible BSE infectivity and/or PrPBSE in peripheral nervous tissues during the first eight months post-inoculation (mpi). For the detection of BSE infectivity, we used a bovine PrP transgenic mouse bioassay, while PrPBSE depositions were analyzed by immunohistochemistry (IHC) and by protein misfolding cyclic amplification (PMCA). We were able to show that as early as 8 mpi the thoracic spinal cord as well as the parasympathetic nodal ganglion of these animals contained PrPBSE and BSE infectivity. This shows that the centripetal prion spread starts early after challenge at least in this age group, which represents an essential piece of information for the risk assessments for food, feed, and pharmaceutical products produced from young calves. Full article
(This article belongs to the Special Issue Prions and Prion Diseases 2.0)
Show Figures

Figure 1

9 pages, 1100 KiB  
Article
Analysis of German BSE Surveillance Data: Estimation of the Prevalence of Confirmed Cases versus the Number of Infected, but Non-Detected, Cattle to Assess Confidence in Freedom from Infection
by Matthias Greiner, Thomas Selhorst, Anne Balkema-Buschmann, Wesley O. Johnson, Christine Müller-Graf and Franz Josef Conraths
Int. J. Environ. Res. Public Health 2021, 18(19), 9966; https://doi.org/10.3390/ijerph18199966 - 22 Sep 2021
Viewed by 2328
Abstract
Quantitative risk assessments for Bovine spongiform encephalopathy (BSE) necessitate estimates for key parameters such as the prevalence of infection, the probability of absence of infection in defined birth cohorts, and the numbers of BSE-infected, but non-detected cattle entering the food chain. We estimated [...] Read more.
Quantitative risk assessments for Bovine spongiform encephalopathy (BSE) necessitate estimates for key parameters such as the prevalence of infection, the probability of absence of infection in defined birth cohorts, and the numbers of BSE-infected, but non-detected cattle entering the food chain. We estimated three key parameters with adjustment for misclassification using the German BSE surveillance data using a Gompertz model for latent (i.e., unobserved) age-dependent detection probabilities and a Poisson response model for the number of BSE cases for birth cohorts 1999 to 2015. The models were combined in a Bayesian framework. We estimated the median true BSE prevalence between 3.74 and 0.216 cases per 100,000 animals for the birth cohorts 1990 to 2001 and observed a peak for the 1996 birth cohort with a point estimate of 16.41 cases per 100,000 cattle. For birth cohorts ranging from 2002 to 2013, the estimated median prevalence was below one case per 100,000 heads. The calculated confidence in freedom from disease (design prevalence 1 in 100,000) was above 99.5% for the birth cohorts 2002 to 2006. In conclusion, BSE surveillance in the healthy slaughtered cattle chain was extremely sensitive at the time, when BSE repeatedly occurred in Germany (2000–2009), because the entry of BSE-infected cattle into the food chain could virtually be prevented by the extensive surveillance program during these years and until 2015 (estimated non-detected cases/100.000 [95% credible interval] in 2000, 2009, and 2015 are 0.64 [0.5,0.8], 0.05 [0.01,0.14], and 0.19 [0.05,0.61], respectively). Full article
Show Figures

