Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (67)

Search Parameters:
Keywords = boron phosphate

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 4201 KB  
Article
The Effect of Boron Oxide on the Biocompatibility, Cellular Response, and Antimicrobial Properties of Phosphosilicate Bioactive Glasses for Metallic Implants’ Coatings
by Joy-anne N. Oliver, Qichan Hu, Jincheng Du and Melanie Ecker
Appl. Sci. 2025, 15(24), 13120; https://doi.org/10.3390/app152413120 - 12 Dec 2025
Viewed by 313
Abstract
Bioactive glasses remain promising candidates for enhancing osseointegration on metallic implants. However, achieving a composition that combines controlled dissolution, cytocompatibility, and antimicrobial functionality remains an ongoing challenge. Building upon the prior structural and thermal characterization of boron-substituted 6P55 phosphosilicate glasses, this study investigates [...] Read more.
Bioactive glasses remain promising candidates for enhancing osseointegration on metallic implants. However, achieving a composition that combines controlled dissolution, cytocompatibility, and antimicrobial functionality remains an ongoing challenge. Building upon the prior structural and thermal characterization of boron-substituted 6P55 phosphosilicate glasses, this study investigates the biological consequences of incorporating 0, 5, 10, and 15 mol% B2O3 to determine their suitability as coatings for Ti6Al4V. Glass extracts were evaluated using L-929 fibroblast cultures (MTT assay and ImageJ-based cell counting), antimicrobial assays against Escherichia coli and Staphylococcus aureus using a semi-quantitative dilution-plating method, and SBF immersion studies to assess pH evolution, surface mineralization, and Ca/P ratio development. FTIR and SEM analyses revealed composition-dependent formation of phosphate-, carbonate-, and silicate-rich surface layers, with 5B exhibiting the most consistent early-stage hydroxyapatite-like signatures, supported by Ca/P ratios approaching the stoichiometric value. The pH measurements showed rapid alkalization for 5B and moderate buffering behavior at higher boron contents, consistent with boron-dependent modifications to network connectivity. Cytocompatibility studies demonstrated a dose- and time-dependent reduction in cell number at elevated B2O3 levels, whereas the 0B and 5B extracts maintained higher viability and preserved cell morphology. Antibacterial assays revealed strain-dependent and sub-lethal inhibitory effects, with E. coli exhibiting stronger sensitivity than S. aureus, likely due to differences in cell wall architecture and susceptibility to ionic osmotic microenvironment changes. When considered alongside previously published computational and physicochemical results, the biological data indicate that moderate boron incorporation (5 mol%) provides the most favorable balance between dissolution kinetics, apatite formation, cytocompatibility, and antimicrobial modulation. These findings identify the 5B composition as a strong candidate for further optimization toward bioactive glass coatings on Ti6Al4V implants. Full article
Show Figures

Figure 1

27 pages, 4462 KB  
Review
Unlocking Alternative Cement Solutions: Utilizing Wastes and By-Products for Magnesium Phosphate Cement Development
by Anna Alfocea-Roig, Jessica Giro-Paloma, Sergio Huete-Hernández and Joan Formosa
Urban Sci. 2025, 9(9), 352; https://doi.org/10.3390/urbansci9090352 - 3 Sep 2025
Viewed by 1726
Abstract
Concrete is the most used material worldwide, with cement as its essential component. Cement production, however, has a considerable environmental footprint contributing nearly 8% of global CO2 emissions, largely from clinker calcination. This review aims to examine strategies for reducing these emissions, [...] Read more.
Concrete is the most used material worldwide, with cement as its essential component. Cement production, however, has a considerable environmental footprint contributing nearly 8% of global CO2 emissions, largely from clinker calcination. This review aims to examine strategies for reducing these emissions, with a particular focus on alternative materials for producing magnesium phosphate cements (MPCs). Specifically, the objectives are first to summarize mitigation pathways, such as CO2 capture, energy efficiency, and alternative raw materials, and second evaluate the feasibility of using industrial wastes and by-products, including low-grade MgO, tundish deskulling waste (TUN), boron-MgO (B-MgO), and magnesia refractory brick waste (MRB), as MgO sources for MPC. The review highlights that these materials represent a promising route to reduce the environmental impact of cement production and support the transition toward carbon neutrality by 2050. Full article
Show Figures

