Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (30)

Search Parameters:
Keywords = bovine herpesvirus type 1

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2368 KiB  
Article
A Novel BoHV-1-Vectored Subunit RVFV Vaccine Induces a Robust Humoral and Cell-Mediated Immune Response Against Rift Valley Fever in Sheep
by Selvaraj Pavulraj, Rhett W. Stout and Shafiqul I. Chowdhury
Viruses 2025, 17(3), 304; https://doi.org/10.3390/v17030304 - 23 Feb 2025
Viewed by 653
Abstract
Rift Valley fever (RVF) is a vector-borne zoonotic viral disease that causes abortion storms, fetal malformations, and neonatal mortality in livestock ruminants. In humans, RVF can lead to hemorrhagic fever, encephalitis, retinitis, or blindness, and about 1% of patients die. Since there are [...] Read more.
Rift Valley fever (RVF) is a vector-borne zoonotic viral disease that causes abortion storms, fetal malformations, and neonatal mortality in livestock ruminants. In humans, RVF can lead to hemorrhagic fever, encephalitis, retinitis, or blindness, and about 1% of patients die. Since there are no registered vaccines for human use, developing RVF vaccines for use in animals is crucial to protect animals and prevent the spread of the virus from infecting humans. We recently developed a live bovine herpesvirus type 1 quadruple gene-mutant vector (BoHV-1qmv) that lacks virulence and immunosuppressive properties. Further, we engineered a BoHV-1qmv-vectored subunit Rift Valley fever virus (RVFV) vaccine (BoHV-1qmv Sub-RVFV) for cattle, in which a chimeric polyprotein coding for the RVFV Gc, Gn, and bovine granulocyte–macrophage colony-stimulating factor (GMCSF) proteins is fused but cleaved proteolytically in infected cells into individual membrane-anchored Gc and secreted Gn-GMCSF proteins. Calves vaccinated with the BoHV-1qmv Sub-RVFV vaccine generated moderate levels of RVFV-specific serum-neutralizing (SN) antibodies and cellular immune responses. In the current study, we repurposed the BoHV-1qmv Sub-RVFV for sheep by replacing the RVFV Gc and Gn ORF sequences codon-optimized for bovines with the corresponding ovine-codon-optimized sequences and by fusing the sheep GM-CSF ORF sequences with the Gn ORF sequence. A combined primary intranasal-plus-subcutaneous primary immunization induced a moderate level of BoHV-1 (vector)- and vaccine strain MP12-specific SN antibodies and MP-12-specific cellular immune responses. Notably, an intranasal booster vaccination after 29 days triggered a rapid (within 7 days) rise in MP-12-specific SN antibody titers. Therefore, the BoHV-1qmv-vectored subunit RVFV vaccine is safe and highly immunogenic in sheep and can potentially be an efficient subunit vaccine for sheep against RVFV. Full article
(This article belongs to the Special Issue Animal Herpesvirus 2025)
Show Figures

Figure 1

15 pages, 2804 KiB  
Article
Frequency of Bovine Respiratory Disease Complex Bacterial and Viral Agents Using Multiplex Real-Time qPCR in Quebec, Canada, from 2019 to 2023
by Sébastien Buczinski, André Broes and Christian Savard
Vet. Sci. 2024, 11(12), 631; https://doi.org/10.3390/vetsci11120631 - 7 Dec 2024
Cited by 3 | Viewed by 1659
Abstract
The bovine respiratory disease complex (BRD) is a multifactorial disease caused by various bacterial and viral pathogens. Using rapid pathogen detection techniques is helpful for tailoring therapeutic and preventive strategies in affected animals and herds. The objective of this study was to report [...] Read more.
The bovine respiratory disease complex (BRD) is a multifactorial disease caused by various bacterial and viral pathogens. Using rapid pathogen detection techniques is helpful for tailoring therapeutic and preventive strategies in affected animals and herds. The objective of this study was to report the frequency of 10 pathogens by multiplex RT-qPCR on samples submitted for BRD diagnosis to a diagnostic laboratory (Biovet Inc., QC, Canada) in the Province of Quebec, Eastern Canada. From the 1st of January 2019 to the 31st of December 2023, a total of 1875 samples were analyzed. Most samples collected were individual samples (1547 of 1860 samples for which information was available (83.17%)), and the rest were from pooled samples of 2 (8.55%, n = 159) or ≥3 specimens (8.28%, n = 154). In 19.3% of the samples (n = 362), no pathogen was found, whereas 54.1% of samples had two or more different pathogens. Among the viruses, bovine coronavirus (BCV) was the most commonly found (27.5% of samples, n = 516), followed by bovine respiratory syncytial virus (BRSV) (17.7%, n = 332), whereas, for bacteria, Pasteurella multocida (50.1%, n = 940) and Mannheimia haemolytica (26.9%, n = 505) were the most common. The frequency of samples positive for Histophilus somni, Mycoplasmopsis bovis, influenza type D virus (IDV), bovine parainfluenza virus type 3 (BPI3V), bovine herpesvirus type 1 (BHV1), and bovine viral diarrhea virus (BVDV) was 22.6%, 22.4%, 4.6%, 4.3%, 2.7%, and 0.9%, respectively. In the multivariable Poisson regression model, the total number of pathogens increased with the number of animals in the pool, with an incidence risk ratio (IRR) of 1.15 (95% CI 1.02–1.29) and 1.32 (1.18–1.47) for 2 individuals in the pool and ≥3 individuals vs. individual samples, respectively. An increased number of pathogens were isolated in the winter season (IRR = 1.28 (95% CI 1.17–1.40)) compared to fall, and a lower number of pathogens were isolated in the summer compared to fall (IRR = 0.82 (95% CI 0.73–0.92)). These seasonal differences were mostly driven by the number of viruses isolated. This study gives interesting insights on the circulation of BRD pathogens in cattle from Eastern Canada. Full article
Show Figures

