Bone Type Selection for Human Molecular Genetic Identification of Skeletal Remains
Abstract
1. Introduction
2. DNA Recovery from Hard Mineralized Tissues
3. Recommendations for Bone Sampling Strategies
4. Intrabone Variability in DNA Content
5. Differences in DNA Preservation in Compact and Trabecular Bone
6. The Petrous Bone and Tooth Cementum
7. Discussion
8. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hagelberg, E.; Sykes, B.; Hedges, R. Ancient bone DNA amplified. Nature 1989, 342, 485. [Google Scholar] [CrossRef] [PubMed]
- Lindahl, T. Instability and decay of the primary structure of DNA. Nature 1993, 362, 709–715. [Google Scholar] [CrossRef] [PubMed]
- Collins, M.J.; Riley, M.S.; Child, A.M.; Turner-Walker, G. A basic mathematical simulation of the chemical degradation of ancient collagen. J. Archaeol. Sci. 1995, 22, 175–183. [Google Scholar] [CrossRef]
- Tuross, N. Recent Advances in Bone, Dentin and Enamel Biochemistry. In Identification of Pathological Conditions in Human Skeletal Remains, 2nd ed.; Academic Press: New York, NY, USA, 2003; pp. 65–72. [Google Scholar]
- Campos, P.F.; Craig, O.E.; Turner-Walker, G.; Peacock, E.; Willerslev, E.; Gilbert, M.T.P. DNA in ancient bone—Where is it located and how should we extract it? Ann. Anat. 2012, 194, 7–16. [Google Scholar] [CrossRef] [PubMed]
- Okazaki, M.; Yoshida, Y.; Yamaguchi, S.; Kaneno, M.; Elliott, J.C. Affinity binding phenomena of DNA onto apatite crystals. Biomaterials 2001, 22, 2459–2464. [Google Scholar] [CrossRef]
- Kawasaki, T.; Takahashi, S.; Ideda, K. Hydroxyapatite high-performance liquid chromatography: Column performance for proteins. Eur. J. Biochem. 1985, 152, 361–371. [Google Scholar] [CrossRef] [PubMed]
- Salamon, M.; Tuross, N.; Arensburg, B.; Weiner, S. Relatively well preserved DNA is present in the crystal aggregates of fossil bones. Proc. Natl. Acad. Sci. USA 2005, 102, 13783–13788. [Google Scholar] [CrossRef] [PubMed]
- Kitamura, H.; Iwamoto, C.; Sakairi, N.; Tokura, S.; Nishi, N. Marked effect of dna on collagen fibrillogenesis in vitro. Int. J. Biol. Macromol. 1997, 20, 241–244. [Google Scholar] [CrossRef] [PubMed]
- Mrevlishvili, G.M.; Svintradze, D.V. DNA as a matrix of collagen fibrils. Int. J. Biol. Macromol. 2005, 36, 324–326. [Google Scholar] [CrossRef] [PubMed]
- Krane, S. Degradation of collagen in connective tissue diseases. In Rheumatoid Arthritis, in Dynamics of Connective Tissue Macromolecules; Burleigh, P.M.C., Poole, A.R., Eds.; North Holland: Amsterdam, The Netherlands, 1975; pp. 309–326. [Google Scholar]
- Klont, B.; Damen, J.J.M.; Ten Cate, J.M. Degradation of bovine incisor root collagen in an in vitro caries model. Arch. Oral Biol. 1991, 36, 299–304. [Google Scholar] [CrossRef] [PubMed]
- Kleter, G.A.; Damen, J.J.; Everts, V.; Niehof, J.; Ten Cate, J.M. The influence of the organic matrix on demineralization of bovine root dentin in vitro. J. Dent. Res. 1994, 73, 1523–1529. [Google Scholar] [CrossRef] [PubMed]
- Putnis, A.; Putnis, C.V.; Paul, J.M. The efficiency of a DTPA based solvent in the dissolution of barium sulphate scale deposits. SPE Int. 1995, 773–785. [Google Scholar]
- Götherström, A.; Collins, M.J.; Angerbjörn, A.; Liden, K. Bone preservation and DNA amplification. Archaeometry 2002, 44, 395–404. [Google Scholar] [CrossRef]
- Higuchi, R.; Bowman, B.; Freiberg, M.; Ryder, O.A.; Wilson, A.C. DNA sequence from quagga, an extinct member of horse family. Nature 1984, 312, 282–284. [Google Scholar] [CrossRef] [PubMed]
- Pääbo, S. Molecular cloning of ancient Egyptian mummy DNA. Nature 1985, 314, 644–645. [Google Scholar] [CrossRef]