Figure 1

16 pages, 4347 KB  
Article
Developmental Stage-Dependent Distribution and Interrelationships of Leaf Nutrients and Flavonoids in Lithocarpus litseifolius (Hance) Chun
by Yan-Fen Huang, Shao-Fen Jian, Yang Lin and Chu Zhong
Agronomy 2025, 15(9), 2029; https://doi.org/10.3390/agronomy15092029 - 25 Aug 2025
Viewed by 1095
Abstract
Lithocarpus litseifolius, a traditional sweet tea rich in dihydrochalcones, relies on plant nutrients for secondary metabolite accumulation. However, nutrient distribution patterns during leaf development and its relationship with secondary metabolites remain inadequately characterized. This study examined mineral elements, carbon and nitrogen metabolites, [...] Read more.
Lithocarpus litseifolius, a traditional sweet tea rich in dihydrochalcones, relies on plant nutrients for secondary metabolite accumulation. However, nutrient distribution patterns during leaf development and its relationship with secondary metabolites remain inadequately characterized. This study examined mineral elements, carbon and nitrogen metabolites, and primary dihydrochalcones in L. litseifolius leaves at various developmental stages, and analyzed their interrelationships. Mineral nutrients such as phosphate (P), potassium (K), magnesium (Mg), zinc (Zn), boron (B), and copper (Cu), along with trilobatin, were most abundant in the youngest leaves. Conversely, calcium (Ca), iron (Fe), sulfur (S), manganese (Mn), selenium (Se), sugars, soluble protein, amino acids, chlorophyll, and carotenoids predominantly accumulated in old leaves, paralleling the distribution of phlorizin. Nitrogen (N) and molybdenum (Mo) concentrations were higher in mature leaves. In young leaves, P, K, Mg, S, Mn, Zn, and B positively correlated with phlorizin and trilobatin, while N, chlorophyll, carotenoids, and fructose correlated negatively. Trilobatin was the primary contributor to hydroxyl radical (·OH) scavenging capacity. Redundancy analysis highlighted N, P, Mg, B, Zn, Cu, Fe, Mo, and Se as key mineral nutrients influencing phlorizin and trilobatin accumulation. These findings offer insights for mineral nutrient management and effective utilization of L. litseifolius. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

19 pages, 6665 KB  
Article
Enhanced Flame Retardancy of Silica Fume-Based Geopolymer Composite Coatings Through In Situ-Formed Boron Phosphate from Doped Zinc Phytate and Boric Acid
by Yachao Wang, Yufei Qu, Chuanzhen Wang and Juan Dou
Minerals 2025, 15(7), 735; https://doi.org/10.3390/min15070735 - 14 Jul 2025
Cited by 2 | Viewed by 719
Abstract
Silica fume-based geopolymer composite coatings, an approach to using metallurgical solid waste, exert flame retardancy with ecological, halogen-free, and environmentally friendly advantages, but their fire resistance needs to be improved further. Herein, a silica fume-based geopolymer composite flame-retardant coating was designed by doping [...] Read more.
Silica fume-based geopolymer composite coatings, an approach to using metallurgical solid waste, exert flame retardancy with ecological, halogen-free, and environmentally friendly advantages, but their fire resistance needs to be improved further. Herein, a silica fume-based geopolymer composite flame-retardant coating was designed by doping boric acid (BA), zinc phytate (ZnPA), and melamine (MEL). The results of a cone calorimeter demonstrated that appropriate ZnPA and BA significantly enhanced its flame retardancy, evidenced by the peak heat release rate (p-HRR) decreasing from 268.78 to 118.72 kW·m−2, the fire performance index (FPI) increasing from 0.59 to 2.83 s·m2·kW−1, and the flame retardancy index increasing from 1.00 to 8.48, respectively. Meanwhile, the in situ-formed boron phosphate (BPO4) facilitated the residual resilience of the fire-barrier layer. Furthermore, the pyrolysis kinetics indicated that the three-level chemical reactions governed the pyrolysis of the coatings. BPO4 made the pyrolysis Eα climb from 94.28 (P5) to 127.08 (B3) kJ·mol−1 with temperatures of 731–940 °C, corresponding to improved thermal stability. Consequently, this study explored the synergistic flame-retardant mechanism of silica fume-based geopolymer coatings doped with ZnPA, BA, and MEL, providing an efficient strategy for the high-value-added recycling utilization of silica fume. Full article
(This article belongs to the Topic Innovative Strategies to Mitigate the Impact of Mining)
Show Figures