Figure 1

13 pages, 3471 KiB  
Article
Bovine Transcription Factor POU Class 2 Homeobox 1 (POU2F1/Oct1) Protein Promotes BoHV-1 Replication in MDBK Cells
by Enguang Rong, Inga Dry, Robert G. Dalziel and Wenfang Spring Tan
Viruses 2024, 16(10), 1549; https://doi.org/10.3390/v16101549 - 30 Sep 2024
Viewed by 1345
Abstract
Bovine herpesvirus type 1 (BoHV-1) causes severe diseases in bovine species and great economic burden to the cattle industry worldwide. Due to its complex life cycle, many host factors that affect BoHV-1 replication remain to be explored. To understand the possible roles that [...] Read more.
Bovine herpesvirus type 1 (BoHV-1) causes severe diseases in bovine species and great economic burden to the cattle industry worldwide. Due to its complex life cycle, many host factors that affect BoHV-1 replication remain to be explored. To understand the possible roles that the Oct1 cellular protein could play in this process, we first created Oct1-deficient MDBK cells using CRISPR/Cas9-mediated genome editing. Upon infection, the absence of Oct1 in MDBK cells significantly impacted BoHV-1 replication, a phenotype rescued by over-expressing the wild-type Oct1 protein in the deficient cells. We further found that the expression of all three classes of temporal genes, including essential and non-essential viral genes, were significantly reduced in Oct1 knockout MDBK cells, following both high and low multiplicity of infection. In summary, our findings confirm that the bovine Oct1 protein acts as a pro-viral factor for BoHV-1 replication by promoting its viral gene transcription in MDBK cells. Full article
(This article belongs to the Special Issue Animal Herpesvirus)
Show Figures

Figure 1

16 pages, 4417 KiB  
Article
A Quadruple Gene-Deleted Live BoHV-1 Subunit RVFV Vaccine Vector Reactivates from Latency and Replicates in the TG Neurons of Calves but Is Not Transported to and Shed from Nasal Mucosa
by Selvaraj Pavulraj, Rhett W. Stout, Daniel B. Paulsen and Shafiqul I. Chowdhury
Viruses 2024, 16(9), 1497; https://doi.org/10.3390/v16091497 - 21 Sep 2024
Cited by 1 | Viewed by 2083
Abstract
Bovine herpesvirus type 1 (BoHV-1) establishes lifelong latency in trigeminal ganglionic (TG) neurons following intranasal and ocular infection in cattle. Periodically, the latent virus reactivates in the TG due to stress and is transported anterogradely to nerve endings in the nasal epithelium, where [...] Read more.
Bovine herpesvirus type 1 (BoHV-1) establishes lifelong latency in trigeminal ganglionic (TG) neurons following intranasal and ocular infection in cattle. Periodically, the latent virus reactivates in the TG due to stress and is transported anterogradely to nerve endings in the nasal epithelium, where the virus replicates and sheds. Consequently, BoHV-1 is transmitted to susceptible animals and maintained in the cattle population. Modified live BoHV-1 vaccine strains (BoHV-1 MLV) also have a similar latency reactivation. Therefore, they circulate and are maintained in cattle herds. Additionally, they can regain virulence and cause vaccine outbreaks because they mutate and recombine with other circulating field wild-type (wt) strains. Recently, we constructed a BoHV-1 quadruple mutant virus (BoHV-1qmv) that lacks immune evasive properties due to UL49.5 and glycoprotein G (gG) deletions. In addition, it also lacks the gE cytoplasmic tail (gE CT) and Us9 gene sequences designed to make it safe, increase its vaccine efficacy against BoHV-1, and restrict its anterograde neuronal transport noted above. Further, we engineered the BoHV-1qmv-vector to serve as a subunit vaccine against the Rift Valley fever virus (BoHV-1qmv Sub-RVFV) (doi: 10.3390/v15112183). In this study, we determined the latency reactivation and nasal virus shedding properties of BoHV-1qmv (vector) and BoHV-1qmv-vectored subunit RVFV (BoHV-1qmv sub-RVFV) vaccine virus in calves in comparison to the BoHV-1 wild-type (wt) following intranasal inoculation. The real-time PCR results showed that BoHV-1 wt- but not the BoHV-1qmv vector- and BoHV-1qmv Sub-RVFV-inoculated calves shed virus in the nose following dexamethasone-induced latency reactivation; however, like the BoHV-1 wt, both the BoHV-1qmv vector and BoHV-1qmv Sub-RVFV viruses established latency, were reactivated, and replicated in the TG neurons. These results are consistent with the anterograde neurotransport function of the gE CT and Us9 sequences, which are deleted in the BoHV-1qmv and BoHV-1qmv Sub-RVFV. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