- Pääbo, S.; Gifford, J.A.; Wilson, A.C. Mitohondrial DNA sequence from a 7,000-year–old–brain. Nucl. Acids Res. 1988, 16, 9775–9787. [Google Scholar] [CrossRef] [PubMed]
- Thomas, R.H.; Schaffner, W.; Wilson, A.C.; Pääbo, S. DNA phylogeny of the extinct marsupial wolf. Nature 1989, 340, 465–467. [Google Scholar] [CrossRef] [PubMed]
- Hagelberg, E.; Clegg, J.B. Isolation and characterization of DNA from archeological bone. Proc. R. Soc. B Biol. Sci. 1991, 244, 45–50. [Google Scholar]
- Hagelberg, E.; Gray, I.C.; Jeffreys, A.J. Identification of the skeletal remains of a murder victim by DNA analysis. Nature 1991, 352, 427–429. [Google Scholar] [CrossRef] [PubMed]
- Hochmeister, M.N.; Budowle, B.; Borer, U.V.; Eggmann, U.; Comey, C.T.; Dirnhofer, R. Typing of deoxyribonucleic acid (DNA) extracted form compact bone from human remains. J. Forensic Sci. 1991, 36, 1649–1661. [Google Scholar] [CrossRef] [PubMed]
- Hochmeister, M.N.; Budowle, B.; Borer, U.V.; Rudin, O.; Bohnert, M.; Dirnhofer, R. Confirmation of the identify of human skeletal remains using multiplex PCR amplification and typing kits. J. Forensic Sci. 1994, 40, 701–705. [Google Scholar] [CrossRef]
- Gill, P.; Ivanov, P.L.; Kimpton, C.; Piercy, R.; Benson, N.; Tully, G.; Evett, I.; Hagelberg, E.; Sullivan, K. Identification of the remains of the Romanov family by DNA analysis. Nat. Genet. 1994, 6, 130–135. [Google Scholar] [CrossRef] [PubMed]
- Cattaneo, C.; Smillie, D.M.; Gelsthorpe, K.; Piccinini, A.; Gelsthorpe, A.R.; Sokol, R.J. A simple method for extracting DNA from old skeletal material. Forensic Sci. Int. 1995, 74, 167–174. [Google Scholar] [CrossRef] [PubMed]
- Cattaneo, O.C.; Craig, O.E.; James, N.T.; Sokol, R.J. Comparison of three DNA extraction methods on bone and blood stains up to 43 years old and amplification of three different gene sequences. J. Forensic Sci. 1997, 42, 1126–1135. [Google Scholar] [CrossRef] [PubMed]
- Primorac, D.; Andelinovic, S.; Definis-Gojanovic, M.; Drmic, I.; Rezic, B.; Baden, M.M.; Kennedy, M.; Schanfietld, M.S.; Skakel, S.; Lee, H. Identification of war victims from mass graves in Croatia, Bosnia, and Herzegovina by the use of standard forensic methods and DNA typing. J. Forensic Sci. 1996, 41, 891–894. [Google Scholar] [CrossRef] [PubMed]
- Evison, M.P.; Smillie, D.M.; Chamberlain, A.T. Extraction of single- copy nuclear DNA from forensic specimens with a variety of postmortem histories. J. Forensic Sci. 1997, 42, 1032–1038. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, T.; Uchihi, R.; Kojima, T.; Nozawa, H.; Huang, X.L.; Tamaki, K.; Katsumata, Y. Maternal identification from skeletal remains of an infant kept by the alleged mother for 16 years with DNA typing. J. Forensic Sci. 1998, 43, 701–705. [Google Scholar] [CrossRef] [PubMed]
- Sozer, A.C. DNA Analysis for Missing Person Identification in Mass Fatalities; CRC Press: New York, NY, USA, 2014; p. 323. [Google Scholar]
- Opel, K.L.; Chung, D.; McCord, B.R. A study of PCR inhibition mechanisms using real time PCR. J. Forensic Sci. 2010, 55, 25–33. [Google Scholar] [CrossRef] [PubMed]
- Loreille, O.M.; Diegoli, T.M.; Irwin, J.A.; Coble, M.D.; Parsons, T.J. High efficiency DNA extraction from bone by total demineralization. Forensic Sci. Int. Genet. 2007, 1, 191–195. [Google Scholar] [CrossRef] [PubMed]
- Rohland, N.; Hofreiter, M. Comparison and optimization of ancient DNA extraction. BioTechniques 2007, 42, 343–352. [Google Scholar] [CrossRef] [PubMed]
