Developmental Stage-Dependent Distribution and Interrelationships of Leaf Nutrients and Flavonoids in Lithocarpus litseifolius (Hance) Chun
Abstract
1. Introduction
2. Materials and Methods
2.1. Overview of Sampling Site and Sample Collection
2.2. Nitrogen Content Measurement
2.3. Mineral Nutrient Quantification by ICP-MS
2.4. Chlorophyll and Carotenoid
2.5. Soluble Protein and Free Amino Acids
2.6. Sugar Content Measurement
2.7. Dihydrochalcone Components
2.8. Antioxidant Capacity
2.9. Statistical Analysis
3. Results
3.1. Distribution Characteristics of Mineral Nutrient Elements
3.1.1. Primary Macronutrient Elements
3.1.2. Secondary Macronutrient Elements
3.1.3. Micronutrient Elements
3.2. Distribution Characteristics of Carbon and Nitrogen Metabolites
3.3. Distribution Characteristics of Dihydrochalcone Bioactive Ingredients and Hydroxyl Radical (·OH) Scavenging Capacity
3.4. Correlation Analysis Between Nutrients and Bioactive Ingredients and Redundancy Analysis
4. Discussion
4.1. Developmental Stage-Dependent Characteristics of Nutrient and Secondary Metabolite Accumulation in L. litseifolius Leaves
4.2. Correlation Between Nutrients and Secondary Metabolites
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Martiniakova, M.; Babikova, M.; Mondockova, V.; Blahova, J.; Kovacova, V.; Omelka, R. The role of macronutrients, micronutrients and flavonoid polyphenols in the prevention and treatment of osteoporosis. Nutrients 2022, 14, 523. [Google Scholar] [CrossRef] [PubMed]
- Solnier, J.; Chang, C.; Pizzorno, J. Consideration for flavonoid-containing dietary supplements to tackle deficiency and optimize health. Int. J. Mol. Sci. 2023, 24, 8663. [Google Scholar] [CrossRef]
- Deng, B.; Li, Y.; Lei, G.; Liu, G. Effects of nitrogen availability on mineral nutrient balance and flavonoid accumulation in Cyclocarya paliurus. Plant Physiol. Bioch. 2019, 135, 111–118. [Google Scholar] [CrossRef]
- Li, Z.; Jiang, H.; Yan, H.; Jiang, X.; Ma, Y.; Qin, Y. Carbon and nitrogen metabolism under nitrogen variation affects flavonoid accumulation in the leaves of Coreopsis tinctoria. PeerJ 2021, 9, e12152. [Google Scholar] [CrossRef]
- Mosa, K.A.; Ali, M.A.; Ramamoorthy, K.; Ismail, A. Exploring the relationship between plant secondary metabolites and macronutrient homeostasis. In Plant Nutrition and Food Security in the Era of Climate Change; Kumar, V., Srivastava, A.K., Suprasanna, P., Eds.; Academic Press: Cambridge, MA, USA, 2022; pp. 119–146. [Google Scholar]
- Deng, B.; Li, Y.; Xu, D.; Ye, Q.; Liu, G. Nitrogen availability alters flavonoid accumulation in Cyclocarya paliurus via the effects on the internal carbon/nitrogen balance. Sci. Rep. 2019, 9, 2370. [Google Scholar] [CrossRef]
- Kováčik, J.; Klejdus, B.; Bačkor, M.; Repčák, M. Phenylalanine ammonia-lyase activity and phenolic compounds accumulation in nitrogen-deficient Matricaria chamomilla leaf rosettes. Plant Sci. 2007, 172, 393–399. [Google Scholar] [CrossRef]
- Jian, S.F.; Huang, Y.F.; Wan, S.; Chen, D.L.; Lin, Y.; Liao, Q.; Zhong, C. Sulfur redirects carbon metabolism to optimize nitrogen utilization and promote andrographolide biosynthesis in Andrographis paniculata seedlings. Curr. Plant Biol. 2024, 40, 100422. [Google Scholar] [CrossRef]
- Award, M.A.; Jaager, A. Relationship between fruit nutrients and concentrations of flavonoids and chlorogenic acid in ‘Elstar’ apple skin. Sci. Hortic. 2002, 92, 265. [Google Scholar] [CrossRef]
- Lin, X.; Wang, Q.; Qin, X.; Huang, S.; Yan, H.; Zou, S.; Zou, X. Herbalogical study on sweet tea Lithocarpus litseifolius (Hance) Chun. J. Fujian Agric. For. Univ. (Nat. Sci. Ed.) 2023, 52, 785–792. [Google Scholar]
- GB 2760-1996; Hygienic Standards for Uses of Food Additives—Amendment 1997. Ministry of Health of the People’s Republic of China: Beijing, China, 1997.