12 pages, 1340 KiB  
Article
Bovine Alphaherpesvirus 1, Bovine Alphaherpesvirus 5 and Bubaline Alphaherpesvirus 1 in Palatine Tonsils from Water Buffaloes in Northern Brazil and Possible Links with the Origin of Bovine Alphaherpesvirus Type 5
by Bruna Paredes-Galarza, Martha T. Oliveira, Francine B. Timm, Nicole V. Stone, Lina Violet-Lozano, Richard S. Salvato, Nícolas D. Müller, Bruno A. Prandi, Raíssa Gasparetto, Michelen Gonçalves, María A. S. Teixeira, Márcio A. O. Moura, Gabriela Riet-Correa, Valíria D. Cerqueira, Pedro S. Bezerra, Fabrício S. Campos, Ana C. Franco and Paulo M. Roehe
Viruses 2024, 16(7), 1024; https://doi.org/10.3390/v16071024 - 26 Jun 2024
Cited by 2 | Viewed by 1962
Abstract
Herpesviruses are significant pathogens of ruminants. In water buffaloes (Bubalus bubalis), however, herpesviruses have not been thoroughly studied. Although bubaline alphaherpesvirus 1 (BuAHV1) and bovine alphaherpesvirus 1 (BoAHV1) have already been recovered from water buffaloes, to date, no reports on the [...] Read more.
Herpesviruses are significant pathogens of ruminants. In water buffaloes (Bubalus bubalis), however, herpesviruses have not been thoroughly studied. Although bubaline alphaherpesvirus 1 (BuAHV1) and bovine alphaherpesvirus 1 (BoAHV1) have already been recovered from water buffaloes, to date, no reports on the occurrence of bovine alphaherpesvirus 5 (BoAHV5) in these animals have been published. Therefore, the aim of this study was to search for BuAHV1, BoAHV1, and BoAHV5 in palatine tonsils of apparently healthy water buffaloes from the Pará state, Northern Brazil. Tissue samples of tonsils (n = 293) were screened by a nested PCR (nPCR) targeting a region of UL44 (gC coding gene), followed by sequencing, to detect and differentiate between the viral types. Viral genome segments were detected in 18 out of 293 (6.1%) of the palatine tonsil samples. Two animals carried genomes of BoAHV1 only, eleven animals carried BoAHV5 genomes only, and four animals carried BuAHV1 only. Another animal had both BoAHV1 and BoAHV5 genomes in its tonsils. No infectious virus could be recovered from any of the samples. The BuAHV1 sequences identified here were more closely related to BuAHV1 genomes identified in India. Phylogenetic analyses suggested a closer relationship between the recovered BoAHV5 and BuAHV1 genomes. Therefore, evidence is provided here to confirm that not only BoAHV1 and BuAHV1, but also BoAHV5, can infect water buffaloes. This report highlights (i) the first detection of BoAHV5 in water buffaloes and (ii) the occurrence of coinfections with BoAHV1 and BoAHV5 in that species. Such findings and the similarity of BoAHV5 to Indian herpesvirus genomes suggest that the origin of type 5 may be linked to recombinations between bovine and bubaline herpesviruses within bubalines, since the scenario for generation of recombinants in buffaloes is potentially present. Full article
(This article belongs to the Special Issue Animal Herpesvirus)
Show Figures

