Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (23)

Search Parameters:
Keywords = boron cluster anion

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1587 KiB  
Article
In Vitro Study of Antiviral Properties of Compounds Based on 1,4-Dioxane Derivative of Closo-Decaborate Anion with Amino Acid Ester Residues Against Influenza Virus A/IIV-Orenburg/83/2012(H1N1)pdm09
by Timur M. Garaev, Ilya I. Yudin, Natalya V. Breslav, Tatyana V. Grebennikova, Evgenii Y. Matveev, Elizaveta A. Eshtukova-Shcheglova, Varvara V. Avdeeva, Konstantin Y. Zhizhin and Nikolay T. Kuznetsov
Molecules 2024, 29(24), 5886; https://doi.org/10.3390/molecules29245886 - 13 Dec 2024
Cited by 1 | Viewed by 1125
Abstract
New derivatives of the closo-decaborate anion [B10H9–O(CH2)2O(CH2)3C(O)–L–OCH3]2− (An) (1: L = Trp; 2: L = His; 3: L = Met; 4: L [...] Read more.
New derivatives of the closo-decaborate anion [B10H9–O(CH2)2O(CH2)3C(O)–L–OCH3]2− (An) (1: L = Trp; 2: L = His; 3: L = Met; 4: L = Ala(2-oxopyrrolidin-3-yl) (Pld) were synthesized and isolated as tetraphenylphosphonium salts (Ph4P)2An. Anions 12−; 22−; 32−, and 42− contain a pendant functional group from the L-tryptophan methyl ester, L-histidine methyl ester, L-methionine methyl ester, or methyl 2-amino-3-(2-oxopyrrolidin-3-yl)propanoate (-Trp–OCH3, -His–OCH3, -Met–OCH3, or -Pld–OCH3) residue, respectively, bonded with the boron cluster anion through the oxybis[(ethane-2,1-diyl)oxy] spacer. This pacer is formed as a result of the nucleophilic opening of the attached dioxane molecule in the [B10H9O(CH2)4O] starting derivative. Sodium salts of the target compounds were isolated and used in biological experiments. It was established that among compounds Na2An (An = 14), not all are capable of inhibiting the cytopathic effect of the virus in vitro. Sodium salts Na2An have a low toxic effect on a monolayer of continuous canine embryonic kidney (MDCK) cell line. Compounds Na21 and Na22 had IC50 of 5.0 and 20.0 μg/mL, respectively, while for compounds Na23 and Na24, IC50 values could not be achieved at the concentrations studied. The studies performed for molecular docking of the anionic part of 12− and 22− with the transmembrane domain of viroporin M2 show some differences in the location of these two ligands inside the M2 canal pore. Full article
(This article belongs to the Section Bioorganic Chemistry)
Show Figures

Graphical abstract

10 pages, 2630 KiB  
Communication
Enhancing Membrane Permeability of Fluorescein-Type Chromophore Through Covalent Attachment of Chlorinated Dodecaborate
by Hibiki Nakamura, Satoshi Yamamoto, Yumiko K. Kawamura, Taro Kitazawa, Mutsumi Kimura and Yu Kitazawa
Molecules 2024, 29(22), 5416; https://doi.org/10.3390/molecules29225416 - 17 Nov 2024
Cited by 1 | Viewed by 1403
Abstract
Anionic boron clusters, such as [B12X12]2− (X = Cl, Br, I), have attracted attention in pharmaceuticals due to their unique superchaotropic properties. In particular, [B12Br12]2− (1) has demonstrated strong interactions with [...] Read more.
Anionic boron clusters, such as [B12X12]2− (X = Cl, Br, I), have attracted attention in pharmaceuticals due to their unique superchaotropic properties. In particular, [B12Br12]2− (1) has demonstrated strong interactions with biomolecules, facilitating cargo translocation across plasma membranes. In this study, we investigated the effect of covalently attaching chlorinated dodecaborate moiety [B12Cl11O-]2− to 6-carboxyfluorescein (6-FAM) (3) via a PEG3 linker to form conjugate (4). We compared the membrane permeability of this covalent conjugate with that of non-covalent interactions between 6-FAM (3) and [B12Cl12]2− (2). Live-cell fluorescence imaging revealed that the covalent conjugate exhibited enhanced membrane permeability and water solubility while maintaining low cytotoxicity. These results highlight the potential of covalent conjugation with boron clusters for improving the cellular uptake of hydrophilic cargos. Full article
(This article belongs to the Section Organic Chemistry)
Show Figures