Figure 1

18 pages, 1539 KB  
Article
Foliar Spray of Macronutrient Influences Fruit Quality of Sugar Belle® Mandarin Grown in Florida Sandy Soil
by Shankar Shrestha, Laura Waldo and Arnold Schumann
Agronomy 2025, 15(6), 1483; https://doi.org/10.3390/agronomy15061483 - 18 Jun 2025
Viewed by 1951
Abstract
Sugar Belle® mandarin is considered tolerant to Huanglongbing (HLB); however, recent reports have raised concerns about its fruit quality, noting issues such as reduced fruit size, thin peel, poor coloration, decreased firmness, and suboptimal juice quality. Two-year field experiments were conducted to [...] Read more.
Sugar Belle® mandarin is considered tolerant to Huanglongbing (HLB); however, recent reports have raised concerns about its fruit quality, noting issues such as reduced fruit size, thin peel, poor coloration, decreased firmness, and suboptimal juice quality. Two-year field experiments were conducted to improve external and internal fruit characteristics through foliar application of potassium (K) in five-year-old Sugar Belle mandarin grown in Florida sandy soil. The experiment consisted of foliar K supply (17 kg/ha) via Potassium Nitrate (PN, 4.7 kg/ha N), Dipotassium Phosphate (DKP, 12.7 kg/ha P2O5), PN with boron (PNB, 0.84 kg/ha B) at different application times (May, July, September), including one-time Gibberellic acid spray (GA@10 mg/L) and control treatments. PN application during July (PNJ) or two applications of PN with B during May and July (PNBMJ) resulted in a larger fruit size (>65 mm). Results showed that PN application before fall (May or July) resulted in a significantly thicker peel (2.3 mm), 1.15 fold more than the control and GA treatment. Fruit puncture resistance force was significantly higher (33.1 N) with GA treatment (p = 0.07), followed by PNBMJ (32.6 N). Meanwhile, K spray positively influenced juice qualities and peel color, regardless of application time or source. However, GA treatment significantly reduced juice quality and peel color. These findings highlighted the benefits of foliar K supply as PN to improve fruit qualities in HLB-affected citrus grown in sandy soil. Full article
(This article belongs to the Special Issue Integrated Water, Nutrient, and Pesticide Management of Fruit Crop)
Show Figures

Figure 1

23 pages, 2883 KB  
Article
Effectiveness of Rain Gardens for Managing Non-Point Source Pollution from Urban Surface Storm Water Runoff in Eastern Texas, USA
by Shradhda Suman Jnawali, Matthew McBroom, Yanli Zhang, Kevin Stafford, Zhengyi Wang, David Creech and Zhongqian Cheng
Sustainability 2025, 17(10), 4631; https://doi.org/10.3390/su17104631 - 18 May 2025
Cited by 1 | Viewed by 3533
Abstract
Extreme precipitation events are one of the common hazards in eastern Texas, generating a large amount of storm water. Water running off urban areas may carry non-point source (NPS) pollution to natural resources such as rivers and lakes. Urbanization exacerbates this issue by [...] Read more.
Extreme precipitation events are one of the common hazards in eastern Texas, generating a large amount of storm water. Water running off urban areas may carry non-point source (NPS) pollution to natural resources such as rivers and lakes. Urbanization exacerbates this issue by increasing impervious surfaces that prevent natural infiltration. This study evaluated the efficacy of rain gardens, a nature-based best management practice (BMP), in mitigating NPS pollution from urban stormwater runoff. Stormwater samples were collected at inflow and outflow points of three rain gardens and analyzed for various water quality parameters, including pH, electrical conductivity, fluoride, chloride, nitrate, nitrite, phosphate, sulfate, salts, carbonates, bicarbonates, sodium, potassium, aluminum, boron, calcium, mercury, arsenic, copper iron lead magnesium, manganese and zinc. Removal efficiencies for nitrate, phosphate, and zinc exceeded 70%, while heavy metals such as lead achieved reductions up to 80%. However, certain parameters, such as calcium, magnesium and conductivity, showed increased outflow concentrations, attributed to substrate leaching. These increases resulted in a higher outflow pH. Overall, the pollutants were removed with an efficiency exceeding 50%. These findings demonstrate that rain gardens are an effective and sustainable solution for managing urban stormwater runoff and mitigating NPS pollution in eastern Texas, particularly in regions vulnerable to extreme precipitation events. Full article
Show Figures