Figure 1

15 pages, 2321 KiB  
Article
Investigation of the Optimal Immunization Dose and Protective Efficacy of an Attenuated and Marker M. bovis–Bovine Herpesvirus Type 1 Combined Vaccine in Rabbits
by Sen Zhang, Guoxing Liu, Wenying Wu, Li Yang, Ihsanullah Shirani, Aizhen Guo and Yingyu Chen
Animals 2024, 14(5), 748; https://doi.org/10.3390/ani14050748 - 28 Feb 2024
Viewed by 1959
Abstract
Bovine respiratory disease (BRD) is one of the most common diseases in the cattle industry; it is a globally prevalent multifactorial infection primarily caused by viral and bacterial coinfections. In China, Mycoplasma bovis (M. bovis) and bovine herpesvirus type 1 (BoHV-1) [...] Read more.
Bovine respiratory disease (BRD) is one of the most common diseases in the cattle industry; it is a globally prevalent multifactorial infection primarily caused by viral and bacterial coinfections. In China, Mycoplasma bovis (M. bovis) and bovine herpesvirus type 1 (BoHV-1) are the most notable pathogens associated with BRD. Our previous study attempted to combine the two vaccines and conducted a preliminary investigation of their optimal antigenic ratios. Based on this premise, the research extended its investigation by administering varying vaccine doses in a rabbit model to identify the most effective immunization dosage. After immunization, all rabbits in other immunization dose groups had a normal rectal temperature without obvious clinical symptoms. Furthermore, assays performed on the samples collected from immunized rabbits indicated that there were increased humoral and cellular immunological reactions. Moreover, the histological analysis of the lungs showed that immunized rabbits had more intact lung tissue than their unimmunized counterparts after the challenge. Additionally, there appears to be a positive correlation between the protective efficacy and the immunization dose. In conclusion, the different immunization doses of the attenuated and marker M. bovis HB150 and BoHV-1 gG-/tk- combined vaccine were clinically safe in rabbits; the mix of 2.0 × 108 CFU of M. bovis HB150 and 2.0 × 106 TCID50 BoHV-1 gG-/tk- strain was most promising due to its highest humoral and cellular immune responses and a more complete morphology of the lung tissue compared with others. These findings determined the optimal immunization dose of the attenuated and marker M. bovis HB150 and BoHV-1 gG-/tk- combined vaccine, laying a foundation for its clinical application. Full article
(This article belongs to the Section Cattle)
Show Figures

Figure 1

13 pages, 3098 KiB  
Article
The Safety and Protective Efficacy Evaluation of an Attenuated M. bovis–BoHV-1 Bivalent Vaccine in Rabbits
by Sen Zhang, Yisheng Zhang, Guoxing Liu, Chen Wang, Yan Ji, Jianguo Chen, Changmin Hu, Xi Chen, Aizhen Guo and Yingyu Chen
Vaccines 2023, 11(11), 1698; https://doi.org/10.3390/vaccines11111698 - 7 Nov 2023
Cited by 3 | Viewed by 1771
Abstract
Bovine respiratory disease (BRD) is a global prevalent multifactorial infection primarily caused by viral and bacterial coinfections. In China, Mycoplasma bovis (M. bovis) and bovine herpesvirus type 1 (BoHV-1) are the predominant pathogens associated with BRD. Our previous study involved the [...] Read more.
Bovine respiratory disease (BRD) is a global prevalent multifactorial infection primarily caused by viral and bacterial coinfections. In China, Mycoplasma bovis (M. bovis) and bovine herpesvirus type 1 (BoHV-1) are the predominant pathogens associated with BRD. Our previous study involved the development of attenuated M. bovis HB150 and BoHV-1 gG-/tk- vaccine strains, which were thoroughly assessed for their safety profiles and protective efficacy in cattle. In this study, we applied a combination of vaccines in varying ratios and used a rabbit model to determine the safety and protective efficacy. We used PCR/RT-PCR to detect the postimmunization and challenge shedding of M. bovis and BoHV-1. Additionally, we measured antibody titers and the expression of IFN-β and TNF-α to evaluate the humoral and cellular immune responses, respectively. Furthermore, we performed a histopathological analysis to assess lung damage. Our study provides evidence of the safety and effectiveness of the bivalent M. bovis–BoHV-1 vaccine in rabbits, particularly when applying a combination of 1.0 × 108 CFU of M. bovis HB150 and 1.0 × 106 TCID50 of the BoHV-1 gG-/tk- strain. The bivalent vaccine significantly enhanced both the long-term antibody immune response and cellular protection against the M. bovis and BoHV-1 challenge. These findings provide a valuable model for the potential application in cattle. Full article
Show Figures