Graphical abstract

11 pages, 4354 KiB  
Article
Direct Synthesis of C-Substituted [RC(O)CH2-CB11H11] Carborate Anions
by Vanessa C. Barra, Eduard Bernhardt, Sarah Fellinger, Carsten Jenne and Shiomi S. Langenbach
Inorganics 2024, 12(6), 173; https://doi.org/10.3390/inorganics12060173 - 19 Jun 2024
Viewed by 1408
Abstract
A new synthetic method for the synthesis of C-substituted [RC(O)CH2-CB11H11] carborate anions has been developed. The reaction of [closo-B11H11]2− with terminal alkynes in the presence of a copper [...] Read more.
A new synthetic method for the synthesis of C-substituted [RC(O)CH2-CB11H11] carborate anions has been developed. The reaction of [closo-B11H11]2− with terminal alkynes in the presence of a copper catalyst leads to insertion into the boron cluster, and C-substituted [RC(O)CH2-CB11H11] carborate anions are formed. These reactions are strongly dependent on the reaction conditions, the solvents, and the alkynes used. The alkynes HCCCO2Et, HCCCO2Me, and HCCCONH2 lead to the formation of [NH2C(O)CH2-CB11H11] as the final product in aqueous ammonia solution. In contrast, the reaction using the alkyne HCCCOMe yields [MeC(O)CH2-CB11H11]. The products have been fully characterized by multinuclear NMR and IR spectroscopy as well as mass spectrometry. The crystal structures of K[NH2C(O)CH2-CB11H11] and [NEt3CH2Cl][NH2C(O)CH2-CB11H11] have been determined. Full article
(This article belongs to the Special Issue State-of-the-Art Inorganic Chemistry in Germany)
Show Figures

Graphical abstract

16 pages, 5618 KiB  
Article
Synthesis and Structures of Lead(II) Complexes with Substituted Derivatives of the Closo-Decaborate Anion with a Pendant N3 Group
by Evgenii Yu. Matveev, Olga S. Dontsova, Varvara V. Avdeeva, Alexey S. Kubasov, Andrey P. Zhdanov, Svetlana E. Nikiforova, Lyudmila V. Goeva, Konstantin Yu. Zhizhin, Elena A. Malinina and Nikolay T. Kuznetsov
Molecules 2023, 28(24), 8073; https://doi.org/10.3390/molecules28248073 - 13 Dec 2023
Cited by 2 | Viewed by 1592
Abstract
In this work, we studied lead(II) and cobalt(II) complexation of derivatives [2-B10H9O(CH2)2O(CH2)2N3]2− and [2-B10H9O(CH2)5N3]2− of the closo [...] Read more.
In this work, we studied lead(II) and cobalt(II) complexation of derivatives [2-B10H9O(CH2)2O(CH2)2N3]2− and [2-B10H9O(CH2)5N3]2− of the closo-decaborate anion containing pendant azido groups in the presence of 1,10-phenanthroline and 2,2′-bipyridyl. Mononuclear [PbL2{An}] and binuclear [Pb2L4(NO3)2{An}] lead complexes (where {An} is the N3-substituted boron cluster) were isolated and studied by IR spectroscopy and elemental analysis. The mononuclear lead(II) complex [Pb(phen)2[B10H9O(CH2)2O(CH2)2N3] and the binuclear lead(II) complex [Pb2(phen)4(NO3)2[B10H9O(CH2)5)N3] were determined by single-crystal X-ray diffraction. In complex [Pb2(phen)4(NO3)2[B10H9O(CH2)5)N3], the boron cluster is coordinated by the metal atom only via the 3c2e MHB bonds. In complex [Pb(phen)2[B10H9O(CH2)2O(CH2)2N3], the coordination environment of the metal includes BH groups of the boron cluster and the oxygen atom of the exo-polyhedral substituent. When the reaction was performed in a CH3CN/water mixture, the binuclear lead(II) complex [(Pb(bipy)NO3)(Pb(bipy)2NO3)(B10H9O(CH2)2O(CH2)2N3)]·CH3CN·H2O was isolated, where the boron cluster acts as a bridging ligand between lead atoms coordinated by the boron cage via the O atoms of the substituent and/or the BH groups. In the course of cobalt(II) complexation, the starting compound (Ph4P)2[B10H9O(CH2)5N3] was isolated and its structure was also determined by X-ray diffraction. Although a number of lead(II) complexes with coordinated N3 are known from the literature, no complexes with the boron cluster coordinated by the pendant N3 group involved in the metal coordination have been isolated. Full article
(This article belongs to the Section Inorganic Chemistry)
Show Figures

