Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (468)

Search Parameters:
Keywords = bone mineral content

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 695 KiB  
Review
Macromycete Edible Fungi as a Functional Poultry Feed Additive: Influence on Health, Welfare, Eggs, and Meat Quality—Review
by Damian Duda, Klaudia Jaszcza and Emilia Bernaś
Molecules 2025, 30(15), 3241; https://doi.org/10.3390/molecules30153241 (registering DOI) - 1 Aug 2025
Viewed by 21
Abstract
Over the years, macromycete fungi have been used as a source of food, part of religious rites and rituals, and as a medicinal remedy. Species with strong health-promoting potential include Hericium erinaceus, Cordyceps militaris, Ganoderma lucidum, Pleurotus ostreatus, Flammulina [...] Read more.
Over the years, macromycete fungi have been used as a source of food, part of religious rites and rituals, and as a medicinal remedy. Species with strong health-promoting potential include Hericium erinaceus, Cordyceps militaris, Ganoderma lucidum, Pleurotus ostreatus, Flammulina velutipes, and Inonotus obliquus. These species contain many bioactive compounds, including β-glucans, endo- and exogenous amino acids, polyphenols, terpenoids, sterols, B vitamins, minerals, and lovastatin. The level of some biologically active substances is species-specific, e.g., hericenones and erinacines, which have neuroprotective properties, and supporting the production of nerve growth factor in the brain for Hericium erinaceus. Due to their high health-promoting potential, mushrooms and substances isolated from them have found applications in livestock nutrition, improving their welfare and productivity. This phenomenon may be of particular importance in the nutrition of laying hens and broiler chickens, where an increase in pathogen resistance to antibiotics has been observed in recent years. Gallus gallus domesticus is a key farm animal for meat and egg production, so the search for new compounds to support bird health is important for food safety. Studies conducted to date indicate that feed supplementation with mushrooms has a beneficial effect on, among other things, bird weight gain; bone mineralisation; and meat and egg quality, including the lipid profile and protein content and shell thickness, and promotes the development of beneficial microbiota, thereby increasing immunity. Full article
18 pages, 352 KiB  
Review
Bone Type Selection for Human Molecular Genetic Identification of Skeletal Remains
by Jezerka Inkret and Irena Zupanič Pajnič
Genes 2025, 16(8), 872; https://doi.org/10.3390/genes16080872 - 24 Jul 2025
Viewed by 226
Abstract
This review paper presents a comprehensive overview of DNA preservation in hard tissues (bones and teeth) for applications in forensic and archaeogenetic analyses. It presents bone structure, DNA location in bones and teeth, and extensive information about postmortem DNA location and preservation. Aged [...] Read more.
This review paper presents a comprehensive overview of DNA preservation in hard tissues (bones and teeth) for applications in forensic and archaeogenetic analyses. It presents bone structure, DNA location in bones and teeth, and extensive information about postmortem DNA location and preservation. Aged bones are a challenging biological material for DNA isolation due to their low DNA content, degraded DNA, and the potential presence of PCR inhibitors. In addition, the binding of DNA to the mineral matrix necessitates the inclusion of a demineralization process in extraction, and its contribution to the resulting increase in both DNA quality and quantity is explained. Guidelines and recommendations on bone sample selection to obtain higher DNA yields are discussed in terms of past, recent, and possible future recommendations. Interskeletal and intraskeletal differences in DNA yield are also explained. Recent studies have shown that current recommendations for the genetic identification of skeletal remains, including femurs, tibias, and teeth, may not be the most effective sampling approach. Moreover, when mass disasters and mass graves with commingled skeletal remains are considered, there is a greater possibility that the recommended set of skeletal elements will not be available for sampling and subsequent genetic testing. This review highlights interskeletal and intraskeletal variability in DNA yield, with a focus on studies conducted on poorly preserved skeletal remains, including both postwar (1945) victims from Slovenia and ancient human skeletons. Special emphasis is placed on anatomical differences and potential mechanisms influencing DNA preservation, as demonstrated in research on both modern and historical skeletons. Finally, the petrous part of the temporal bone and tooth cementum were reviewed in greater detail because they have been recognized as an optimal sampling type in both ancient DNA studies and routine forensic case analyses. Our experiences with the Second World War and archaeological petrous bones are discussed and compared to those of other bone types. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
15 pages, 2606 KiB  
Article
A Collagen Membrane Pretreated with Citrate Promotes Collagen Mineralization and Bone Regeneration
by Qi Zhang, Yewen Zhong, Xinlin He and Sui Mai
J. Funct. Biomater. 2025, 16(7), 261; https://doi.org/10.3390/jfb16070261 - 15 Jul 2025
Viewed by 583
Abstract
Purpose: Collagen membranes with biomimetic mineralization are emerging as promising materials for bone regeneration, owing to their high biocompatibility. In this study, we developed a biogenic collagen membrane by combining citrate (C) pretreatment and carboxymethyl chitosan (CMC)-mediated mineralization and further evaluated its bone [...] Read more.
Purpose: Collagen membranes with biomimetic mineralization are emerging as promising materials for bone regeneration, owing to their high biocompatibility. In this study, we developed a biogenic collagen membrane by combining citrate (C) pretreatment and carboxymethyl chitosan (CMC)-mediated mineralization and further evaluated its bone healing potential. Methods: C-CMC collagen membranes were prepared by lyophilization. The mineral composition and content were tested through X-ray diffraction (XRD), Fourier transform infrared (FTIR), and thermogravimetric analysis (TGA). The micromorphology was observed using transmission electron microscopy (TEM), scanning electron microscopy (SEM), and scanning probe microscopy (SPM). Physical and mechanical properties, including the swelling rate, porosity, hydrophilicity, tensile strength, Young’s modulus, degradation, and barrier function, were also evaluated. Bone mesenchymal stem cells (BMSCs) were cultured in vitro to observe their behavior. An in vivo critical-size rat calvarial defect model was used to validate the effects of the membrane on bone regeneration. Results: The C-CMC collagen membrane was successfully synthesized as a collagen–hydroxyapatite complex with intrafibrillar mineralization, exhibiting improved mechanical properties and an optimal swelling rate, porosity, hydrophilicity, and degradation rate. Additionally, the C-CMC collagen membrane promoted BMSC proliferation, adhesion, and osteogenesis while preventing epithelial cell infiltration. In vivo experiments indicated that C-CMC collagen membranes significantly stimulated bone regeneration without causing systemic toxicity. Conclusions: Our findings suggest that the C-CMC collagen membrane possesses satisfactory physical and mechanical properties, along with good biocompatibility and efficacy in bone defect regeneration, making it a potential candidate for a bioactive guided bone regeneration membrane in clinical applications. Full article
Show Figures