Figure 1

17 pages, 5235 KiB  
Article
A Novel Quadruple Gene-Deleted BoHV-1-Vectored RVFV Subunit Vaccine Induces Humoral and Cell-Mediated Immune Response against Rift Valley Fever in Calves
by Selvaraj Pavulraj, Rhett W. Stout, Elise D. Barras, Daniel B. Paulsen and Shafiqul I. Chowdhury
Viruses 2023, 15(11), 2183; https://doi.org/10.3390/v15112183 - 30 Oct 2023
Cited by 3 | Viewed by 2071
Abstract
Rift Valley fever virus (RVFV) is considered to be a high biodefense priority based on its threat to livestock and its ability to cause human hemorrhagic fever. RVFV-infected livestock are also a significant risk factor for human infection by direct contact with contaminated [...] Read more.
Rift Valley fever virus (RVFV) is considered to be a high biodefense priority based on its threat to livestock and its ability to cause human hemorrhagic fever. RVFV-infected livestock are also a significant risk factor for human infection by direct contact with contaminated blood, tissues, and aborted fetal materials. Therefore, livestock vaccination in the affected regions has the direct dual benefit and one-health approach of protecting the lives of millions of animals and eliminating the risk of severe and sometimes lethal human Rift Valley fever (RVF) disease. Recently, we have developed a bovine herpesvirus type 1 (BoHV-1) quadruple gene mutant virus (BoHV-1qmv) vector that lacks virulence and immunosuppressive properties due to the deletion of envelope proteins UL49.5, glycoprotein G (gG), gE cytoplasmic tail, and US9 coding sequences. In the current study, we engineered the BoHV-1qmv further by incorporating a chimeric gene sequence to express a proteolytically cleavable polyprotein: RVFV envelope proteins Gn ectodomain sequence fused with bovine granulocyte-macrophage colony-stimulating factor (GMCSF) and Gc, resulting in a live BoHV-1qmv-vectored subunit vaccine against RVFV for livestock. In vitro, the resulting recombinant virus, BoHV-1qmv Sub-RVFV, was replicated in cell culture with high titers. The chimeric Gn-GMCSF and Gc proteins expressed by the vaccine virus formed the Gn–Gc complex. In calves, the BoHV-1qmv Sub-RVFV vaccination was safe and induced moderate levels of the RVFV vaccine strain, MP12-specific neutralizing antibody titers. Additionally, the peripheral blood mononuclear cells from the vaccinated calves had six-fold increased levels of interferon-gamma transcription compared with that of the BoHV-1qmv (vector)-vaccinated calves when stimulated with heat-inactivated MP12 antigen in vitro. Based on these findings, we believe that a single dose of BoHV-1qmv Sub-RVFV vaccine generated a protective RVFV-MP12-specific humoral and cellular immune response. Therefore, the BoHV-1qmv sub-RVFV can potentially be a protective subunit vaccine for cattle against RVFV. Full article
(This article belongs to the Section Viral Immunology, Vaccines, and Antivirals)
Show Figures

Figure 1

18 pages, 3673 KiB  
Article
Evidence of a Protein-Coding Gene Antisense to the UL5 Gene in Bovine Herpesvirus I
by Victoria A. Jefferson, Hannah Bostick, Darby Oldenburg and Florencia Meyer
Viruses 2023, 15(10), 1977; https://doi.org/10.3390/v15101977 - 22 Sep 2023
Cited by 1 | Viewed by 2212
Abstract
Bovine herpesvirus type 1 (BoHV-1) is an important agricultural pathogen that infects cattle and other ruminants worldwide. Though it was first sequenced and annotated over twenty years ago, the Cooper strain, used in this study, was sequenced as recently as 2012 and is [...] Read more.
Bovine herpesvirus type 1 (BoHV-1) is an important agricultural pathogen that infects cattle and other ruminants worldwide. Though it was first sequenced and annotated over twenty years ago, the Cooper strain, used in this study, was sequenced as recently as 2012 and is currently said to encode 72 unique proteins. However, tandem mass spectrometry has identified several peptides produced during active infection that align with the BoHV-1 genome in unannotated regions. One of these abundant peptides, “ORF M”, aligned antisense to the DNA helicase/primase protein UL5. This study characterizes the novel transcript and its protein product and provides evidence to support the existence of homolog protein-coding genes in other Herpesviruses. Full article
(This article belongs to the Special Issue Advances in Veterinary Virology: Volume II)
Show Figures