Graphical abstract

11 pages, 1485 KiB  
Article
Effect of Complexation with Closo-Decaborate Anion on Photophysical Properties of Copolyfluorenes Containing Dicyanophenanthrene Units in the Main Chain
by Anton A. Yakimanskiy, Ksenia I. Kaskevich, Tatiana G. Chulkova, Elena L. Krasnopeeva, Serguei V. Savilov, Vera V. Voinova, Nikolay K. Neumolotov, Andrey P. Zhdanov, Anastasia V. Rogova, Felix N. Tomilin, Konstantin Yu. Zhizhin and Alexander V. Yakimansky
Micro 2023, 3(4), 930-940; https://doi.org/10.3390/micro3040063 - 30 Nov 2023
Cited by 1 | Viewed by 1307
Abstract
The functionalization of copolyfluorenes containing dicyanophenanthrene units by closo-decaborate anion is described. Target copolyfluorenes were analyzed using SEM, UV-vis, luminescence, NMR, and Fourier-transform infrared (FTIR) spectroscopy. The effect of complexation with the closo-decaborate anion on the photophysical properties was studied both [...] Read more.
The functionalization of copolyfluorenes containing dicyanophenanthrene units by closo-decaborate anion is described. Target copolyfluorenes were analyzed using SEM, UV-vis, luminescence, NMR, and Fourier-transform infrared (FTIR) spectroscopy. The effect of complexation with the closo-decaborate anion on the photophysical properties was studied both experimentally and theoretically. The PL data indicate an efficient charge transfer from fluorene to the dicyanophenanthrene units coordinated to the closo-decaborate. The coordination of closo-decaborate clusters to the nitrile groups of copolyfluorenes provides an important route to new materials for sensors and light-emitting devices while, at the same time, serving as a platform for further study of the nature of boron clusters. Full article
(This article belongs to the Section Microscale Materials Science)
Show Figures

Figure 1

20 pages, 4927 KiB  
Review
Composites and Materials Prepared from Boron Cluster Anions and Carboranes
by Varvara V. Avdeeva, Svetlana E. Nikiforova, Elena A. Malinina, Igor B. Sivaev and Nikolay T. Kuznetsov
Materials 2023, 16(18), 6099; https://doi.org/10.3390/ma16186099 - 6 Sep 2023
Cited by 7 | Viewed by 2140
Abstract
Here, we present composites and materials that can be prepared starting with boron hydride cluster compounds (decaborane, decahydro-closo-decaborate and dodecahydro-closo-dodecaborate anions and carboranes). Recent examples of their utilization as boron protective coatings including using them to synthesize boron carbide, [...] Read more.
Here, we present composites and materials that can be prepared starting with boron hydride cluster compounds (decaborane, decahydro-closo-decaborate and dodecahydro-closo-dodecaborate anions and carboranes). Recent examples of their utilization as boron protective coatings including using them to synthesize boron carbide, boron nitride, metal borides, metal-containing composites, and neutron shielding materials are discussed. The data are generalized demonstrate the versatile application of materials based on boron cluster anions and carboranes in various fields. Full article
(This article belongs to the Special Issue Development of Boron-Based Materials)
Show Figures

Graphical abstract

14 pages, 4454 KiB  
Article
Theoretical Insight on the Formation Mechanism of a Trisubstituted Derivative of Closo-Decaborate Anion [B10H7O2CCH3(NCCH3)]0
by Ilya N. Klyukin, Anastasia V. Kolbunova, Alexander S. Novikov, Andrey P. Zhdanov, Konstantin Yu. Zhizhin and Nikolay T. Kuznetsov
Inorganics 2023, 11(5), 201; https://doi.org/10.3390/inorganics11050201 - 6 May 2023
Cited by 4 | Viewed by 2027
Abstract
A theoretical modelling of the interaction process between a protonated complex of carboxonium derivative [2,6-B10H8O2CCH3*Hfac]0 and acetonitrile molecule CH3CN was carried out. As a result of the process, a trisubstituted [...] Read more.
A theoretical modelling of the interaction process between a protonated complex of carboxonium derivative [2,6-B10H8O2CCH3*Hfac]0 and acetonitrile molecule CH3CN was carried out. As a result of the process, a trisubstituted [B10H7O2CCH3(NCCH3)]0 derivative was formed. This reaction has an electrophile-induced nucleophilic substitution (EINS) mechanism. The main intermediates and transition states of the substitution process were established. As in the case of all previously investigated EINS processes, the key intermediate was an anion with a dihydrogen H2 fragment attached to one boron atom (B(H2) structure motif). The process of nucleophilic substitution can proceed on a different position of the cluster cage. The main potential pathways were assessed. It was established that substitution on the B4 position of the cluster cage was the most energetically favourable, and the [2,4,6-B10H7O2CCH3(NCCH3)]0 isomer was formed. Full article
Show Figures