Figure 1

14 pages, 5435 KB  
Article
Electroanalysis of Apocynin Part 2: Investigations on a Boron-Doped Diamond Electrode in Aqueous Buffered Solutions
by Agata Skorupa, Magdalena Jakubczyk and Slawomir Michalkiewicz
Materials 2025, 18(9), 2044; https://doi.org/10.3390/ma18092044 - 29 Apr 2025
Viewed by 688
Abstract
In this study, the voltammetric behavior of apocynin on a boron-doped diamond electrode in a phosphate buffer (pH 7.3) has been reported for the first time. The oxidation process is quasi-reversible, diffusion-controlled, and involves one electron and one proton. The product of the [...] Read more.
In this study, the voltammetric behavior of apocynin on a boron-doped diamond electrode in a phosphate buffer (pH 7.3) has been reported for the first time. The oxidation process is quasi-reversible, diffusion-controlled, and involves one electron and one proton. The product of the electrode reaction is an unstable radical that undergoes successive chemical transformations near the working electrode. The proposed mechanism of this process can be described as EqCi and served as the basis for the development of a new voltammetric method for determining apocynin in natural samples. The analytical signal was the anodic peak on DPV curves at a potential of 0.605 V vs. Ag/AgCl. A linear response was observed in the concentration range of 0.213–27.08 mg L−1. The estimated LOD and LOQ values were 0.071 and 0.213 mg L−1, respectively. The effectiveness of the method was demonstrated both in control determinations and in the analysis of the dietary supplement. This procedure is simple, fast, sensitive, selective, and requires no complicated sample preparation, which is limited only to a simple extraction with ethanol. The low consumption of non-toxic reagents makes it environmentally friendly. To the best of our knowledge, this is the first presentation of a voltammetric procedure to determine this analyte studied in a phosphate buffer solution on a boron-doped diamond electrode. It can also be easily adapted to determine other phenolic compounds with antioxidant properties in various matrices. Full article
Show Figures

Figure 1

16 pages, 3451 KB  
Article
Mechanochemically-Activated Solid-State Synthesis of Borate-Substituted Tricalcium Phosphate: Evaluation of Biocompatibility and Antimicrobial Performance
by Daniil O. Golubchikov, Inna V. Fadeeva, Alexander V. Knot’ko, Iliya A. Kostykov, Tatiana K. Slonskaya, Katia Barbaro, Alessia Zepparoni, Marco Fosca, Iulian V. Antoniac and Julietta V. Rau
Molecules 2025, 30(7), 1575; https://doi.org/10.3390/molecules30071575 - 31 Mar 2025
Cited by 3 | Viewed by 912
Abstract
Current research in bone tissue engineering is focused not only on basic parameters of the materials, such as biocompatibility and degradation rate but also on intrinsic osteogenic and antimicrobial properties, essential to provide a rapid tissue regeneration without negative effects due to periprosthetic [...] Read more.
Current research in bone tissue engineering is focused not only on basic parameters of the materials, such as biocompatibility and degradation rate but also on intrinsic osteogenic and antimicrobial properties, essential to provide a rapid tissue regeneration without negative effects due to periprosthetic infections, that may result in revision surgeries. One of the major strategies to enhance the osteogenic and antimicrobial performance of calcium phosphates is the ionic substitution, in particular, with magnesium and borates. In this study, we focused on the synthesis of boron-substituted tricalcium phosphate (B-TCP) with a target of 5 mol.% substitution via the solid-state synthesis with mechano-activation. Synthesis from raw precursors, without the preliminary brushite wet precipitation, led to the primary phase of β-TCP, which was proved by the XRD analysis. According to the IR-spectroscopy and 31P NMR analysis, boron substitution occurred in the synthesized sample. The developed material showed a modest antibacterial performance against E. coli, with 13.5 ± 5.0% growth inhibition, and E. faecalis, with 16.7 ± 5.5% inhibition. The biocompatibility of β-TCP and B-TCP was tested through the MTT assay and osteogenic differentiation of the mesenchymal stromal cells. The proposed synthesis approach can be useful for the fabrication of B-TCP ceramics for bone tissue engineering. Full article
(This article belongs to the Special Issue Research Progress of New Antimicrobial Drugs)
Show Figures