- Amory, S.; Huel, R.; Bilić, A.; Loreille, O.; Parsons, T.J. Automatable full demineralization DNA extraction procedure from degraded skeletal remains. Forensic Sci. Int. Genet. 2012, 6, 398–406. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.Y.; Eng, B.; Waye, J.S.; Dudar, J.C.; Saunders, S.R. Technical note: Improved DNA extraction from ancient bones using silica-based spin columns. Am. J. Phys. Anthropol. 1998, 105, 539–543. [Google Scholar] [CrossRef]
- Lee, H.Y.; Park, M.J.; Kim, N.Y.; Sim, J.E.; Yang, W.I.; Shin, K.J. Simple and highly effective DNA extraction methods from old skeletal remains using silica columns. Forensic Sci. Int. Genet. 2010, 4, 275–280. [Google Scholar] [CrossRef] [PubMed]
- Seo, S.B.; Zhang, A.; Kim, H.Y.; Yi, J.A.; Lee, H.Y.; Shin, D.H.; Lee, S.D. Technical note: Efficiency of total demineralization and ion-exchange column for DNA extraction from bone. Am. J. Phys. Anthropol. 2010, 141, 158–162. [Google Scholar] [CrossRef] [PubMed]
- Dabney, J.; Meyer, M. Extraction of Highly Degraded DNA from Ancient Bones and Teeth. In Ancient DNA. Methods in Molecular Biology; Shapiro, B., Barlow, A., Heintzman, P., Hofreiter, M., Paijmans, J., Soares, A., Eds.; Humana Press: New York, NY, USA, 2019; Volume 1963. [Google Scholar] [CrossRef]
- Emery, M.; Bolhofner, K.; Winingear, S.; Oldt, R.; Montes, M.; Kanthaswamy, S.; Buikstra, J.E.; Fulginiti, L.C.; Stone, A.C. Reconstructing full and partial STR profiles from severely burned human remains using comparative ancient and forensic DNA extraction techniques. Forensic Sci. Int. Genet. 2020, 46, 102272. [Google Scholar] [CrossRef] [PubMed]
- Zupanič Pajnič, I. Extraction of DNA from Human Skeletal Material. In Forensic DNA Typing Protocols. Methods in Molecular Biology; Goodwin, W., Ed.; Humana Press: New York, NY, USA, 2016; Volume 1420. [Google Scholar]
- Zupanič Pajnič, I.; Gornjak Pogorelc, B.; Balažic, J. Molecular genetic identification of skeletal remains from the Second World War Konfin I mass grave in Slovenia. Int. J. Leg. Med. 2010, 124, 307–317. [Google Scholar] [CrossRef] [PubMed]
- Zupanič Pajnič, I. Molecular genetic identification of the Slovene home guard victims. Zdr. Vestn. 2008, 77, 745–750. [Google Scholar]
- Zupanič Pajnič, I.; Obal, M.; Zupanc, T. Identifying victims of the largest Second World War family massacre in Slovenia. Forensic Sci. Int. 2020, 306, 110056. [Google Scholar] [CrossRef] [PubMed]
- Prinz, M.; Carracedo, A.; Mayr, W.R.; Morling, N.; Parsons, T.J.; Sajantila, A.; Scheithauer, R.; Schmitter, H.; Schneider, P.M. DNA Commission of the International Society for Forensic Genetics (ISFG): Recommendations regarding the role of forensic genetics for disaster victim identification (DVI). Forensic Sci. Int. Genet. 2007, 1, 3–12. [Google Scholar] [CrossRef] [PubMed]
- INTERPOL. Disaster Victim Identification Guide; INTERPOL: Lyon, France, 2022; pp. 127. [Google Scholar]
- Gonzales, A.R.; Henke, T.A.; Hart, S.V. Mass fatality incidents: A guide for human forensic identification. Natl. Inst. Justice 2005, 1–79. [Google Scholar]
- Icmp. Standard Operating Procedure for Sampling Bone and Tooth Specimens From Human Remains; ICMP: Prague, Czech Republic, 2015; pp. 1–19. [Google Scholar]
- Hines, D.Z.; Vennemeyer, M.; Amory, S.; Huel, R.L.M.; Hanson, I.; Katzmarzyk, C.; Parsons, T.J. Prioritized sampling of bone and teeth for DNA analysis in commingled cases. In Commingled Human Remains; Elsevier: Cambridge, MA, USA, 2014; pp. 275–305. [Google Scholar]
- Edson, S.M.; Ross, J.P.; Coble, M.D.; Parsons, T.J.; Barritt, S.M. Naming the Dead—Confronting the Realities of Rapid Identification of Degraded Skeletal Remains. Forensic Sci. Rev. 2004, 16, 63–90. [Google Scholar] [PubMed]