Figure 1

18 pages, 6142 KiB  
Article
Oncolytic BHV-1 Is Sufficient to Induce Immunogenic Cell Death and Synergizes with Low-Dose Chemotherapy to Dampen Immunosuppressive T Regulatory Cells
by Maria Eugenia Davola, Olga Cormier, Alyssa Vito, Nader El-Sayes, Susan Collins, Omar Salem, Spencer Revill, Kjetil Ask, Yonghong Wan and Karen Mossman
Cancers 2023, 15(4), 1295; https://doi.org/10.3390/cancers15041295 - 17 Feb 2023
Cited by 9 | Viewed by 2921
Abstract
Immunogenic cell death (ICD) can switch immunologically “cold” tumors “hot”, making them sensitive to immune checkpoint inhibitor (ICI) therapy. Many therapeutic platforms combine multiple modalities such as oncolytic viruses (OVs) and low-dose chemotherapy to induce ICD and improve prognostic outcomes. We previously detailed [...] Read more.
Immunogenic cell death (ICD) can switch immunologically “cold” tumors “hot”, making them sensitive to immune checkpoint inhibitor (ICI) therapy. Many therapeutic platforms combine multiple modalities such as oncolytic viruses (OVs) and low-dose chemotherapy to induce ICD and improve prognostic outcomes. We previously detailed many unique properties of oncolytic bovine herpesvirus type 1 (oBHV) that suggest widespread clinical utility. Here, we show for the first time, the ability of oBHV monotherapy to induce bona fide ICD and tumor-specific activation of circulating CD8+ T cells in a syngeneic murine model of melanoma. The addition of low-dose mitomycin C (MMC) was necessary to fully synergize with ICI through early recruitment of CD8+ T cells and reduced infiltration of highly suppressive PD-1+ Tregs. Cytokine and gene expression analyses within treated tumors suggest that the addition of MMC to oBHV therapy shifts the immune response from predominantly anti-viral, as evidenced by a high level of interferon-stimulated genes, to one that stimulates myeloid cells, antigen presentation and adaptive processes. Collectively, these data provide mechanistic insights into how oBHV-mediated therapy modalities overcome immune suppressive tumor microenvironments to enable the efficacy of ICI therapy. Full article
(This article belongs to the Section Cancer Immunology and Immunotherapy)
Show Figures

Figure 1

11 pages, 864 KiB  
Article
An ELISA to Detect Antibodies to Bovine Alphaherpesviruses 1 and 5 and Bubaline Alphaherpesvirus 1 in Cattle Sera
by Camila Mengue Scheffer, Sylio Alfredo Petzhold, Ana Paula Muterle Varela, Willian Pinto Paim, Phelipe Magalhães Duarte, Márcia Regina Loiko, Cristine Cerva, Candice Schmidt, Adrieli Wendlant, Samuel Paulo Cibulski, Diane Alves de Lima, Caroline Tochetto, Anne Caroline Ramos dos Santos, Juliana Inês Herpich, Thais Fumaco Teixeira, Helton Fernandes dos Santos, Fabrício Souza Campos, Ana Cláudia Franco and Paulo Michel Roehe
Vet. Sci. 2023, 10(2), 110; https://doi.org/10.3390/vetsci10020110 - 2 Feb 2023
Cited by 3 | Viewed by 2832
Abstract
Bovine alphaherpesvirus 1 (subtypes 1.1, 1.2a, and 1.2b), type 5 (subtypes 5a, 5b, and 5c), and bubaline herpesvirus 1 (BuHV-1) induce highly, though not fully cross-reactive serological responses. Most types and subtypes of these viruses circulate particularly in countries of the southern hemisphere, [...] Read more.
Bovine alphaherpesvirus 1 (subtypes 1.1, 1.2a, and 1.2b), type 5 (subtypes 5a, 5b, and 5c), and bubaline herpesvirus 1 (BuHV-1) induce highly, though not fully cross-reactive serological responses. Most types and subtypes of these viruses circulate particularly in countries of the southern hemisphere, notably Brazil and Argentina. Therefore, the detection of infected animals is important in defining prevention and control strategies, particularly when flocks are destined for international trade. Identification of infected herds is most often achieved by assays that detect antibodies, such as enzyme immunoassays (ELISAs). However, to date, no ELISA has been evaluated in its capacity to detect antibodies to these alphaherpesviruses. Here, an ELISA was developed to detect antibodies to all currently recognized BoAHV-1, BoAHV-5, and BuAHV-1 types/subtypes, and its sensitivity and specificity were determined. Six hundred bovine sera were screened in serum neutralization tests (SN) against the seven viruses. ELISAs prepared with each of the viruses were compared to SN. Subsequently, a combined assay with multiple antigens LISA was prepared by mixing five viral antigens, chosen for their highest sensitivity in the preparative assays. In comparison to SN, the mAgELISA sensitivity was 96.5% with 96.1% specificity (κ = 0.93; PPV = 95.0%; NPV = 97.3%). The findings reveal that the mAgELISA developed here is highly suitable for the detection of antibodies, comparable in sensitivity and specificity to that of SN when performed with all known types and subtypes of bovine and bubaline alphaherpesviruses. Full article
(This article belongs to the Special Issue Immunological Assessment of Veterinary Infectious Diseases)
Show Figures