- Guo, H.; Fu, M.-X.; Zhao, Y.-X.; Li, H.; Li, H.-B.; Wu, D.-T.; Gan, R.-Y. The chemical, structural, and biological properties of crude polysaccharides from sweet tea (Lithocarpus litseifolius (Hance) Chun) based on different extraction technologies. Foods 2021, 10, 1779. [Google Scholar] [CrossRef] [PubMed]
- Ling, S.; Lin, Q.; Zhou, B.; Liang, Y.; Luo, W.; Shen, Z.; Wang, J.; Niu, J.; Qiao, L.; Wang, B.; et al. Integrated metabolomic and transcriptomic analysis reveals the biosynthesis mechanism of dihydrochalcones in sweet tea (Lithocarpus litseifolius). Front. Plant Sci. 2025, 16, 1629266. [Google Scholar] [CrossRef]
- Shen, H.; Huang, L.; Dou, H.; Yang, Y.; Wu, H. Effect of trilobatin from Lithocarpus polystachyus Rehd on gut microbiota of obese rats induced by a high-fat diet. Nutrients 2021, 13, 891. [Google Scholar] [CrossRef]
- Wei, Y.; Cai, Y.; Yang, Y.; Fan, S.; Wu, L.; Nie, G. Research progress on dihydrochalcones from Lithocarpus litseifolius extracts in treatment of type 2 diabetes mellitus and its complications. China J. Chin. Mat. Med. 2025, 50, 658–671. [Google Scholar]
- Zhao, H.; Zhai, B.W.; Zhang, M.Y.; Huang, H.; Zhu, H.L.; Yang, H.; Ni, H.Y.; Fu, Y.J. Phlorizin from Lithocarpus litseifolius [Hance] Chun ameliorates FFA-induced insulin resistance by regulating AMPK/PI3K/AKT signaling pathway. Phytomedicine 2024, 130, 155743. [Google Scholar] [CrossRef]
- Hunter, C.; Stewart, J.J.; Gleason, S.M.; Pilon, M. Age dependent partitioning patterns of essential nutrients induced by copper feeding status in leaves and stems of poplar. Front. Plant Sci. 2022, 13, 930344. [Google Scholar] [CrossRef] [PubMed]
- Bielczynski, L.W.; Łącki, M.K.; Hoefnagels, I.; Gambin, A.; Croce, R. Leaf and plant age affects photosynthetic performance and photoprotective capacity. Plant Physiol. 2017, 175, 1634–1648. [Google Scholar] [CrossRef]
- Shen, Z.; Chauser-Volfson, E.; Hu, Z.; Gutterman, Y. Leaf age, position and anatomical influences on the distribution of the secondary metabolites, homonataloin and three isomers of aloeresin in Aloe hereroensis (Aloaceae) leaves. S. Afr. J. Bot. 2001, 67, 312–319. [Google Scholar] [CrossRef]
- Wu, G.; Chen, Z.; Tang, Y.; Xu, S.; Fan, W.; Wu, L.; Ji, Y.; Qu, C. Comparative effects of maturity and processing on chemical composition and bioactivities in Toona sinensis leaves. Foods 2025, 14, 2717. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Wang, L.; Wang, J.; Zheng, H.; Yang, S.; Zhou, Q.; Fu, L.; Cai, Z.; Zhang, S.; Wang, C.; et al. Temporal dynamics of bioactive compounds in sweet tea (Lithocarpus litseifolius (Hance) Chun): Linking harvest stages to flavor and health benefits. Food Res. Int. 2025, 218, 116918. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Yang, Z.; Wang, Y. Active component content in different Lithocarpus litseifolius populations related to meteorologic and soil factors. J. Cent. South Univ. For. Technol. 2021, 41, 34–41. [Google Scholar]
- Wang, M.; Liu, X.; Zhang, Z.; Yu, J.; Liu, J.; Wu, Y. Phytochemicals and bioactive analysis of different sweet tea (Lithocarpus litseifolius [Hance] Chun) varieties. J. Food Biochem. 2021, 45, e13183. [Google Scholar] [CrossRef]