- Miloš, A.; Selmanović, A.; Smajlović, L.; Huel, R.L.M.; Katzmarzyk, C.; Rizvić, A.; Parsons, T.J. Success rates of nuclear short tandem reperat typing from different skeletal elements. Croat. Med. J. 2007, 48, 486–493. [Google Scholar] [PubMed]
- Mundorff, A.Z.; Bartelink, E.J.; Mar-Cash, E. DNA Preservation in Skeletal Elements from the World Trade Center Disaster: Recommendations for Mass Fatality Management. J. Forensic Sci. 2009, 54, 739–745. [Google Scholar] [CrossRef] [PubMed]
- Perry, W.L.; Bass, W.M.; Riggsby, W.S.; Sirotkin, K. The autodegradation of deoxyribonucleic-acid (DNA) in human rib bone and its relationship to the time interval since death. J. Forensic Sci. 1988, 33, 144–153. [Google Scholar] [CrossRef] [PubMed]
- Alonso, A.; Andelinović, S.; Martín, P.; Sutlović, D.; Erceg, I.; Huffine, E.; de Simón, L.F.; Albarrán, C.; Definis-Gojanović, M.; Fernández-Rodriguez, A.; et al. DNA typing from skeletal remains: Evaluation of multiplex and megaplex STR systems on DNA isolated from bone and teeth samples. Croat. Med. J. 2001, 42, 260–266. [Google Scholar] [PubMed]
- Gonzalez, A.; Cannet, C.; Zvénigorosky, V.; Geraut, A.; Koch, G.; Delabarde, T.; Ludes, B.; Jean-Sébastien, R.; Keyser, C. The petrous bone: Ideal substrate in legal medicine? Forensic Sci. Int. Genet. 2020, 47, 102305. [Google Scholar] [CrossRef] [PubMed]
- Sosa, C.; Baeta, M.; Núñez, C.; Casalod, Y.; Luna, A.; Martínez-Jarreta, B. Nuclear DNA typing from ancient teeth. Am. J. Forensic Med. Pathol. 2012, 33, 211–214. [Google Scholar] [CrossRef] [PubMed]
- Higgins, D.; Austin, J.J. Teeth as a source of DNA for forensic identification of human remains: A Review. Sci. Justice 2013, 53, 433–441. [Google Scholar] [CrossRef] [PubMed]
- Higgins, D.; Kaidonis, J.; Townsend, G.; Hughes, T.; Austin, J.J. Targeted sampling of cementum for recovery of nuclear DNA from human teeth and the impact of common decontamination measures. Investig. Genet. 2013, 4, 18. [Google Scholar] [CrossRef] [PubMed]
- Nelson, K.; Melton, T. Forensic mitochondrial DNA analysis of 116 casework skeletal samples. J. Forensic Sci. 2007, 52, 557–561. [Google Scholar] [CrossRef] [PubMed]
- Gaytmenn, R.; Sweet, D. Quantification of forensic DNA from various regions of human teeth. J. Forensic Sci. 2003, 48, 622–625. [Google Scholar] [CrossRef] [PubMed]
- Higgins, D.; Kaidonis, J.; Austin, J.J.; Townsend, G.; James, H.; Hughes, T. Dentine and cementum as sources of nuclear DNA for use in human identification. Aust. J. Forensic Sci. 2011, 43, 287–295. [Google Scholar] [CrossRef]
- Trivedi, R.; Chattopadhyay, P.; Kashyap, V.K. A new improved method for extraction of DNA from teeth for the analysis of hypervariable loci. Am. J. Forensic Med. Pathol. 2002, 23, 191–196. [Google Scholar] [CrossRef] [PubMed]
- Malaver, P.C.; Yunis, J.J. Different dental tissues as a source of DNA for human identification in forensic cases. Croat. Med. J. 2003, 44, 306–309. [Google Scholar] [PubMed]
- Potsch, L.; Meyer, U.; Rothschild, S.; Schneider, P.M.; Rittner, C. Application of DNA techniques for identification using human dental pulp as a source of DNA. Int. J. Leg. Med. 1992, 105, 139–143. [Google Scholar] [CrossRef] [PubMed]
- Alaeddini, R.; Walsh, S.J.; Abbas, A. Forensic implications of genetic analyses from degraded DNA-a review. Forensic Sci. Int. Genet. 2010, 4, 148–157. [Google Scholar] [CrossRef] [PubMed]
- Adler, C.J.; Haak, W.; Donlon, D.; Cooper, A.; Consortium, T.G. Survival and recovery of DNA from ancient teeth and bones. J Archaeol. Sci. 2011, 38, 956–964. [Google Scholar] [CrossRef]