Figure 1

16 pages, 4815 KiB  
Article
Analysis of the Function of LncRNA-MSTRG.16919.1 in BHV-1-Infected Bovine Kidney Subculture Cells by Transcriptome Sequencing
by Fan Zhang, Kunsheng Jiang, Yuchun Wang, Jinzhu Ma and Baifen Song
Viruses 2022, 14(10), 2104; https://doi.org/10.3390/v14102104 - 22 Sep 2022
Cited by 2 | Viewed by 2560
Abstract
Infection of cattle with bovine herpesvirus type 1 (BHV−1) can lead to upper respiratory tract disease, conjunctivitis, or genital disease and cause serious economic losses to the cattle industry worldwide. The role of long noncoding RNAs in BHV−1 infection is not well understood. [...] Read more.
Infection of cattle with bovine herpesvirus type 1 (BHV−1) can lead to upper respiratory tract disease, conjunctivitis, or genital disease and cause serious economic losses to the cattle industry worldwide. The role of long noncoding RNAs in BHV−1 infection is not well understood. To explore the role of lncRNA−MSTRG.16919.1 in bovine herpes virus type I (BHV−1) infected MDBK cells, the lncRNA−MSTRG.16919.1 gene was silenced and sequenced transcriptome and sequencing data were analyzed by Edge R software, Gene Ontology (GO), the Kyoto Encyclopedia of Genes and Genomes (KEGG), and an interaction network of proteins. Real−time quantitative PCR (RT−qPCR) and Western blotting were used to verify the results of bioinformatic analyses. The results showed that 1151 differential genes were obtained in the siRNA−MSTRG.16919.1 group compared with an NC group. Compared with BHV−33 h, 6586 differentially expressed genes were obtained. A total of 498 differentially expressed genes were screened from the two groups. To verify the accuracy of the sequencing, six genes were randomly selected for RT−qPCR, and the results showed that the expression trend of selected genes was consistent with the sequencing results. GO enrichment analysis showed that the differential genes were related to such biological processes as nucleotide binding, enzyme binding, cell cycle, and glial macromolecule metabolism. KEGG analysis enriched 378 and 2634 signaling pathways, respectively, that were associated with virus infection, ubiquitin−mediated protein hydrolysis, phosphoinositol metabolism, apoptosis, and other metabolic pathways. The STRING protein interaction database was used to analyze the interaction network of proteins encoded by differential genes, and the degree algorithm in Cytoscape was used to screen the top 20 proteins. The results showed that SKIV2L2, JAK2, PIK3CB, and MAPK8 were related to virus infection. Western blot analysis of TNF, NF−κB, MAPK8, MAPK9, and MAPK10 proteins showed that lncRNA−MSTRG.16919.1 was involved in regulating the expression of these functional proteins. The results of this study provide basic information for exploring the function and regulatory mechanism of lncRNA−MSTRG.16919.1 in organisms and help for further studying the interaction between virus and host. Full article
(This article belongs to the Special Issue Viral-Host Cell Interactions of Animal Viruses)
Show Figures

Figure 1

14 pages, 1644 KiB  
Article
DNA Damage Response Differentially Affects BoHV-1 Gene Transcription in Cell Type-Dependent Manners
by Linke Tang, Weifeng Yuan, Shitao Li, Xiuyan Ding and Liqian Zhu
Biomedicines 2022, 10(9), 2282; https://doi.org/10.3390/biomedicines10092282 - 14 Sep 2022
Cited by 4 | Viewed by 2145
Abstract
Bovine herpesvirus 1 (BoHV-1), an important pathogen of cattle, is also a promising oncolytic virus. Recent studies have demonstrated that the virus infection induces DNA damage and DNA damage response (DDR), potentially accounting for virus infection-induced cell death and oncolytic effects. However, whether [...] Read more.
Bovine herpesvirus 1 (BoHV-1), an important pathogen of cattle, is also a promising oncolytic virus. Recent studies have demonstrated that the virus infection induces DNA damage and DNA damage response (DDR), potentially accounting for virus infection-induced cell death and oncolytic effects. However, whether the global DDR network affects BoHV-1 productive infection remains to be elucidated. In this study, we show that global DDR induced by ultraviolet (UV) irradiation prior to BoHV-1 infection differentially affected transcription of immediate early (IE) genes, such as infected cell protein 0 (bICP0) and bICP22, in a cell-type-dependent manner. In addition, UV-induced DDR may affect the stabilization of viral protein levels, such as glycoprotein C (gC) and gD, because the variation in mRNA levels of gC and gD as a consequence of UV treatment were not in line with the variation in individual protein levels. The virus productive infection also affects UV-primed DDR signaling, as demonstrated by the alteration of phosphorylated histone H2AX (γH2AX) protein levels and γH2AX formation following virus infection. Taken together, for the first time, we evidenced the interplay between UV-primed global DDR and BoHV-1 productive infection. UV-primed global DDR differentially modulates the transcription of virus genes and stabilization of virus protein. Vice versa, the virus infection may affect UV-primed DDR signaling. Full article
(This article belongs to the Special Issue The Herpesvirus–Host Interactions)
Show Figures