Figure 1

21 pages, 1768 KiB  
Article
FST Polymorphisms Associate with Musculoskeletal Traits and Modulate Exercise Response Differentially by Sex and Modality in Northern Han Chinese Adults
by Wei Cao, Zhuangzhuang Gu, Ronghua Fu, Yiru Chen, Yong He, Rui Yang, Xiaolin Yang and Zihong He
Genes 2025, 16(7), 810; https://doi.org/10.3390/genes16070810 - 10 Jul 2025
Viewed by 339
Abstract
Background/Objectives: To investigate associations between Follistatin (FST) gene polymorphisms (SNPs) and baseline musculoskeletal traits, and their interactions with 16-week exercise interventions. Methods: A cohort of 470 untrained Northern Han Chinese adults (208 males, 262 females), sourced from the “Research [...] Read more.
Background/Objectives: To investigate associations between Follistatin (FST) gene polymorphisms (SNPs) and baseline musculoskeletal traits, and their interactions with 16-week exercise interventions. Methods: A cohort of 470 untrained Northern Han Chinese adults (208 males, 262 females), sourced from the “Research on Key Technologies for an Exercise and Fitness Expert Guidance System” project, was analyzed. These participants were previously randomly assigned to one of four exercise groups (Hill, Running, Cycling, Combined) or a non-exercising Control group, and completed their respective 16-week protocols. Body composition, bone mineral content (BMC), bone mineral density (BMD), and serum follistatin levels were all assessed pre- and post-intervention. Dual-energy X-ray absorptiometry (DXA) was utilized for the body composition, BMC, and BMD measurements. FST SNPs (rs3797296, rs3797297) were genotyped using matrix assisted laser desorption/ionization time-of-flight mass spectrometer (MALDI-TOF MS) or microarrays. To elucidate the biological mechanisms, we performed in silico functional analyses for rs3797296 and rs3797297. Results: Baseline: In females only, the rs3797297 T allele was associated with higher muscle mass (β = 1.159, 95% confidence interval (CI): 0.202–2.116, P_adj = 0.034) and BMC (β = 0.127, 95% CI: 0.039–0.215, P_adj = 0.009), with the BMC effect significantly mediated by muscle mass. Exercise Response: Interventions improved body composition, particularly in females. Gene-Exercise Interaction: A significant interaction occurred exclusively in women undertaking hill climbing: the rs3797296 G allele was associated with attenuated muscle mass gains (β = −1.126 kg, 95% CI: −1.767 to −0.485, P_adj = 0.034). Baseline follistatin correlated with body composition (stronger in males) and increased post-exercise (primarily in males, Hill/Running groups) but did not mediate SNP effects on exercise adaptation. Functional annotation revealed that rs3797297 is a likely causal variant, acting as a skeletal muscle eQTL for the mitochondrial gene NDUFS4, suggesting a mechanism involving muscle bioenergetics. Conclusions: Findings indicate that FST polymorphisms associate with musculoskeletal traits in Northern Han Chinese. Mechanistic insights from functional annotation reveal potential pathways for these associations, highlighting the potential utility of these genetic markers for optimizing training program design. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
Show Figures

Figure 1

14 pages, 276 KiB  
Article
Exploratory Assessment of Health-Related Parameters in World-Class Boccia Players Using DXA
by Bárbara Vasconcelos, José Irineu Gorla, Karina Santos Guedes de Sá, Rui Corredeira and Tânia Bastos
Healthcare 2025, 13(14), 1658; https://doi.org/10.3390/healthcare13141658 - 9 Jul 2025
Viewed by 305
Abstract
Background: Sport plays an important role in the health promotion of people with cerebral palsy (CP). However, risk factors may impair sport performance and health in non-ambulatory athletes. Therefore, the aim of the present study was to explore body composition and bone [...] Read more.