- Yamamoto, T.; Hasegawa, T.; Yamamoto, T.; Hongo, H.; Amizuka, N. Histology of human cementum: Its structure, function, and development. Jpn. Dent. Sci. Rev. 2016, 52, 63–74. [Google Scholar] [CrossRef] [PubMed]
- Higgins, D.; Rohrlach, A.B.; Kaidonis, J.; Townsend, G.; Austin, J.J. Differential Nuclear and Mitochondrial DNA Preservation in Post-Mortem Teeth with Implications for Forensic and Sncient DNA Studies. PLoS ONE 2015, 10, e0126935. [Google Scholar] [CrossRef] [PubMed]
- Cafiero, C.; Re, A.; Stigliano, E.; Bassotti, E.; Moroni, R.; Grippaudo, C. Optimization of DNA extraction from dental remains. Electrophoresis 2019, 40, 1820–1823. [Google Scholar] [CrossRef] [PubMed]
- Hansen, H.B.; Damgaard, P.B.; Margaryan, A.; Stenderup, J.; Lynnerup, N.; Willerslev, E.; Allentoft, M.E. Comparing Ancient DNA Preservation in Petrous Bone and Tooth Cementum. PLoS ONE 2017, 12, e0170940. [Google Scholar] [CrossRef] [PubMed]
- Harney, É.; Cheronet, O.; Fernandes, D.M.; Sirak, K.; Mah, M.; Bernardos, R.; Adamski, N.; Broomandkhoshbacht, N.; Callan, K.; Lawson, A.M.; et al. A minimally destructive protocol for DNA extraction from ancient teeth. Genome Res. 2021, 31, 472–483. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.F.; Lin, C.Y.; Yu, Y.J.; Linacre, A.; Lee, J.C. DNA identification from dental pulp and cementum. Forensic Sci. Int. Genet. 2023, 67, 102945. [Google Scholar] [CrossRef] [PubMed]
- Damgaard, P.B.; Margaryan, A.; Schroeder, H.; Ludovic, O.; Willerslev, E.; Allentoft, M.E. Improving access to endogenous DNA in ancient bones and teeth. Sci. Rep. 2015, 5, 11184. [Google Scholar] [CrossRef] [PubMed]
- Mundorff, A.; Davoren, J.M. Examination of DNA yield rates for different skeletal elements at increasing post mortem intervals. Forensic Sci. Int. Genet. 2014, 8, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Emmons, A.L.; Davoren, J.; DeBruyn, J.M.; Mundorff, A.Z. Inter and intra-individual variation in skeletal DNA preservation in buried remains. Forensic Sci. Int. Genet. 2020, 44, 102193. [Google Scholar] [CrossRef] [PubMed]
- Zupanc, T.; Obal, M.; Podovšovnik, E.; Zupanič Pajnič, I. High DNA yield from metatarsal and metacarpal bones from Slovenian Second World War skeletal remains. Forensic Sci. Int. Genet. 2021, 51, 102426. [Google Scholar] [CrossRef] [PubMed]
- Leney, M.D. Sampling skeletal remains for ancient DNA (aDNA): A measure of success. Hist. Archeol. 2006, 40, 31–49. [Google Scholar] [CrossRef]
- Otagiri, T.; Sato, N.; Shiozaki, T.; Harayama, Y.; Matsumoto, M.; Kobayashi, K.; Asamura, H. An optimal skeletal element for DNA testing: Evaluation of DNA quantity and quality from various bone types in routine forensic practice. Leg. Med. 2024, 68, 102415. [Google Scholar] [CrossRef] [PubMed]
- Inkret, J.; Zupanc, T.; Podovšovnik, E.; Zupanič Pajnič, I. A recommended sampling strategy for genetic identification of Second World War victims in Slovenia. Forensic Sci. Int. 2025, 366, 112304. [Google Scholar] [CrossRef] [PubMed]
- Simões Dutra Corrêa, H.; Cortellini, V.; Franceschetti, L.; Verzeletti, A. Forensic DNA Typing From Femurs and Bones of the Foot: A Study of 3 Cases. Am. J. Forensic Med. Pathol. 2022, 43, 269–272. [Google Scholar] [CrossRef] [PubMed]
- Symes, S.; Rainwater, C.; Chapman, E.; Gipson, D.; Piper, A. Patterned thermal destruction of human remains in a forensic setting. In The Analysis of Burned Human Remains; Academic Press: New York, NY, USA, 2008; pp. 15–54. [Google Scholar]