Figure 1

24 pages, 5761 KB  
Article
Decoding PHR-Orchestrated Stress Adaptation: A Genome-Wide Integrative Analysis of Transcriptional Regulation Under Abiotic Stress in Eucalyptus grandis
by Huiming Xu, Yifan Xing, Guangyou Li, Xin Wang, Xu Zhou, Zhaohua Lu, Liuyin Ma and Deming Yang
Int. J. Mol. Sci. 2025, 26(7), 2958; https://doi.org/10.3390/ijms26072958 - 25 Mar 2025
Cited by 2 | Viewed by 1208
Abstract
The phosphate starvation response (PHR) transcription factor family play central regulatory roles in nutrient signaling, but its relationship with other abiotic stress remains elusive. In the woody plant Eucalyptus grandis, we characterized 12 EgPHRs, which were phylogenetically divided into three groups, with [...] Read more.
The phosphate starvation response (PHR) transcription factor family play central regulatory roles in nutrient signaling, but its relationship with other abiotic stress remains elusive. In the woody plant Eucalyptus grandis, we characterized 12 EgPHRs, which were phylogenetically divided into three groups, with group I exhibiting conserved structural features (e.g., unique motif composition and exon number). Notably, a protein–protein interaction network analysis revealed that EgPHR had a species-specific protein–protein interaction network: EgPHR6 interacted with SPX proteins of multiple species, while Eucalyptus and poplar PHR uniquely bound to TRARAC-kinesin ATPase, suggesting functional differences between woody and herbaceous plants. A promoter sequence analysis revealed a regulatory network of 59 transcription factors (TFs, e.g., BPC, MYBs, ERFs and WUS), mainly associated with tissue differentiation, abiotic stress, and hormonal responses that regulated EgPHRs’ expression. Transcriptomics and RT-qPCR gene expression analyses showed that all EgPHRs dynamically responded to phosphate (Pi) starvation, with the expression of EgPHR2 and EgPHR6 exhibiting sustained induction, and were also regulated by salt, cold, jasmonic acid, and boron deficiency. Strikingly, nitrogen starvation suppressed most EgPHRs, highlighting crosstalk between nutrient signaling pathways. These findings revealed the multifaceted regulatory role of EgPHRs in adaptation to abiotic stresses and provided insights into their unique evolutionary and functional characteristics in woody plants. Full article
(This article belongs to the Special Issue Plant Responses to Abiotic and Biotic Stresses)
Show Figures

Figure 1

37 pages, 5267 KB  
Review
Research Status and Development Trends of Inorganic Salt Lake Resource Extraction Based on Bibliometric Analysis
by Leiming Li, Fei Ge, Yingying Jiang, Zhao An, Na Li, Zherui Zhang, Haining Liu, Jiansen Li and Dan Liang
Sustainability 2025, 17(1), 121; https://doi.org/10.3390/su17010121 - 27 Dec 2024
Cited by 4 | Viewed by 3957
Abstract
Salt lake resources are unique and valuable minerals on Earth associated with specific elements. The advancement of technology and the rise of new industries are progressively showcasing their strategic significance for economic development. This study used bibliometrics and visualization techniques to analyze the [...] Read more.
Salt lake resources are unique and valuable minerals on Earth associated with specific elements. The advancement of technology and the rise of new industries are progressively showcasing their strategic significance for economic development. This study used bibliometrics and visualization techniques to analyze the current state and developmental trends of research on salt lake resource exploitation, both domestically and globally. A total of 760 articles from Science Citation Index Expanded (SCIE) were analyzed. The research findings reveal that the processes of salt lake separation and extraction have progressed through three distinct stages: the germination stage, the stable development stage, and the rapid development stage. China has offered robust policy support for research in this domain at the national level. China possesses a centrality score of 1.08 in the separation and extraction of salt lakes, with 50% of the 10 most active nations in this domain situated in Asia and South America. The prominent institutions comprise the Chinese Academy of Sciences (centrality score of 0.32), the Qinghai Salt Lake Study Institute (centrality score of 0.22), and the University of the Chinese Academy of Sciences (centrality score of 0.14), encompassing a diverse array of study subjects. Keywords from 2003 signify the initial advancement of lithium extraction from saline lakes, whereas those from 2011 underscore the heightened focus on integrated resource utilization and multidisciplinary study. Keywords from 2015 indicate an intensified emphasis on the extraction of lithium and other elements. The terms “tributyl phosphate” (citation strength of 6.05) and “nanofiltration” (citation strength of 4.29) exhibit significant interest in magnesium–lithium separation research and water treatment technologies employed in salt lake separation and extraction, receiving the highest number of citations. The persistent emphasis on “lithium ions” signifies the increasing demand for raw materials propelled by advancements in the new energy sector. Research trend analysis indicates that sodium resource utilization has stabilized, whereas magnesium, a byproduct of lithium extraction, is presently a key focus for downstream product applications. Rare elements remain at the experimental research stage. The industrialization of salt lake resources, including potassium, lithium, and boron, is notably advanced. Future research should focus on the mineralization and enrichment patterns of potassium resources, developing improved extraction methods for lithium, and advancing technologies for the cost-effective and environmentally friendly separation of boron resources. The future objective for resource extraction in salt lakes is to transition from a crude methodology to a refined, sustainable, and intelligent development framework. Full article
Show Figures