Background: Sport plays an important role in the health promotion of people with cerebral palsy (CP). However, risk factors may impair sport performance and health in non-ambulatory athletes. Therefore, the aim of the present study was to explore body composition and bone health in a group of world-class Boccia players with CP. Methods: Five BC2-class players with CP, aged 15–42 years old, were assessed using Dual-Energy X-Ray Absorptiometry (DXA) for body composition and bone mineral density (BMD) and content (BMC). The fat mass index (kg/m2) was used to define obesity, and the BMD Z-score used to analyze bone health. A preliminary indicator of sarcopenia was considered using the appendicular lean mass index. Results: Players 1 and 3 exhibited similar body compositions (obesity class 1 and BMD Z-score are below the expected range for age). Player 5 exhibited multiple health-related risk factors. The results regarding youth players (Player 2 and Player 4) should be analyzed with caution. Conclusions: Overall, due to Boccia’s specific characteristics, players may benefit from close monitoring by multidisciplinary teams and supplementary strategies (e.g., strength training, individualized diet plans) to promote quality of life and performance. However, further research is needed to confirm the data, since these preliminary findings do not allow for broader generalizations. Full article
20 pages, 1908 KiB  
Article
Effects of Dietary Calcium and Phosphorus Levels on Growth Performance, Calcium–Phosphorus Homeostasis, and Gut Microbiota in Ningxiang Pigs
by Wenzhi Liu, Cheng Zhang, Xijie Kuang, Xianglin Zeng, Jiaqi Zhang, Qiye Wang and Huansheng Yang
Life 2025, 15(7), 1083; https://doi.org/10.3390/life15071083 - 9 Jul 2025
Viewed by 363
Abstract
Optimal dietary calcium (Ca) and phosphorus (P) requirements remain undetermined for Ningxiang pigs, a valuable indigenous Chinese breed. This study conducted a continuous feeding trial with two growth phases (grower: 30–50 kg; finisher: 50–80 kg) using fixed Ca/P ratios to systematically evaluate the [...] Read more.
Optimal dietary calcium (Ca) and phosphorus (P) requirements remain undetermined for Ningxiang pigs, a valuable indigenous Chinese breed. This study conducted a continuous feeding trial with two growth phases (grower: 30–50 kg; finisher: 50–80 kg) using fixed Ca/P ratios to systematically evaluate the effects of Ca/P levels on growth performance and mineral metabolism. A total of 180 pigs per phase were allocated to four Ca/P levels. During the grower phase, a dietary regimen of 0.83% Ca/0.67% P significantly increased the average daily feed intake (ADFI), average daily gain (ADG), and apparent total tract digestibility (ATTD) of energy and P. In the finisher phase, 0.60/0.48% Ca/P showed optimal growth performance, upregulated jejunal mineral transporters (CaSR and SLC34A2), enhanced bone mineralization (metatarsal ash content), and improved intestinal morphology (duodenal and jejunal villus height, jejunal villus surface area). This regimen also selectively enriched Peptostreptococcaceae abundance, indicating improved host–microbe interactions. Based on these findings, stage-specific nutritional strategies were recommended: 0.83% Ca/0.67% P during the grower phase and 0.60% Ca/0.48% P during the finisher phase. These protocols synergistically improve microbial ecology, intestinal function, and bone metabolism, thereby maximizing the growth potential of Ningxiang pigs. Full article
(This article belongs to the Special Issue Pig Microbiota Metabolism and Intestinal Health)
Show Figures