- Gamba, C.; Jones, E.R.; Teasdale, M.D.; McLaughlin, R.L.; Gonzalez-Fortes, G.; Mattiangeli, V.; Domboróczki, L.; Kővári, I.; Pap, I.; Anders, A.; et al. Genome flux and stasis in a five millennium transect of European prehistory. Nat. Commun. 2014, 5, 5257. [Google Scholar] [CrossRef] [PubMed]
- Misner, L.M.; Halvorson, A.C.; Dreier, J.L.; Ubelaker, D.H.; Foran, D.R. The correlation Between Skeletal Weathering and DNA Quality and Quantity. J. Forensic Sci. 2009, 54, 822–828. [Google Scholar] [CrossRef] [PubMed]
- Golob, A.; Kravanja, P.; Concato, M.; Leskovar, T.; Zupanič Pajnič, I. Searching for alternative high DNA-yielding bone types for DNA analysis of aged skeletal remains. Forensic Sci. Int. 2024, 362, 112184. [Google Scholar] [CrossRef] [PubMed]
- Barta, J.L.; Monroe, C.; Crockford, S.J.; Kemp, B.M. Mitochondrial DNA preservation across 3000-years-old northern fur seal ribs is not related to bone density: Implications foe forensic investigations. Forensic Sci. Int. 2014, 239, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Alberti, F.; Gonzalez, J.; Paijmans, J.L.A.; Basler, N.; Preick, M.; Henneberger, K.; Trinks, A.; Rabeder, G.; Conard, N.J.; Münzel, S.C.; et al. Optimized DNA sampling of ancient bones using computed tomography scans. Mol. Ecol. Resour. 2018, 18, 1196–1208. [Google Scholar] [CrossRef] [PubMed]
- Antinick, T.C.; Foran, D.R. Intra- and Inter- Element Variability in mitochondrial and Nuclear DNA from Fresh and Enviromentally Exposed Skeletal Remains. J. Forensic Sci. 2019, 64, 88–97. [Google Scholar] [CrossRef] [PubMed]
- Klavens, A.; Kollmann, D.D.; Elkins, K.M.; Zeller, C.B. Comparison of DNA yield and STR profiles from the diaphysis, mid-diaphysis, and metaphysis regions of femur and tibia long bones. J. Forensic Sci. 2021, 66, 1104–1113. [Google Scholar] [CrossRef] [PubMed]
- Zupanič Pajnič, I.; Kovačič, N. DNA preservation in compact and trabecular bone. Forensic Sci. Int. Genet. 2024, 71, 103067. [Google Scholar] [CrossRef] [PubMed]
- Inkret, J.; Podovšovnik, E.; Zupanc, T.; Haring, G.; Zupanič Pajnič, I. Intra-bone nuclear DNA variability in Second World War metatarsal and metacarpal bones. Int. J. Leg. Med. 2021, 135, 1245–1256. [Google Scholar] [CrossRef] [PubMed]
- Clarke, B. Normal Bone Anatomy and Physiology. Clin. J. Am. Soc. Nephrol. 2008, 3, S131–S139. [Google Scholar] [CrossRef] [PubMed]
- Božič, L.; Benedik Bevc, T.; Podovšovnik, E.; Zupanc, T.; Zupanič Pajnič, I. Intra-bone nuclear DNA variability and STR typing success in Second World War first ribs. Int. J. Leg. Med. 2021, 135, 2199–2208. [Google Scholar] [CrossRef] [PubMed]
- Benedik Bevc, T.; Božič, L.; Podovšovnik, E.; Zupanc, T.; Zupanič Pajnič, I. Intra-bone nuclear DNA variability and STR typing success in Second World War 12th thoracic vertebrae. Forensic Sci. Int. Genet. 2021, 55, 102587. [Google Scholar] [CrossRef] [PubMed]
- Andronowski, J.M.; Mundorff, A.Z.; Pratt, I.V.; Davoren, J.M.; Cooper, D.M.L. Evaluating differential nuclear DNA yield rates and osteocyte numbers among human bone tissue types: A synchroyton radiation micro-CT approach. Forensic Sci. Int. Genet. 2017, 28, 211–218. [Google Scholar] [CrossRef] [PubMed]
- Andronowski, J.M.; Crowder, C.; Soto Martinez, M. Recent advancements in the analysis of bone microstructure: New dimensions in forensic anthropology. Forensic Sci. Rec. 2018, 3, 278–293. [Google Scholar] [CrossRef] [PubMed]
- Andronowski, J.M.; Mundorff, A.Z.; Davis, R.A.; Price, E.W. Application of X-ray photoelectron spectrocopy to examine surface chemistry of cancellous bone and medullary contents to refine bone samples selection for nuclear DNA analysis. J. Anal. At. Spectrom. 2019, 34, 2074–2082. [Google Scholar] [CrossRef]