Figure 1

13 pages, 352 KiB  
Review
microRNA-146a-5p, Neurotropic Viral Infection and Prion Disease (PrD)
by Aileen I. Pogue and Walter J. Lukiw
Int. J. Mol. Sci. 2021, 22(17), 9198; https://doi.org/10.3390/ijms22179198 - 25 Aug 2021
Cited by 22 | Viewed by 5198
Abstract
The human brain and central nervous system (CNS) harbor a select sub-group of potentially pathogenic microRNAs (miRNAs), including a well-characterized NF-kB-sensitive Homo sapiens microRNA hsa-miRNA-146a-5p (miRNA-146a). miRNA-146a is significantly over-expressed in progressive and often lethal viral- and prion-mediated and related neurological syndromes associated [...] Read more.
The human brain and central nervous system (CNS) harbor a select sub-group of potentially pathogenic microRNAs (miRNAs), including a well-characterized NF-kB-sensitive Homo sapiens microRNA hsa-miRNA-146a-5p (miRNA-146a). miRNA-146a is significantly over-expressed in progressive and often lethal viral- and prion-mediated and related neurological syndromes associated with progressive inflammatory neurodegeneration. These include ~18 different viral-induced encephalopathies for which data are available, at least ~10 known prion diseases (PrD) of animals and humans, Alzheimer’s disease (AD) and other sporadic and progressive age-related neurological disorders. Despite the apparent lack of nucleic acids in prions, both DNA- and RNA-containing viruses along with prions significantly induce miRNA-146a in the infected host, but whether this represents part of the host’s adaptive immunity, innate-immune response or a mechanism to enable the invading prion or virus a successful infection is not well understood. Current findings suggest an early and highly interactive role for miRNA-146a: (i) as a major small noncoding RNA (sncRNA) regulator of innate-immune responses and inflammatory signaling in cells of the human brain and CNS; (ii) as a critical component of the complement system and immune-related neurological dysfunction; (iii) as an inducible sncRNA of the brain and CNS that lies at a critical intersection of several important neurobiological adaptive immune response processes with highly interactive associations involving complement factor H (CFH), Toll-like receptor pathways, the innate-immunity, cytokine production, apoptosis and neural cell decline; and (iv) as a potential biomarker for viral infection, TSE and AD and other neurological diseases in both animals and humans. In this report, we review the recent data supporting the idea that miRNA-146a may represent a novel and unique sncRNA-based biomarker for inflammatory neurodegeneration in multiple species. This paper further reviews the current state of knowledge regarding the nature and mechanism of miRNA-146a in viral and prion infection of the human brain and CNS with reference to AD wherever possible. Full article
(This article belongs to the Special Issue Prions and Prion Diseases 2.0)
14 pages, 3652 KiB  
Article
Vaccination with Prion Peptide-Displaying Polyomavirus-Like Particles Prolongs Incubation Time in Scrapie-Infected Mice
by Martin Eiden, Alma Gedvilaite, Fabienne Leidel, Rainer G. Ulrich and Martin H. Groschup
Viruses 2021, 13(5), 811; https://doi.org/10.3390/v13050811 - 30 Apr 2021
Cited by 5 | Viewed by 3532
Abstract
Prion diseases like scrapie in sheep, bovine spongiform encephalopathy (BSE) in cattle or Creutzfeldt–Jakob disease (CJD) in humans are fatal neurodegenerative diseases characterized by the conformational conversion of the normal, mainly α-helical cellular prion protein (PrPC) into the abnormal β-sheet rich [...] Read more.
Prion diseases like scrapie in sheep, bovine spongiform encephalopathy (BSE) in cattle or Creutzfeldt–Jakob disease (CJD) in humans are fatal neurodegenerative diseases characterized by the conformational conversion of the normal, mainly α-helical cellular prion protein (PrPC) into the abnormal β-sheet rich infectious isoform PrPSc. Various therapeutic or prophylactic approaches have been conducted, but no approved therapeutic treatment is available so far. Immunisation against prions is hampered by the self-tolerance to PrPC in mammalian species. One strategy to avoid this tolerance is presenting PrP variants in virus-like particles (VLPs). Therefore, we vaccinated C57/BL6 mice with nine prion peptide variants presented by hamster polyomavirus capsid protein VP1/VP2-derived VLPs. Mice were subsequently challenged intraperitoneally with the murine RML prion strain. Importantly, one group exhibited significantly increased mean survival time of 240 days post-inoculation compared with 202 days of the control group. These data show that immunisation with VLPs presenting PrP peptides may represent a promising strategy for an effective vaccination against transmissible spongiform encephalitis agents. Full article
(This article belongs to the Special Issue Rodent-Borne Viruses)
Show Figures

Figure 1

Back to TopTop