Graphical abstract

15 pages, 4135 KiB  
Article
Synthesis and Structures of Lead(II) Complexes with Hydroxy-Substituted Closo-Decaborate Anions
by Evgenii Yu. Matveev, Varvara V. Avdeeva, Alexey S. Kubasov, Konstantin Yu. Zhizhin, Elena A. Malinina and Nikolay T. Kuznetsov
Inorganics 2023, 11(4), 144; https://doi.org/10.3390/inorganics11040144 - 28 Mar 2023
Cited by 8 | Viewed by 2028
Abstract
Mixed-ligand lead(II) complexes with 2,2′-bipyridyl and [B10H9OH]2− or monosubstituted hydroxy-substituted closo-decaborate anions with a pendant hydroxy group, separated from the boron cage by an alkoxylic spacer of different lengths [B10H9O(CH2)x [...] Read more.
Mixed-ligand lead(II) complexes with 2,2′-bipyridyl and [B10H9OH]2− or monosubstituted hydroxy-substituted closo-decaborate anions with a pendant hydroxy group, separated from the boron cage by an alkoxylic spacer of different lengths [B10H9O(CH2)xO(CH2)2OH]]2− (x = 2 or 5) have been synthesized. Compounds have been characterized by IR and multinuclear NMR spectroscopies. The structures of binuclear complex [Pb(bipy)2[B10H9OH]]2·CH3CN (1·CH3CN), mononuclear complex [Pb(bipy)2[B10H9O(CH2)2O(CH2)2OH]]·0.5bipy·CH3CN (2·0.5bipy·CH3CN), and polymeric complex [Pb(bipy)[B10H9O(CH2)5O(CH2)2OH]]n (3) have been determined by single-crystal X-ray diffraction. In all three compounds, the co-ordination polyhedra of lead(II) are formed by N atoms from two bipy molecules, O atoms of the substituent attached to the boron cage, and BH groups of the boron cage. Full article
(This article belongs to the Special Issue Non-covalent Interactions in Coordination Chemistry)
Show Figures

Graphical abstract

16 pages, 5006 KiB  
Article
A New Approach to the Synthesis of Nanocrystalline Cobalt Boride in the Course of the Thermal Decomposition of Cobalt Complexes [Co(DMF)6]2+ with Boron Cluster Anions
by Elena A. Malinina, Ivan I. Myshletsov, Grigorii A. Buzanov, Alexey S. Kubasov, Irina V. Kozerozhets, Lyudmila V. Goeva, Svetlana E. Nikiforova, Varvara V. Avdeeva, Konstantin Yu. Zhizhin and Nikolay T. Kuznetsov
Molecules 2023, 28(1), 453; https://doi.org/10.3390/molecules28010453 - 3 Jan 2023
Cited by 20 | Viewed by 3561
Abstract
In the course of the study, nanocrystalline cobalt monoboride was prepared by thermal decomposition of precursors [Co(DMF)6][An], where [An] = [B12H12]2− (1), [trans-B20H18]2− (2) or [...] Read more.
In the course of the study, nanocrystalline cobalt monoboride was prepared by thermal decomposition of precursors [Co(DMF)6][An], where [An] = [B12H12]2− (1), [trans-B20H18]2− (2) or [B10Cl10]2− (3) in an argon atmosphere. Three new salt-like compounds 13 were prepared when Co(NO3)2 was allowed to react with (Et3NH)2[An]. Compound 1 is new; the structures of compounds 2 and 3 have been previously reported. Samples 13 were annealed at 900 °C in argon to form samples 1a3a, which were characterized by single crystal XRD for 1 and powder XRD for 1–3. Powder XRD on the products showed the formation of BN and CoB for 1a in a 1:1 ratio; 2a gave a higher CoB:BN ratio but an overall decreased crystallinity. For 3a, only CoB was found. IR spectra of samples 1a3a as well as X-ray spectral fluorescence analysis for 3a confirmed these results. The nanoparticular character of the decomposition products 1a3a was shown using TEM; quite small particle sizes of about 10–15 nm and a quite normal size distribution were found for 1a and 2a, while the decomposition of 3 gave large particles with 200–350 nm and a broad distribution. Full article
(This article belongs to the Special Issue Feature Papers in Materials Chemistry)
Show Figures