- Song, Y.; Li, Y.; He, P.; Liu, R.; Sun, Y.; Liu, R.; Nie, L.; Wu, L. Differences of Leaf Functional Traits and Main Active Components in Different Lithocarpus polystachyus Families. J. Yunnan Agric. Univ. (Nat. Sci.) 2025, 40, 140–151. [Google Scholar]
- Zhang, D.; Wang, S.; Lin, L.; Zhang, J.; Cui, M.; Wang, S.; Zhao, X.; Dong, J.; Long, Y.; Xing, Z. Integrative analysis of metabolome and transcriptome reveals the mechanism of flavonoid biosynthesis in Lithocarpus polystachyus Rehd. ACS Omega 2022, 7, 19437–19453. [Google Scholar] [CrossRef]
- Jian, S.F.; Huang, Y.F.; Lin, Y.; Zhong, C. Composition and accumulation characteristics of flavonoids during leaf development in Lithocarpus litseifolius (Hance) Chun. J. Food Compos. Anal. 2025, 147, 108101. [Google Scholar] [CrossRef]
- Novamsky, I.; Eck, R.V.; Schouwenburg, C.V.; Walinga, I. Total nitrogen determination in plant material by means of the indophenol-blue method. Neth. J. Agric. Sci. 1974, 22, 3–5. [Google Scholar] [CrossRef]
- Norman, R.J.; Stucki, J.W. The determination of nitrate and nitrite in soil extracts by ultraviolet spectrophotometry. Soil Sci. Soc. Am. J. 1981, 45, 347–353. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K. Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Method. Enzymol. 1987, 148, 350–382. [Google Scholar]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Sun, S.W.; Lin, Y.C.; Wang, Y.M.; Chen, M.J. Efficiency improvements on ninhydrin method for amino acid quantification. J. Food Compos. Anal. 2006, 19, 112–117. [Google Scholar] [CrossRef]
- Li, Y.S.; Du, M.; Zhang, Q.Y.; Wang, G.H.; Hashemi, M.; Liu, X.B. Greater differences exist in seed protein, oil, total soluble sugar and sucrose content of vegetable soybean genotypes [Glycine max (L.) Merrill] in Northeast China. Aust. J. Crop Sci. 2012, 6, 1681–1686. [Google Scholar]
- Hansen, J.; Møller, I.B. Percolation of starch and soluble carbohydrates from plant tissue for quantitative determination with anthrone. Anal. Biochem. 1975, 68, 87–94. [Google Scholar] [CrossRef]
- Oktavia, D.; Jin, G. Variations in leaf morphological and chemical traits in response to life stages, plant functional types, and habitat types in an old-growth temperate forest. Basic Appl. Ecol. 2020, 49, 22–33. [Google Scholar] [CrossRef]
- Cong, X.; Jing, H.; Lin, N.; Xia, Z.; Huang, M.; Jiang, X. Boron deficiency affects cell morphology and structure of young leaves of radish. Acta Physiol. Plant. 2015, 37, 247. [Google Scholar] [CrossRef]
- Mattiello, E.M.; Ruiz, H.A.; Neves, J.C.L.; Ventrella, M.C.; Araújo, W.L. Zinc deficiency affects physiological and anatomical characteristics in maize leaves. J. Plant Physiol. 2015, 183, 138–143. [Google Scholar] [CrossRef]
- Day, S.; Aasim, M. Role of Boron in Growth and Development of Plant: Deficiency and Toxicity Perspective. In Plant Micronutrients; Aftab, T., Hakeem, K.R., Eds.; Springer: Cham, Switzerland, 2020. [Google Scholar]
- Rawat, J.; Pandey, N.; Saxena, J. Role of potassium in plant photosynthesis, transport, growth and yield. In Role of Potassium in Abiotic Stress; Iqbal, N., Umar, S., Eds.; Springer: Singapore, 2022. [Google Scholar]