Figure 1

28 pages, 1727 KiB  
Review
Computational and Imaging Approaches for Precision Characterization of Bone, Cartilage, and Synovial Biomolecules
by Rahul Kumar, Kyle Sporn, Vibhav Prabhakar, Ahab Alnemri, Akshay Khanna, Phani Paladugu, Chirag Gowda, Louis Clarkson, Nasif Zaman and Alireza Tavakkoli
J. Pers. Med. 2025, 15(7), 298; https://doi.org/10.3390/jpm15070298 - 9 Jul 2025
Viewed by 603
Abstract
Background/Objectives: Degenerative joint diseases (DJDs) involve intricate molecular disruptions within bone, cartilage, and synovial tissues, often preceding overt radiographic changes. These tissues exhibit complex biomolecular architectures and their degeneration leads to microstructural disorganization and inflammation that are challenging to detect with conventional imaging [...] Read more.
Background/Objectives: Degenerative joint diseases (DJDs) involve intricate molecular disruptions within bone, cartilage, and synovial tissues, often preceding overt radiographic changes. These tissues exhibit complex biomolecular architectures and their degeneration leads to microstructural disorganization and inflammation that are challenging to detect with conventional imaging techniques. This review aims to synthesize recent advances in imaging, computational modeling, and sequencing technologies that enable high-resolution, non-invasive characterization of joint tissue health. Methods: We examined advanced modalities including high-resolution MRI (e.g., T1ρ, sodium MRI), quantitative and dual-energy CT (qCT, DECT), and ultrasound elastography, integrating them with radiomics, deep learning, and multi-scale modeling approaches. We also evaluated RNA-seq, spatial transcriptomics, and mass spectrometry-based proteomics for omics-guided imaging biomarker discovery. Results: Emerging technologies now permit detailed visualization of proteoglycan content, collagen integrity, mineralization patterns, and inflammatory microenvironments. Computational frameworks ranging from convolutional neural networks to finite element and agent-based models enhance diagnostic granularity. Multi-omics integration links imaging phenotypes to gene and protein expression, enabling predictive modeling of tissue remodeling, risk stratification, and personalized therapy planning. Conclusions: The convergence of imaging, AI, and molecular profiling is transforming musculoskeletal diagnostics. These synergistic platforms enable early detection, multi-parametric tissue assessment, and targeted intervention. Widespread clinical integration requires robust data infrastructure, regulatory compliance, and physician education, but offers a pathway toward precision musculoskeletal care. Full article
(This article belongs to the Special Issue Cutting-Edge Diagnostics: The Impact of Imaging on Precision Medicine)
Show Figures