Figure 1

36 pages, 10007 KiB  
Review
Effect of Nature of Substituents on Coordination Properties of Mono- and Disubstituted Derivatives of Boron Cluster Anions [BnHn]2– (n = 10, 12) and Carboranes with exo-Polyhedral B–X Bonds (X = N, O, S, Hal)
by Evgenii Yu. Matveev, Varvara V. Avdeeva, Konstantin Yu. Zhizhin, Elena A. Malinina and Nikolay T. Kuznetsov
Inorganics 2022, 10(12), 238; https://doi.org/10.3390/inorganics10120238 - 2 Dec 2022
Cited by 34 | Viewed by 3118
Abstract
This review systematizes data on the coordination ability of mono- and disubstituted derivatives of boron cluster anions and carboranes in complexation with transition metals. Boron clusters anions [BnHn]2–, monocarborane anions [CBnHn–1] [...] Read more.
This review systematizes data on the coordination ability of mono- and disubstituted derivatives of boron cluster anions and carboranes in complexation with transition metals. Boron clusters anions [BnHn]2–, monocarborane anions [CBnHn–1], and dicarboranes [C2BnHn–2] (with non-functionalized carbon atoms) (n = 10, 12) containing the B–X exo-polyhedral bonds (X = N, O, S, Hal) are discussed. Synthesis and structural features of complexes known to date are described. The effect of complexing metal and substituent attached to the boron cage on the composition and structures of the final complexes is analyzed. It has been established that substituted derivatives of boron cluster anions and carboranes can act as both ligands and counterions. A complexing agent can coordinate substituted derivatives of the boron cluster anions due to three-center two-electron 3c2e MHB bonds, by the substituent functional groups, or a mixed type of coordination can be realized, through the BH groups of the boron cage and the substituent. As for B-substituted carboranes, complexes with coordinated substituents or salts with non-coordinated carborane derivatives have been isolated; compounds with MHB bonding are not characteristic of carboranes. Full article
(This article belongs to the Special Issue Fifth Element: The Current State of Boron Chemistry)
Show Figures

Graphical abstract

14 pages, 1475 KiB  
Review
History of Cobaltabis(dicarbollide) in Potentiometry, No Need for Ionophores to Get an Excellent Selectivity
by Anca-Iulia Stoica, Clara Viñas and Francesc Teixidor
Molecules 2022, 27(23), 8312; https://doi.org/10.3390/molecules27238312 - 29 Nov 2022
Cited by 4 | Viewed by 2528
Abstract
This work is a mini-review highlighting the relevance of the θ metallabis(dicarbollide) [3,3′-Co(1,2-C2B9H11)2] with its peculiar and differentiating characteristics, among them the capacity to generate hydrogen and dihydrogen bonds, to generate micelles and vesicles, [...] Read more.
This work is a mini-review highlighting the relevance of the θ metallabis(dicarbollide) [3,3′-Co(1,2-C2B9H11)2] with its peculiar and differentiating characteristics, among them the capacity to generate hydrogen and dihydrogen bonds, to generate micelles and vesicles, to be able to be dissolved in water or benzene, to have a wide range of redox reversible couples and many more, and to use these properties, in this case, for producing potentiometric membrane sensors to monitor amine-containing drugs or other nitrogen-containing molecules. Sensors have been produced with this monoanionic cluster [3,3′-Co(1,2-C2B9H11)2]. Other monoanionic boron clusters are also discussed, but they are much fewer. It is noteworthy that most of the electrochemical sensor species incorporate an ammonium cation and that this cation is the species to be detected. Alternatively, the detection of the borate anion itself has also been studied, but with significantly fewer examples. The functions of the borate anion in the membrane are different, even as a doping agent for polypyrrole which was the conductive ground on which the PVC membrane was deposited. Apart from these cases related to closo borates, the bulk of the work has been devoted to sensors in which the θ metallabis (dicarbollide) [3,3′-Co(1,2-C2B9H11)2] is the key element. The metallabis (dicarbollide) anion, [3,3′-Co(1,2-C2B9H11)2], has many applications; one of these is as new material used to prepare an ion-pair complex with bioactive protonable nitrogen containing compounds, [YH]x[3,3′-Co(1,2-C2B9H11)2]y as an active part of PVC membrane potentiometric sensors. The developed electrodes have Nernstian responses for target analytes, i.e., antibiotics, amino acids, neurotransmitters, analgesics, for some decades of concentrations, with a short response time, around 5 s, a good stability of membrane over 45 days, and an optimal selectivity, even for optical isomers, to be used also for real sample analysis and environmental, clinical, pharmaceutical and food analysis. Full article
(This article belongs to the Special Issue New Science of Boron Allotropes, Compounds, and Nanomaterials)
Show Figures