- Fu, X.; Zhang, J.; Zhou, L.; Mo, W.; Wang, H.; Huang, X. Characterizing the development of photosynthetic capacity in relation to chloroplast structure and mineral nutrition in leaves of three woody fruit species. Tree Physiol. 2022, 42, 989–1001. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Yauk, Y.K.; Zhao, Q.; Hamiaux, C.; Xiao, Z.; Gunaseelan, K.; Zhang, L.; Tomes, S.; López-Girona, E.; Cooney, J.; et al. Biosynthesis of the dihydrochalcone sweetener trilobatin requires Phloretin glycosyltransferase2. Plant Physiol. 2020, 184, 738–752. [Google Scholar] [CrossRef]
- Chaiareekitwat, S.; Latif, S.; Mahayothee, B.; Khuwijitjaru, P.; Nagle, M.; Amawan, S.; Müller, J. Protein comage, chlorophyll, carotenoids, and cyanide content of cassava leaves (Manihot esculenta Crantz) as influenced by cultivar, plant age, and leaf age. Food Chem. 2022, 372, 131173. [Google Scholar] [CrossRef]
- Yu, Y.; Kleuter, M.; Dinani, S.T.; Trindade, L.M.; van der Goot, A.J. The role of plant age and leaf age on protein extraction and phenolic compounds removal from tomato (Solanum lycopersicum) leaves using food-grade solvents. Food Chem. 2023, 406, 135072. [Google Scholar] [CrossRef]
- Onoda, Y.; Hikosaka, K.; Hirose, T. Allocation of nitrogen to cell walls decreases photosynthetic nitrogen-use efficiency. Funct. Ecol. 2004, 18, 419–425. [Google Scholar] [CrossRef]
- Feng, Y.L. Nitrogen allocation and partitioning in invasive and native Eupatorium species. Physiol. Plant. 2008, 132, 350–358. [Google Scholar]
- Blum-Silva, C.H.; Chaves, V.C.; Schenkel, E.P.; Coelho, G.C.; Reginatto, F.H. The influence of leaf age on methylxanthines, total phenolic content, and free radical scavenging capacity of Ilex paraguariensis aqueous extracts. Rev. Bras. Farmacogn. 2015, 25, 1–6. [Google Scholar] [CrossRef]
- Anwar, K.; Rahmanto, B.; Triyasmono, L.; Rizki, M.I.; Halwany, W.; Lestari, F. The influence of leaf age on total phenolic, flavonoids, and free radical scavenging capacity of Aquilaria beccariana. Res. J. Pharm. Biol. Chem. Sci. 2017, 8 (Suppl. S1), 129–133. [Google Scholar]
- Wu, J.; Lv, S.; Zhao, L.; Gao, T.; Yu, C.; Hu, J.; Ma, F. Advances in the study of the function and mechanism of the action of flavonoids in plants under environmental stresses. Planta 2023, 257, 108. [Google Scholar] [CrossRef]
- Baskar, V.; Venkatesh, R.; Ramalingam, S. Flavonoids (antioxidants systems) in higher plants and their response to stresses. In Antioxidants and Antioxidant Enzymes in Higher Plants; Gupta, D., Palma, J., Corpas, F., Eds.; Springer: Cham, Switzerland, 2018. [Google Scholar]
- Zhai, Y.; Zhang, Y.; Li, Y.; He, M.; Yu, S.; Xiao, H.; Song, Y. Antioxidant activity of trilobatin and its inhibitory effects on oxidative damage of biological macromolecules. Am. J. Biochem. Biotech. 2023, 19, 282–291. [Google Scholar] [CrossRef]
- Chen, E.; Jia, J.; Sun, J.; Wang, J.; Chen, X.; Li, X. Trilobatin acts as a marker metabolite involved in flavonoid accumulation regulated by CsWRKY28-MYC2 with trypsin activation in cucumber (Cucumis sativus). Phyton-Int. J. Exp. Bot. 2024, 93, 2837–2856. [Google Scholar] [CrossRef]