Figure 1

18 pages, 5341 KiB  
Article
Kinetic Control of Oxygenated Apatites: Dynamic Operation of a Pilot-Scale Precipitation Reactor for Bone-Mimetic Biomaterials
by Soumia Belouafa, Mohammed Berrada, Khalid Digua and Hassan Chaair
Minerals 2025, 15(7), 700; https://doi.org/10.3390/min15070700 - 30 Jun 2025
Viewed by 322
Abstract
This study investigates the dynamic operation of a pilot-scale precipitation reactor designed to produce oxygenated phosphocalcium apatites with controlled composition and low crystallinity, closely mimicking the mineral phase of bone. Our approach is based on integrating kinetic monitoring and dynamic reactor control to [...] Read more.
This study investigates the dynamic operation of a pilot-scale precipitation reactor designed to produce oxygenated phosphocalcium apatites with controlled composition and low crystallinity, closely mimicking the mineral phase of bone. Our approach is based on integrating kinetic monitoring and dynamic reactor control to direct the formation of apatites with tailored structural and chemical properties. Three synthesis routes were explored using CaCO3, Ca(NO3)2, and CaCl2 as calcium precursors, under optimized Ca/P molar ratios. The evolution of ionic concentrations (Ca2+, PO43−), peroxide and molecular oxygen incorporation, and carbonate content was monitored over a reaction time range of 2 min to 4 h. Characterization by X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and chemical analysis revealed a time-dependent transformation of amorphous phases into poorly crystalline apatites with specific textures. After 60 min, the Ca/P atomic ratio stabilized at approximately 1.575, and the resulting apatites exhibited structural features comparable to those of human bone. This study highlights the influence of reactor operation time on precipitation kinetics and the properties of bioactive apatites in a scalable system. The results offer promising prospects for the large-scale production of bone-mimetic materials. However, the lack of biological validation remains a limitation. Future studies will assess the cytocompatibility and bioactivity of these materials to confirm their potential for biomedical applications. Full article
(This article belongs to the Section Biomineralization and Biominerals)
Show Figures

Figure 1

13 pages, 25033 KiB  
Article
Ultrastructural Aspects of Physiological Mineralization: A Comparative Study in Different Hard Tissues
by Marina Borgese, Mario Raspanti, Marina Protasoni, Piero Antonio Zecca, Fulvia Ortolani and Marcella Reguzzoni
Biomolecules 2025, 15(7), 932; https://doi.org/10.3390/biom15070932 - 26 Jun 2025
Viewed by 319
Abstract
The calcified tissues of vertebrates are essentially represented by bone, cartilage, dentin and calcified tendons. In all these tissues a major hallmark of mineralization is the deposition of the inorganic phase on a pre-existing collagen template, but evident differences exist among these materials [...] Read more.
The calcified tissues of vertebrates are essentially represented by bone, cartilage, dentin and calcified tendons. In all these tissues a major hallmark of mineralization is the deposition of the inorganic phase on a pre-existing collagen template, but evident differences exist among these materials and the molecular details of the process are still incompletely understood. In this study, the ultrastructural aspects of the mineral phase of these tissues were investigated by means of high-resolution scanning electron microscopy (HR-SEM) after low-temperature thermal deproteination, a technique allowing a direct, unrestricted visualization of the mineral component. Each tissue showed distinctive features. In most cases, calcification proceeds in a discontinuous way through the formation of clumps or clusters of mineralized tissue; in all cases, except cartilage, the mineral phase shows an evident relationship with the layout and/or the D-period of the collagen fibrils. Our results highlight the peculiar aspect of the mineralization process in the cartilage with respect to the other tissues, all of them containing collagen type I instead of type II, and suggest that a different molecular mechanism may be at work. It is still unclear whether and how this may be related to the content, exclusive of cartilage, of collagen type II. The identification of the tissue-specific features exhibited by cartilage versus those shared by all the other three tissues, although from different species, requires further research on physiological calcification. Full article
(This article belongs to the Special Issue Tissue Calcification in Normal and Pathological Environments)
Show Figures