Figure 1

14 pages, 4920 KiB  
Article
Theoretical Insight into B–C Chemical Bonding in Closo-Borate [BnHn−1CH3]2− (n = 6, 10, 12) and Monocarborane [CBnHnCH3] (n = 5, 9, 11) Anions
by Ilya N. Klyukin, Anastasia V. Kolbunova, Alexander S. Novikov, Andrey P. Zhdanov, Konstantin Yu. Zhizhin and Nikolay T. Kuznetsov
Inorganics 2022, 10(11), 186; https://doi.org/10.3390/inorganics10110186 - 28 Oct 2022
Cited by 3 | Viewed by 2019
Abstract
A theoretical investigation of mono-methyl derivatives of closo-borate anions of the general form [BnHnCH3]2– (n = 6, 10, 12) and monocarboranes [HCBnHnCH3] (n = 5, 9, 11) was [...] Read more.
A theoretical investigation of mono-methyl derivatives of closo-borate anions of the general form [BnHnCH3]2– (n = 6, 10, 12) and monocarboranes [HCBnHnCH3] (n = 5, 9, 11) was carried out. An analysis of the main bonding descriptors of exo-polyhedral B–C bonds was performed using the QTAIM (quantum theory of “Atoms in Molecules”), ELF (electron localisation function), NBOs (natural bond orbitals) analyses and several other approaches for the estimation of B–C bond orders (viz. Laplacian bond order (LBO), fuzzy bond order (FBO) and Mayer and Wiberg formalisms). Based on the data obtained on electron density descriptors, it can be concluded that orbital interaction increases with increasing boron cluster size. The present investigation provides a better understanding of exo-polyhedral B–C bond phenomena in boron cluster systems. The data obtained can be used to estimate B–C bond strength, which can be useful for studies devoted to the synthesis and properties of boron cluster systems. Full article
(This article belongs to the Special Issue Fifth Element: The Current State of Boron Chemistry)
Show Figures

Figure 1

16 pages, 8635 KiB  
Article
Non-Covalent Interactions in the Crystal Structures of Perbrominated Sulfonium Derivatives of the closo-Decaborate Anion
by Aleksei V. Golubev, Alexey S. Kubasov, Alexander Yu. Bykov, Andrey P. Zhdanov, Grigorii A. Buzanov, Alexander A. Korlyukov, Konstantin Yu. Zhizhin and Nikolay T. Kuznetsov
Int. J. Mol. Sci. 2022, 23(19), 12022; https://doi.org/10.3390/ijms231912022 - 10 Oct 2022
Cited by 3 | Viewed by 1787
Abstract
A new series of compounds based on perbrominated disubstituted sulfonium derivatives of the closo-decaborate anion (n-Bu4N)[2-B10Br9SR2] (R = n-Pr, i-Pr, n-Bu, n-C8H17, n-C [...] Read more.
A new series of compounds based on perbrominated disubstituted sulfonium derivatives of the closo-decaborate anion (n-Bu4N)[2-B10Br9SR2] (R = n-Pr, i-Pr, n-Bu, n-C8H17, n-C12H25, n-C18H37) was obtained, characterised by modern physicochemical methods of analysis. According to the results of an X-ray diffraction study, some of the anions and solvate molecules were disordered. The cations (n-Bu4N)+ and anions [2-B10Br9SR2] were associated via C-H…Br and H…H contacts. In addition, Br…Br interactions between anions were revealed. The role of these contacts was analysed in terms of Hirshfeld surface analysis, QTAIM theory and the NCI method using quantum chemical calculations. An increase in the size of the alkyl R moiety led to significant strengthening of the total energy of H…H interactions. In the case of R = -n-C18H37, a parallel mutual orientation of alkyl moieties was established that was similar to the packing of salts of fatty acids. The nature of C-H…Br and Br…Br interionic interactions was found to be attractive, in contrast to the repulsive nature of intermolecular Br…Br interactions. Full article
(This article belongs to the Special Issue Non-covalent Interaction)
Show Figures