- Figueiredo, M.M.; Gamelas, J.A.F.; Martins, A.G. Characterization of bone and bone-based graft materials using FTIR spectroscopy. In Infrared Spectroscopy—Life and Biomedical Sciences; Theophile, T., Ed.; InTech: Athens, Greece, 2012; pp. 315–338. [Google Scholar]
- Querido, W.; Ailavajhala, R.; Padalkar, M.; Pleshko, N. Validated approaches for quantification of bone mineral crystallinity using transmission fourier transform infrared (FT-IR), attenuated total reflection (ATR) FT-IR, and raman spectroscopy. Appl. Spectrosc. 2018, 72, 1581–1593. [Google Scholar] [CrossRef] [PubMed]
- Rey, C.; Collins, B.; Goehl, T.; Dickson, I.R.; Glimcher, M.J. The carbonate environment in bone mineral: A resolution-enhanced fourier transform infrared spectroscopy study. Calcif. Tissue Int. 1989, 45, 157–164. [Google Scholar] [CrossRef] [PubMed]
- Paschalis, E.P.; Betts, F.; DiCarlo, E.; Mendelsohn, R.; Boskey, A.L. FTIR microspectroscopic analysis of normal human cortical and trabecular bone. Calcif. Tissue Int. 1997, 61, 480–486. [Google Scholar] [CrossRef] [PubMed]
- Tătar, A.S.; Ponta, O.; Kelemen, B. Bone diagenesis and FTIR indices: A correlation. Stud. Univ. Babes-Bolyai Biol. 2014, 59, 101–114. [Google Scholar]
- Gonçalves, D.; Vassalo, A.R.; Mamede, A.P.; Makhoul, C.; Piga, G.; Cunha, E.; Marques, M.P.M.; Batista de Carvalho, L.A.E. Crystal clear: Vibrational spectroscopy reveals intrabone, intraskeleton, and interskeleton variation in human bones. Am. J. Phys. Anthropol. 2018, 166, 296–312. [Google Scholar] [CrossRef] [PubMed]
- Kontopoulos, I.; Penkman, K.; McAllister, G.D.; Lynnerup, N.; Damgaard, P.B.; Hansen, H.B.; Allentoft, M.E.; Collins, M.J. Petrous bone diagenesis: A multi-analytical approach. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2019, 518, 143–154. [Google Scholar] [CrossRef]
- Martínez Cortizas, A.; López-Costas, O. Linking structural and compositional changes in archaeological human bone collagen: An FTIR-ATR approach. Sci. Rep. 2020, 10, 17888. [Google Scholar] [CrossRef] [PubMed]
- Leskovar, T.; Inkret, J.; Zupanič Pajnič, I.; Jerman, I. Comparison of DNA preservation and ATR-FTIR spectroscopy indices of cortical and trabecular bone of metacarpals and metatarsals. Sci. Rep. 2023, 13, 15498. [Google Scholar] [CrossRef] [PubMed]
- Schweitzer, M.H.; Marshall, M.; Carron, K.; Bohle, D.S.; Busse, S.C.; Arnold, E.V.; Bernard, D.; Horner, J.R.; Starkey, J.R. Heme compounds in dinosaur trabecular bone. Proc. Natl. Acad. Sci. USA 1997, 94, 6291–6296. [Google Scholar] [CrossRef] [PubMed]
- Schweitzer, M.H.; Wittmeyer, J.L.; Horner, J.R.; Toporski, J.K. Soft tissue vessels and cellular preservation in Tyrannosaurus rex. Science 2005, 307, 1952–1955. [Google Scholar] [CrossRef] [PubMed]
- Schweitzer, M.H.; Wittmeyer, J.L.; Horne, J.R. Soft tissue preservation in vertebrate skeletal elements from the Cretaceous to the present. Proc. R. Soc. B Biol. Sci. 2007, 274, 183–197. [Google Scholar] [CrossRef] [PubMed]
- Martill, D.M.; Unwin, D.M. Small Spheres in Fossil Bones: Blood Corpuscles or Diagenetic Products? Paleontology 1997, 40, 619–624. [Google Scholar]
- Kaye, T.G.; Gaugler, G.; Sawlowicz, Z. Dinosaurian Soft Tissues Interpreted as Bacterial Biofilms. PLoS ONE 2008, 3, e2808. [Google Scholar] [CrossRef] [PubMed]
- Latham, K.E.; Miller, J.J. DNA recovery and analysis from skeletal material in modern forensic contexts. Forensic Sci. Res. 2019, 4, 51–59. [Google Scholar] [CrossRef] [PubMed]