Graphical abstract

15 pages, 1049 KiB  
Review
Influence of Wine on Bone Mineral Density
by Nathália Dantas Duarte, Paula Buzo Frigério, Felipe de Souza Duarte, Roberta Okamoto, Daniela Vieira Buchaim, Geraldo Marco Rosa Junior, Cleuber Rodrigo de Souza Bueno, Carlos Henrique Bertoni Reis, Rogerio Leone Buchaim and João Paulo Mardegan Issa
Nutrients 2025, 17(12), 1981; https://doi.org/10.3390/nu17121981 - 11 Jun 2025
Viewed by 1485
Abstract
Background: Considering the increasing interest in strategies to prevent osteoporosis and other bone-related conditions, it is relevant to critically assess the existing evidence on the potential benefits of phenolic compounds in wine on bone metabolism. Objectives: This integrative review aims to [...] Read more.
Background: Considering the increasing interest in strategies to prevent osteoporosis and other bone-related conditions, it is relevant to critically assess the existing evidence on the potential benefits of phenolic compounds in wine on bone metabolism. Objectives: This integrative review aims to evaluate clinical and animal studies investigating the influence of wine consumption on bone mineral density (BMD). Methods: The search was conducted in PubMed, Scopus, and Embase databases until April 2025. The key question was: “Does wine consumption influence BMD?”. Results: After searching the identified databases, 108 studies were screened, and 7 were included in the final analysis. Conclusions: This review suggests a possible association between light to moderate wine consumption and favorable effects on BMD, particularly in the spine and femoral neck. However, these findings should be interpreted cautiously due to the predominance of observational studies. Future RCTs and systematic reviews must clarify wine’s potential role in bone health and explore non-alcoholic or low-alcohol wine alternatives with similar polyphenol content. Full article
(This article belongs to the Special Issue Bone-Health-Promoting Bioactive Nutrition)
Show Figures

Figure 1

13 pages, 3526 KiB  
Article
Development of a Sustainable Bone Regeneration Material Using Apatite Paste Derived from Eggshell Waste
by Masatsugu Hirota, Chihiro Mochizuki, Toshitsugu Sakurai, Hiroyuki Mishima, Chikahiro Ohkubo and Takatsugu Yamamoto
J. Funct. Biomater. 2025, 16(6), 201; https://doi.org/10.3390/jfb16060201 - 1 Jun 2025
Viewed by 724
Abstract
Apatite pastes derived from eggshell waste (BAp) were implanted onto the calvarial bone of rats, and bone formation was evaluated using X-ray μ-computed tomography (CT) and histological evaluation. BAp was mixed with distilled water to prepare a paste. Monoclinic hydroxyapatite of mineral resources [...] Read more.
Apatite pastes derived from eggshell waste (BAp) were implanted onto the calvarial bone of rats, and bone formation was evaluated using X-ray μ-computed tomography (CT) and histological evaluation. BAp was mixed with distilled water to prepare a paste. Monoclinic hydroxyapatite of mineral resources (HAp) was used as a control. A 5 mm diameter PTFE (polytetrafluoroethylene) tube was filled with apatite pastes and implanted in the calvarial bone of 9-week-old Sprague Dawley rats for 8 weeks. A larger radiopaque area, similar to that of native bone, was observed in the BAp paste-implanted specimens than that of HAp paste. The bone mineral density (BMD) value of the BAp paste was significantly higher than that of the HAp paste (p < 0.05). In the histological evaluation, new bone formation was noticed from the calvarial side for both apatite specimens, and HAp remained in the PTFE unlike BAp. The bone mass (BM) value of the BAp paste was significantly higher than that of the HAp paste (p < 0.05). SEM and XRD analyses revealed that BAp was microcrystalline and poorly crystalline. The promotion of new bone formation may contribute to the crystallinity and Mg content of BAp. BAp was found to be useful as a bone regeneration material. Full article
(This article belongs to the Section Bone Biomaterials)
Show Figures