- Wang, K.; Li, K.X.; Chen, J.Y.; Huang, J.; Ma, J.L. Determination and variation trends of main active constituents in wild Lithocarpus ploystachyus. Nonwood For. Res. 2016, 34, 96–100. [Google Scholar]
- Wang, Y.; Ding, Y.; Zhao, Q.; Wu, C.; Deng, C.H.; Wang, J.; Wang, Y.; Yan, Y.; Zhai, R.; Yauk, Y.-K.; et al. Dihydrochalcone glycoside biosynthesis in Malus is regulated by two MYB-like transcription factors and is required for seed development. Plant J. 2023, 116, 1492–1507. [Google Scholar] [CrossRef]
- Dong, F.; Hu, J.; Shi, Y.; Liu, M.; Zhang, Q.; Ruan, J. Effects of nitrogen supply on flavonol glycoside biosynthesis and accumulation in tea leaves (Camellia sinensis). Plant Physiol. Bioch. 2019, 138, 48–57. [Google Scholar] [CrossRef] [PubMed]
- Jian, S.F.; Huang, X.J.; Yang, X.N.; Zhong, C.; Miao, J.H. Sulfur regulates the trade-off between growth and andrographolide accumulation via nitrogen metabolism in Andrographis paniculata. Front. Plant Sci. 2021, 12, 687954. [Google Scholar] [CrossRef] [PubMed]
- Zeng, S.; Yu, L.; He, P.; Feng, H.; Wang, J.; Zhang, H.; Song, Y.; Liu, R.; Li, Y. Integrated transcriptome and metabolome analysis reveals the regulation of phlorizin synthesis in Lithocarpus polystachyus under nitrogen fertilization. BMC Plant Biol. 2024, 24, 366. [Google Scholar] [CrossRef]
- Ibrahim, M.H.; Jaafar, H.Z.; Rahmat, A.; Rahman, Z.A. Involvement of nitrogen on flavonoids, glutathione, anthocyanin, ascorbic acid and antioxidant activities of Malaysian medicinal plant Labisia pumila Blume (Kacip Fatimah). Int. J. Mol. Sci. 2012, 13, 393–408. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Cheng, X.; Yang, T.; Su, Y.; Lin, S.; Zhang, S.; Zhang, Z. Nitrogen-regulated theanine and flavonoid biosynthesis in tea plant roots: Protein-level regulation revealed by multiomics analyses. J. Agric. Food Chem. 2021, 69, 10002–10016. [Google Scholar] [CrossRef]
- Jones, C.G.; Hartley, S.E. A protein competition model of phenolic allocation. Oikos 1999, 86, 27–44. [Google Scholar] [CrossRef]
- Ye, Z.; Zhang, H.; Lin, X.; Huang, S.; Zou, S.; Zou, X. Effect of biochar using N, P, and K fertilisers on growth and quality of Lithocarpus litseifolius. Agronomy 2024, 14, 728. [Google Scholar] [CrossRef]
- Malhotra, H.; Vandana; Sharma, S.; Pandey, R. Phosphorus nutrition: Plant growth in response to deficiency and excess. In Plant Nutrients and Abiotic Stress Tolerance; Hasanuzzaman, M., Fujita, M., Oku, H., Nahar, K., Hawrylak-Nowak, B., Eds.; Springer: Singapore, 2018. [Google Scholar]
- Stewart, A.J.; Chapman, W.; Jenkins, G.I.; Graham, I.; Martin, T.; Crozier, A. The effect of nitrogen and phosphorus deficiency on flavonol accumulation in plant tissues. Plant Cell Environ. 2001, 24, 1189–1197. [Google Scholar] [CrossRef]
- Zhao, Q.; Zeng, D.; Luo, Z.; Chen, A.; Xu, G.; Li, Y. Flavonoids mediate the modulation of phosphate uptake and phosphate-starvation signaling in tobacco. J. Plant Growth Regul. 2023, 42, 7229–7239. [Google Scholar] [CrossRef]