Figure 1

21 pages, 4357 KiB  
Article
The Evolution of Geometric Structures, Electronic Properties, and Chemical Bonding of Small Phosphorus-Boron Clusters
by Limei Wen, Qingshan Li, Bingyi Song, Liming Yang and Eric Ganz
Condens. Matter 2022, 7(2), 36; https://doi.org/10.3390/condmat7020036 - 14 May 2022
Cited by 6 | Viewed by 3175
Abstract
We report a comprehensive theoretical investigation on phosphorus–boron mixed neutral, anionic, and cationic clusters P2Bn/P2Bn/P2Bn+ (n = 3–7) with two phosphorus atoms and three to seven boron atoms. We [...] Read more.
We report a comprehensive theoretical investigation on phosphorus–boron mixed neutral, anionic, and cationic clusters P2Bn/P2Bn/P2Bn+ (n = 3–7) with two phosphorus atoms and three to seven boron atoms. We reveal the common character of all the structures (i.e., the phosphorus atoms choose to occupy the peripheral position), whereas the boron atoms tend to be in the central and inside position of the ground state phosphorus—boron mixed clusters at each stoichiometry. Any three atoms preferentially form a stable triangle and grow with zigzag shape in a planar network. Interestingly, a series of planar motifs (including tetra-, penta-, and hexa-coordination) have been discovered in the phosphorus–boron clusters. The large binding energies (3.6 to 4.6 eV/atom) and quite large HOMO–LUMO gaps (5 to 10 eV) indicate the high stability of the clusters. The energy differences Δ1E, Δ2E, and energy gaps display oscillating behavior with increasing numbers of boron atoms. The electron affinity (EA) and ionization potential (IP) generally have small variations, with the EA values ranging from 2 to 3 eV, and the IP values ranging from 7 to 9 eV. Chemical bond analysis shows that the existence of multi-center delocalized bonds stabilize the clusters. Full article
(This article belongs to the Special Issue Feature Papers from Condensed Matter Editorial Board Members)
Show Figures

Figure 1

32 pages, 9114 KiB  
Article
Anionic Polymerization of Para-Diethynylbenzene: Synthesis of a Strictly Linear Polymer
by Vyacheslav M. Misin, Irina E. Maltseva, Alexander A. Maltsev, Alexander V. Naumkin and Mark E. Kazakov
Polymers 2022, 14(5), 900; https://doi.org/10.3390/polym14050900 - 24 Feb 2022
Cited by 4 | Viewed by 2972
Abstract
Anionic homo- and copolymerization of p-diethynylbenzene in the presence of n-BuLi in polar solvents was carried out. The use of hexamethylphosphortriamide (HMPA) makes it possible to synthesize a completely linear soluble polymer that does not have branching and phenylene fragments. A copolymer [...] Read more.
Anionic homo- and copolymerization of p-diethynylbenzene in the presence of n-BuLi in polar solvents was carried out. The use of hexamethylphosphortriamide (HMPA) makes it possible to synthesize a completely linear soluble polymer that does not have branching and phenylene fragments. A copolymer of p-diethynylbenzene with diphenyldiacetylene was synthesized. Homo- and copolymers of p-diethynylbenzene have high thermo- and thermo-oxidative stability. By the interaction of side reactive ethynylphenylene groups with various reagents, it is proposed to synthesize clusters along the conducting chain of poly-p-diethynylbenzene. Due to presenting C≡CH side groups, boron, copper, and cobalt derivatives were synthesized. It is shown that not all theoretically possible stereoisomers can be formed as a result of the polymerization. The application of p-diethynylbenzene polymers for the modification of industrial samples of epoxy novolac resin, oligoester acrylates, and carbon fibers has been demonstrated. Full article
(This article belongs to the Special Issue Polymer Reaction Modeling and Kinetics)
Show Figures

Graphical abstract

Back to TopTop