Graphical abstract

15 pages, 435 KiB  
Article
Quality of Maize Silage After Using Meat Bone Meal as a Phosphorus Fertilizer in a Field Experiment
by Anna Nogalska, Marta Borsuk-Stanulewicz, Cezary Purwin and Zenon Nogalski
Appl. Sci. 2025, 15(11), 6129; https://doi.org/10.3390/app15116129 - 29 May 2025
Viewed by 374
Abstract
The aim of this study is to determine the effects of increasing doses of meat and bone meal (MBM) and the year of the experiment on the feed value of maize silage. A three-year field experiment with silage maize was conducted. The following [...] Read more.
The aim of this study is to determine the effects of increasing doses of meat and bone meal (MBM) and the year of the experiment on the feed value of maize silage. A three-year field experiment with silage maize was conducted. The following treatments were established: (1) zero-fert (no fertilization); (2) inorganic nitrogen (N), phosphorus (P), and potassium (K); (3) 1.0 t∙ha−1 MBM; (4) 1.5 t∙ha−1 MBM; (5) 2.0 t∙ha−1 MBM. Both N and K were applied at constant rates, while P was applied at increasing rates: 0.0, 45, 68, and 90 kg∙ha−1. Replacing conventional P fertilizer and, partially, N fertilizer with MBM in silage maize cultivation had a positive influence on the ensiled herbage, compared with the zero-fert treatment. The fermentation parameters and feed value of silage made from maize fertilized with MBM were comparable with the parameters of maize fertilized with inorganic NPK fertilizers. In turn, the content of crude protein (CP) and protein digested in the small intestine when energy is limiting (PDIE) was highest in the silage made from maize supplied with mineral fertilizer. The mineral composition of maize silage, i.e., the content of calcium (Ca) and magnesium (Mg) was modified by fertilization. Full article
Show Figures

Figure 1

17 pages, 2088 KiB  
Article
Organochlorine Contaminants in Maize Fertilized with Meat and Bone Meal Derived from Animal By-Products
by Arkadiusz Stępień, Katarzyna Wojtkowiak, Ewelina Kolankowska and Renata Pietrzak-Fiećko
Appl. Sci. 2025, 15(10), 5620; https://doi.org/10.3390/app15105620 - 17 May 2025
Viewed by 397
Abstract
Despite the fact that organochlorine pesticides (OCPs) were banned many years ago, their residues are still present in the natural environment and pose a potential health risk to humans and animals. This study was undertaken to evaluate the effect of meat and bone [...] Read more.
Despite the fact that organochlorine pesticides (OCPs) were banned many years ago, their residues are still present in the natural environment and pose a potential health risk to humans and animals. This study was undertaken to evaluate the effect of meat and bone meal (1.0, 2.0 and 3.0 t ha−1 MBM) derived from animal by-products and used as fertilizer on the content of γ-HCH (γ-hexachlorocyclohexane), DDT (1,1,1-Trichloro-bis-2,2 [4-chlorophenyl]-ethane) and its metabolites (DDD, dichlorodiphenyldichloroethane and DDE, dichlorodiphenyldichloroethylene) in MBM, soil, and maize grain. A long-term small-area field experiment with MBM applied to maize grown in monoculture was conducted at the Agricultural Experiment Station in Tomaszkowo, Poland (53°71′ N, 20°43′ E) from 2014 to 2017. The concentration of γ-HCH in soil decreased gradually, whereas the levels of DDT and its metabolites continued to increase in successive years of the experiment. A minor increase in DDT accumulation in maize grain was also observed, particularly in treatments supplied with mineral fertilizers. Meat and bone meal affected grain contamination levels, and the highest MBM rates decreased the content of DDT metabolites in grain. The results of the study suggest that MBM could be a secondary source of OCPs in the agricultural environment and that their availability to plants varies depending on soil parameters and weather conditions. Full article
Show Figures