- Zhou, Y.; Nie, K.; Geng, L.; Wang, Y.; Li, L.; Cheng, H. Selenium’s role in plant secondary metabolism: Regulation and mechanistic insights. Agronomy 2025, 15, 54. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, Y.; Zhang, M.; Wei, X.; Zhou, Y. Effects of foliar selenium application on Se accumulation, elements uptake, nutrition quality, sensory quality and antioxidant response in summer-autumn tea. Food Res. Int. 2024, 175, 113618. [Google Scholar] [CrossRef]
- Sun, Y.; Zhao, Y.; Zhou, H.; Li, F.; Wang, Y.; Du, X. The regulatory effect of Se-Cd interaction on tea plants (Camellia sinensis (L.) O. Kuntze) under cadmium stress. Agronomy 2025, 15, 246. [Google Scholar] [CrossRef]
- Han, Y.; Zhu, Z.; Shen, M.; Cheng, Y.; Yin, Y.; Fang, W. Effects of selenium and sulfur on physiology and metabolism of sulforaphane of broccoli sprouts under high temperature stress. J. Nucl. Agric. Sci. 2020, 34, 1350–1358. [Google Scholar]
- Zhao, S.; Zhou, Y.; Yang, X.; Fan, Z.; Li, F.; Yuan, T.; Wu, T.; Wang, Y. Effect of selenium and sulfur interaction on the glucosinolate content and antioxidant activity of sprouts of Chinese cabbage. Food Sci. 2023, 44, 22–29. [Google Scholar]
Stages | Fe (μg·g−1) | Mn (mg·g−1) | Zn (μg·g−1) | Mo (μg·g−1) | B (μg·g−1) | Cu (μg·g−1) | Se (μg·g−1) |
---|---|---|---|---|---|---|---|
L1 | 37.40 ± 3.43 c | 0.13 ± 0.02 b | 10.42 ± 0.90 a | 0.30 ± 0.10 a | 72.18 ± 0.54 a | 6.51 ± 0.85 a | 0.40 ± 0.11 b |
L2 | 51.20 ± 5.46 bc | 0.10 ± 0.01 bc | 8.45 ± 1.41 ab | 0.33 ± 0.09 a | 68.03 ± 1.68 ab | 5.13 ± 0.76 ab | 0.32 ± 0.01 b |
L3 | 42.01 ± 5.79 c | 0.08 ± 0.01 c | 6.53 ± 0.51 b | 0.49 ± 0.24 a | 64.18 ± 1.83 bc | 4.63 ± 0.48 b | 0.31 ± 0.01 b |
L4 | 63.05 ± 4.49 ab | 0.08 ± 0.01 c | 7.88 ± 0.74 ab | 0.33 ± 0.07 a | 59.99 ± 2.66 c | 4.68 ± 0.13 ab | 0.30 ± 0.00 b |
L5 | 45.06 ± 8.61 bc | 0.09 ± 0.01 bc | 7.48 ± 0.37 b | 0.14 ± 0.02 a | 59.37 ± 4.22 c | 5.40 ± 0.16 ab | 0.35 ± 0.01 b |
L6 | 74.58 ± 5.25 a | 0.77 ± 0.01 a | 8.77 ± 0.24 ab | 0.17 ± 0.06 a | 64.40 ± 1.87 bc | 5.39 ± 0.45 ab | 0.85 ± 0.11 a |
Average | 52.51 ± 5.51 | 0.21 ± 0.01 | 8.26 ± 0.07 | 0.29 ± 0.10 | 64.69 ± 2.13 | 5.29 ± 0.47 | 0.42 ± 0.04 |
C.V. (%) | 29.96 | 124.64 | 20.55 | 71.48 | 8.90 | 19.27 | 52.38 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Y.-F.; Jian, S.-F.; Lin, Y.; Zhong, C. Developmental Stage-Dependent Distribution and Interrelationships of Leaf Nutrients and Flavonoids in Lithocarpus litseifolius (Hance) Chun. Agronomy 2025, 15, 2029. https://doi.org/10.3390/agronomy15092029
Huang Y-F, Jian S-F, Lin Y, Zhong C. Developmental Stage-Dependent Distribution and Interrelationships of Leaf Nutrients and Flavonoids in Lithocarpus litseifolius (Hance) Chun. Agronomy. 2025; 15(9):2029. https://doi.org/10.3390/agronomy15092029
Chicago/Turabian StyleHuang, Yan-Fen, Shao-Fen Jian, Yang Lin, and Chu Zhong. 2025. "Developmental Stage-Dependent Distribution and Interrelationships of Leaf Nutrients and Flavonoids in Lithocarpus litseifolius (Hance) Chun" Agronomy 15, no. 9: 2029. https://doi.org/10.3390/agronomy15092029
APA StyleHuang, Y.-F., Jian, S.-F., Lin, Y., & Zhong, C. (2025). Developmental Stage-Dependent Distribution and Interrelationships of Leaf Nutrients and Flavonoids in Lithocarpus litseifolius (Hance) Chun. Agronomy, 15(9), 2029. https://doi.org/10.3390/agronomy15092029