Figure 1

21 pages, 9618 KB  
Article
Study on the Repair Performance and Carbon Emission Analysis of Magnesium Phosphate Cement Prepared from Lithium Extraction Residue
by Jinbo Guo, Xiaoqing Chen, Yanqi Kang, Guanhua Zhang, Hongfa Yu, Wei Xiao and Meng Zhang
Buildings 2024, 14(12), 3704; https://doi.org/10.3390/buildings14123704 - 21 Nov 2024
Viewed by 1619
Abstract
Magnesium phosphate cement (MPC), as a rapid-hardening and early-strengthening cementitious material, is commonly used for repairing concrete defects. To enhance the repair efficiency of MPC and its mortar, MPC mortar and paste with the addition of 40% fly ash and 20% slag were [...] Read more.
Magnesium phosphate cement (MPC), as a rapid-hardening and early-strengthening cementitious material, is commonly used for repairing concrete defects. To enhance the repair efficiency of MPC and its mortar, MPC mortar and paste with the addition of 40% fly ash and 20% slag were studied and designed to evaluate the performance of MPC in repairing different types of defects such as concrete cracks and surface spalling. The test results for flexural bond strength, splitting tensile bond strength, pull-off strength, and fracture toughness indicate that MPC neat paste exhibits the highest efficiency for repairing concrete cut surfaces and cracks, with bond strength and splitting tensile strength reaching 2.8 MPa and 2.39 MPa, respectively, at 28 days. For surface spalling repairs, MPC mortar with mineral admixtures demonstrates the highest repair efficiency. The pull-off strength of MPC repair mortar with fly ash reaches 0.62 MPa after 28 days, and the fracture toughness of MPC repair mortar with slag is 0.614 MPa/m1/2. Additionally, this study explores the effectiveness of using calcined magnesium oxide and fly ash to produce MPC mortar in reducing carbon emissions during the production stage, comparing it with traditional Portland cement mortar. The research results reveal that, compared to MPC paste made solely with magnesium oxide containing boron, MPC paste with slag addition reduces carbon emissions by 38.95%. However, compared to traditional Portland cement mortar, the carbon emissions of MPC paste with slag addition still increase by 27.67%. Compared to MPC mortar without reactive mineral powder addition, MPC mortar with slag addition reduces carbon emissions by 39.24%, and compared to traditional Portland cement mortar, it reduces carbon emissions by 25%. The addition of reactive mineral powder and sand can effectively reduce the carbon emissions during the application of MPC, with slag addition showing the best carbon reduction effect. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