Figure 1

14 pages, 7546 KiB  
Article
Role of Zinc Homeostasis in the Pathogenesis of Diabetic Osteoporosis in Mice
by Yoshinori Mizuno, Fuka Takeuchi, Marina Morimoto and Yukinori Tamura
Diabetology 2025, 6(5), 36; https://doi.org/10.3390/diabetology6050036 - 2 May 2025
Viewed by 589
Abstract
Background: Diabetes induces osteoporosis primarily by impairing osteoblast function. Intracellular zinc homeostasis, which is controlled by zinc transporters, plays a significant role in osteoblast differentiation. In the present study, we aimed to explore the role of zinc homeostasis in the pathogenesis of diabetic [...] Read more.
Background: Diabetes induces osteoporosis primarily by impairing osteoblast function. Intracellular zinc homeostasis, which is controlled by zinc transporters, plays a significant role in osteoblast differentiation. In the present study, we aimed to explore the role of zinc homeostasis in the pathogenesis of diabetic bone loss using a diabetic mouse model. Methods: Streptozotocin (STZ)-induced diabetic female mice were used for in vivo experiments. In vitro, the effects of zinc transporter knockdown using small interfering RNA was investigated in MC3T3E1 pre-osteoblastic cells. Results: STZ-induced diabetic mice exhibited severe bone loss and decreased expression of osteogenic genes, as well as a decrease in zinc content and the expression of several zinc transporters localized in the cellular membrane, including Zip6, Zip9, and Zip10 in the tibia. Moreover, the messenger RNA (mRNA) levels of Zip6, Zip9, and Zip10 were positively correlated with trabecular bone mineral density in the tibiae of diabetic mice. This in vitro study, using MC3T3E1 pre-osteoblastic cells, revealed that knockdown of Zip6 reduced the expression of osteogenic genes in pre-osteoblastic cells. Additionally, Zip6 knockdown downregulated protein levels of phosphorylated p38 mitogen-activated protein kinase (p38MAPK) in pre-osteoblastic cells, and this change was observed in the tibiae of diabetic mice. Conclusions: Our data suggest that the downregulation of zinc transporters localized in the cellular membrane, such as Zip6, may be involved in the impairment of osteoblastic differentiation through the inhibition of p38 MAPK signaling, leading to osteoporosis under diabetic conditions. Maintaining zinc homeostasis in bone tissues may be vital for preventing and treating diabetic bone loss, and zinc transporters may serve as novel therapeutic targets for diabetic osteoporosis. Full article
Show Figures

Figure 1

12 pages, 856 KiB  
Review
Phosphate Homeostasis in Chronic Kidney Disease with Emphasis in Peritoneal Dialysis
by Jaime Uribarri
Kidney Dial. 2025, 5(2), 17; https://doi.org/10.3390/kidneydial5020017 - 2 May 2025
Viewed by 1298
Abstract
Hyperphosphatemia in dialysis patients is associated with adverse outcomes including bone mineral disease, increased total mortality, and cardiovascular mortality. Therefore, maintaining serum phosphate levels within limits is an important aspect of the clinical care of peritoneal dialysis patients. Unfortunately, hyperphosphatemia is commonly seen [...] Read more.
Hyperphosphatemia in dialysis patients is associated with adverse outcomes including bone mineral disease, increased total mortality, and cardiovascular mortality. Therefore, maintaining serum phosphate levels within limits is an important aspect of the clinical care of peritoneal dialysis patients. Unfortunately, hyperphosphatemia is commonly seen in the majority of dialysis patients, at least in the USA, despite apparent optimal dietary and pharmacological intervention and adequate dialysis. Herein, we review major aspects of body phosphate homeostasis in healthy subjects and in dialysis patients in order to provide a good background understanding for a more rational approach to manage serum phosphate. Of note, the phosphate concentration measured in blood by clinical laboratories represents a minute portion of the total body phosphate content but the only one that we can easily access at present; this aspect is discussed in detail in this review. We emphasize the curtailment not only of the total oral phosphate intake but also the intake of highly bioavailable phosphate; this, together with the right use of oral phosphate binders and appropriate dialysis, is an important tool. Emerging therapies with agents that block intestinal absorption of phosphate may offer a promising four-pronged approach to phosphate management. Full article
Show Figures

Figure 1

Back to TopTop