Figure 1

18 pages, 1676 KiB  
Article
Application of the Integrated Supercritical Fluid Extraction–Impregnation Process (SFE-SSI) for Development of Materials with Antiviral Properties
by Ivana Lukic, Jelena Pajnik, Jakov Nisavic, Vanja Tadic, Erika Vági, Edit Szekely and Irena Zizovic
Processes 2022, 10(4), 680; https://doi.org/10.3390/pr10040680 - 31 Mar 2022
Cited by 7 | Viewed by 3118
Abstract
The integrated supercritical fluid extraction–impregnation process (SFE-SSI) was performed to fabricate material with antiviral properties against the herpes simplex virus (HSV). Cotton gauze and starch/chitosan polymer films (SCF) were impregnated with components extracted from Melissa officinalis at 10 MPa and 40 °C using [...] Read more.
The integrated supercritical fluid extraction–impregnation process (SFE-SSI) was performed to fabricate material with antiviral properties against the herpes simplex virus (HSV). Cotton gauze and starch/chitosan polymer films (SCF) were impregnated with components extracted from Melissa officinalis at 10 MPa and 40 °C using a green medium, supercritical carbon dioxide (scCO2). The influences of the processing mode regarding the flow of the supercritical fluid through the system, and the mass ratio of the plant material and the solid carrier, on the impregnation yield of M. officinalis extract were studied. The results revealed that the introduction of a fresh amount of CO2 into the system enabled the highest impregnation yield of 2.24% for cotton gauze and 8.71% for SCF. The presence of M. officinalis extract on the surface of both impregnated cotton gaze and SCF was confirmed by FTIR and GC analyses after the re-extraction of the impregnated samples. The M. officinalis impregnated materials showed a strong inhibitory effect against Bovine herpesvirus type 1 (BHV-1). Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Graphical abstract

13 pages, 2780 KiB  
Article
β-Catenin-Specific Inhibitor, iCRT14, Promotes BoHV-1 Infection-Induced DNA Damage in Human A549 Lung Adenocarcinoma Cells by Enhancing Viral Protein Expression
by Xiuyan Ding, Weifeng Yuan, Hao Yang, Chang Liu, Shitao Li and Liqian Zhu
Int. J. Mol. Sci. 2022, 23(4), 2328; https://doi.org/10.3390/ijms23042328 - 19 Feb 2022
Cited by 4 | Viewed by 2965
Abstract
Oncolytic bovine herpesvirus type 1 (BoHV-1) infection induces DNA damage in human lung adenocarcinoma cell line A549. However, the underlying mechanisms are not fully understood. We found that BoHV-1 infection decreased the steady-state protein levels of p53-binding protein 1 (53BP1), which plays a [...] Read more.
Oncolytic bovine herpesvirus type 1 (BoHV-1) infection induces DNA damage in human lung adenocarcinoma cell line A549. However, the underlying mechanisms are not fully understood. We found that BoHV-1 infection decreased the steady-state protein levels of p53-binding protein 1 (53BP1), which plays a central role in dictating DNA damage repair and maintaining genomic stability. Furthermore, BoHV-1 impaired the formation of 53BP1 foci, suggesting that BoHV-1 inhibits 53BP1-mediated DNA damage repair. Interestingly, BoHV-1 infection redistributed intracellular β-catenin, and iCRT14 (5-[[2,5-Dimethyl-1-(3-pyridinyl)-1H-pyrrol-3-yl]methylene]-3-phenyl-2,4-thiazolidinedione), a β-catenin-specific inhibitor, enhanced certain viral protein expression, such as the envelope glycoproteins gC and gD, and enhanced virus infection-induced DNA damage. Therefore, for the first time, we provide evidence showing that BoHV-1 infection disrupts 53BP1-mediated DNA damage repair and suggest β-catenin as a potential host factor restricting both virus replication and DNA damage in A549 cells. Full article
(This article belongs to the Special Issue Oncolytic Virotherapy 2.0)
Show Figures

Figure 1

Back to TopTop