29 pages, 5564 KB  
Review
Synthesis and Properties of α-Phosphate-Modified Nucleoside Triphosphates
by Alina I. Novgorodtseva, Alexander A. Lomzov and Svetlana V. Vasilyeva
Molecules 2024, 29(17), 4121; https://doi.org/10.3390/molecules29174121 - 30 Aug 2024
Viewed by 4094
Abstract
This review article is focused on the progress made in the synthesis of 5′-α-P-modified nucleoside triphosphates (α-phosphate mimetics). A variety of α-P-modified nucleoside triphosphates (NTPαXYs, Y = O, S; X = S, Se, BH3, alkyl, amine, N-alkyl, imido, or others) have [...] Read more.
This review article is focused on the progress made in the synthesis of 5′-α-P-modified nucleoside triphosphates (α-phosphate mimetics). A variety of α-P-modified nucleoside triphosphates (NTPαXYs, Y = O, S; X = S, Se, BH3, alkyl, amine, N-alkyl, imido, or others) have been developed. There is a unique class of nucleoside triphosphate analogs with different properties. The main chemical approaches to the synthesis of NTPαXYs are analyzed and systematized here. Using the data presented here on the diversity of NTPαXYs and their synthesis protocols, it is possible to select an appropriate method for obtaining a desired α-phosphate mimetic. Triphosphates’ substrate properties toward nucleic acid metabolism enzymes are highlighted too. We reviewed some of the most prominent applications of NTPαXYs including the use of modified dNTPs in studies on mechanisms of action of polymerases or in systematic evolution of ligands by exponential enrichment (SELEX). The presence of heteroatoms such as sulfur, selenium, or boron in α-phosphate makes modified triphosphates nuclease resistant. The most distinctive feature of NTPαXYs is that they can be recognized by polymerases. As a result, S-, Se-, or BH3-modified phosphate residues can be incorporated into DNA or RNA. This property has made NTPαXYs a multifunctional tool in molecular biology. This review will be of interest to synthetic chemists, biochemists, biotechnologists, or biologists engaged in basic or applied research. Full article
(This article belongs to the Special Issue Chemistry of Nucleosides and Nucleotides and Their Analogues)
Show Figures

Scheme 1

10 pages, 1517 KB  
Article
Highly Sensitive and Selective Detection of L-Tryptophan by ECL Using Boron-Doped Diamond Electrodes
by Emmanuel Scorsone, Samuel Stewart and Matthieu Hamel
Sensors 2024, 24(11), 3627; https://doi.org/10.3390/s24113627 - 4 Jun 2024
Cited by 2 | Viewed by 2048
Abstract
L-tryptophan is an amino acid that is essential to the metabolism of humans. Therefore, there is a high interest for its detection in biological fluids including blood, urine, and saliva for medical studies, but also in food products. Towards this goal, we report [...] Read more.
L-tryptophan is an amino acid that is essential to the metabolism of humans. Therefore, there is a high interest for its detection in biological fluids including blood, urine, and saliva for medical studies, but also in food products. Towards this goal, we report on a new electrochemiluminescence (ECL) method for L-tryptophan detection involving the in situ production of hydrogen peroxide at the surface of boron-doped diamond (BDD) electrodes. We demonstrate that the ECL response efficiency is directly related to H2O2 production at the electrode surface and propose a mechanism for the ECL emission of L-tryptophan. After optimizing the analytical conditions, we show that the ECL response to L-tryptophan is directly linear with concentration in the range of 0.005 to 1 µM. We achieved a limit of detection of 0.4 nM and limit of quantification of 1.4 nM in phosphate buffer saline (PBS, pH 7.4). Good selectivity against other indolic compounds (serotonin, 3-methylindole, tryptamine, indole) potentially found in biological fluids was observed, thus making this approach highly promising for quantifying L-tryptophan in a broad range of aqueous matrices of interest. Full article
(This article belongs to the Special Issue Eurosensors 2023 Selected Papers)
Show Figures

Graphical abstract

27 pages, 4416 KB  
Article
Water Quality and the First-Flush Effect in Roof-Based Rainwater Harvesting, Part I: Water Quality and Soil Accumulation
by Jessica J. Lay, Jason R. Vogel, Jason B. Belden, Glenn O. Brown and Daniel E. Storm
Water 2024, 16(10), 1402; https://doi.org/10.3390/w16101402 - 14 May 2024
Cited by 4 | Viewed by 5388
Abstract
Rainfall runoff may be captured and stored for later use, but the quality of this water can be detrimental in some uses without the use of appropriately designed first-flush diverters. The rainfall runoff water quality was measured on nineteen new small-scale and two [...] Read more.
Rainfall runoff may be captured and stored for later use, but the quality of this water can be detrimental in some uses without the use of appropriately designed first-flush diverters. The rainfall runoff water quality was measured on nineteen new small-scale and two aged commercial roofs located near high traffic highways. Roof coverings included asphalt shingles, sheet metal, clay tiles, and tar and gravel. Runoff samples were evaluated for polycyclic aromatic hydrocarbons (PAHs), phosphorus flame retardants (PFRs), and pyrethroid insecticides. Eighteen small-scale roofs were subjected to a range of simulated rainfall events, while natural runoff was sampled on the commercial roofs and one small-scale roof. Runoff was analyzed for pH, conductivity, turbidity, total suspended solids, boron, iron, copper, zinc, manganese, sodium adsorption ratio, nitrate-nitrogen, seventeen PAHs, tris(2-chloroethyl) phosphate, tris(1,3-dichloro-2-propyl)phosphate, bifenthrin, cypermethrin, and lambda-cyhalothrin. Samples from four natural storm events were also analyzed for total coliforms and Escherichia coli. In addition, soils below seventeen existing gutter downspouts were sampled to determine long-term pollutant accumulation. Atmospheric deposition was the main contributor of pollutants in the roof runoff. A majority of samples fell within the U.S. EPA guidelines for non-potable urban and agricultural water reuse. Trace levels of PAHs, PFRs, and insecticides were detected, but all detections were three orders of magnitude below the USGS health-based screening level benchmark concentrations. Results indicate that diverting the first flush, based on turbidity, total suspended solids, or conductivity, can improve the overall water quality and reduce the concentrations of PAHs in harvested rainwater. Downspout soil sampling showed potential for the long-term accumulation of PAHs at concentrations exceeding the minimum human-health risk-based screening levels at these high runoff-loading locations. Full article
Show Figures

Figure 1

15 pages, 4766 KB  
Article
Exploring Borate-Modified Calcium Phosphate Ceramics: Antimicrobial Potential and Cytocompatibility Assessment
by Inna V. Fadeeva, Katia Barbaro, Annalisa Altigeri, Anna A. Forysenkova, Marat R. Gafurov, Georgy V. Mamin, Alexander V. Knot’ko, Viktoriya G. Yankova, Anna A. Zhukova, Fabrizio Russo and Julietta V. Rau
Nanomaterials 2024, 14(6), 495; https://doi.org/10.3390/nano14060495 - 9 Mar 2024
Cited by 6 | Viewed by 2460
Abstract
Addressing periprosthetic infections, which present significant healing challenges that often require revision surgeries, necessitates the development of novel antibacterial materials and implants. Current research focuses on creating materials that hinder bacterial adhesion, colonization, and proliferation in surrounding tissues. Boron (B)-containing compounds are known [...] Read more.
Addressing periprosthetic infections, which present significant healing challenges that often require revision surgeries, necessitates the development of novel antibacterial materials and implants. Current research focuses on creating materials that hinder bacterial adhesion, colonization, and proliferation in surrounding tissues. Boron (B)-containing compounds are known for their antibacterial properties and potential in bone metabolism for regenerative medicine. In this study, we synthesized B-containing tricalcium phosphate (0.3B-TCP) with 1.1 wt.% B content via precipitation from aqueous solutions and sintering at 1100 °C. X-ray diffraction confirmed the ceramic’s primary crystalline phase as β-TCP, with B evenly distributed according to energy-dispersive spectroscopy data. Electron paramagnetic resonance (EPR) data verified stable paramagnetic borate anions, indicating successful BO33− substitution for phosphate groups. The microstructural properties of 0.3B-TCP ceramic were assessed before and after soaking in a saline solution. Its bending strength was approximately 30 MPa, and its porosity was about 33%. 0.3B-TCP ceramic demonstrated significant antimicrobial efficacy against various bacterial strains and a fungus. Cytotoxicity evaluation using equine adipose tissue-derived mesenchymal stem cells and osteogenic differentiation assessment were conducted. The combination of antibacterial efficacy and good cytocompatibility suggests 0.3B-TCP ceramic as a promising bone substitute material. Full article
(This article belongs to the Topic Advanced Functional Materials for Regenerative Medicine)
Show Figures

Figure 1

Back to TopTop