- Emmons, A.L.; Mundorff, A.Z.; Keenan, S.W.; Davoren, J.; Andronowski, J.; Carter, D.O.; DeBruyn, J.M.; Archer, M. Characterizing the postmortem human bone microbiome from surface-decomposed remains. PLoS ONE 2020, 15, e0218636. [Google Scholar] [CrossRef] [PubMed]
- Korlević, P.; Gerber, T.; Gansauge, M.T.; Hajdinjak, M.; Nagel, S.; Aximu-Petri, A.; Meyer, M. Reducing Microbial and Human Contamination in DNA Extractions from Ancient Bones and Teeth. BioTechniques 2015, 59, 87–93. [Google Scholar] [CrossRef] [PubMed]
- Hofreiter, M.; Sneberger, J.; Pospisek, M.; Vanek, D. Progress in forensic bone DNA analysis: Lessons learned from ancient DNA. Forensic Sci. Int. Genet. 2021, 54, 102538. [Google Scholar] [CrossRef] [PubMed]
- Iscan, M.Y.; Steyn, M. The Human Skeleton in Forensic Medicine, 3rd ed.; Charles C Thomas: Springfield, IL, USA, 2013. [Google Scholar]
- Tersigni-Tarrant, M.A.; Shirley, N.R. Forensic Anthropology: An Introduction; CRC Press: Boca Raton, FL, USA, 2013. [Google Scholar]
- Gasser, J.A.; Kneissel, M. Bone Physiology and Biology. In Bone toxicology. Molecular and integrative toxicology; Smith, S., Varela, A., Samadfam, R., Eds.; Springer: New York, NY, USA, 2017. [Google Scholar]
- Ruff, C.; Holt, B.; Trinkaus, E. Who’s afraid of the big bad Wolff?: «Wolff’s law» and bone functional adaptation. Am. J. Phys. Anthropol. 2006, 129, 484–496. [Google Scholar] [CrossRef] [PubMed]
- Burr, D.B. Targeted and nontargeted remodeling. Bone 2002, 30, 2–4. [Google Scholar] [CrossRef] [PubMed]
- Carter, D.R. Mechanical loading histories and cortical bone remodeling. Calcif. Tissue Int. 1984, 36, S19–S24. [Google Scholar] [CrossRef] [PubMed]
- Jørkov, M.L.S.; Heinemeier, J.; Lynnerup, N. The petrous bone-A new sampling site for identifying early dietary patterns in stable isotopic studies. Am. J. Phys. Anthropol. 2009, 138, 199–209. [Google Scholar] [CrossRef] [PubMed]
- Edson, S.M.; Christensen, A.F.; Barritt, S.M.; Meehan, A.; Leney, M.D.; Finelli, L.N. Sampling of the cranium for mitochondrial DNA analysis of human skeletal remains. Forensic Sci. Int. Genet. Suppl. Ser. 2009, 2, 269–270. [Google Scholar] [CrossRef]
- Frisch, T.; Sørensen, M.S.; Overgaard, S.; Bretlau, P. Estimation of volume referent bone turnover in the otic capsule after sequential point labelling. Ann. Otol. Rhinol. Laryngol. 2000, 109, 33–39. [Google Scholar] [CrossRef] [PubMed]
- Jeffery, N.; Spoor, F. Prenatal growth and development of the modern human labyrinth. J. Anat. 2004, 204, 71–91. [Google Scholar] [CrossRef] [PubMed]
- Mansour, S.; Magnan, J.; Haidar, H.; Nicolas, K.; Louryan, S. Comprehensive and Clinical Anatomy of the Middle Ear; Springer: New York, NY, USA, 2013. [Google Scholar]
- Sørensen, M.S.; Bretlau, P.; Balslev Jørgensen, M. Bone repair in the otic capsule of the rabbit. Acta Otolaryngol. 1992, 112, 968–975. [Google Scholar] [CrossRef] [PubMed]
- Sørensen, M.S. Temporal bone dynamics, The hard way. Formation, growth, modeling, repair and quantum type bone remodeling in the otic capsule. Acta Otalaryngol. 1994, 512, 5–22. [Google Scholar] [CrossRef]
- Ibrahim, J.; Brumfeld, V.; Addadi, Y.; Rubin, S.; Weiner, S.; Boaretto, E. The petrous bone contains high concentrations of osteocytes: One possible reason why ancient DNA is better preserved in this bone. PLoS ONE 2022, 17, e0269348. [Google Scholar] [CrossRef] [PubMed]
- Rothe, J.; Melisch, C.; Powers, N.; Geppert, M.; Zander, J.; Purps, J.; Spors, B.; Nagy, M. Genetic research at a fivefold children’s burial from medieval Berlin. Forensic Sci. Int. Genet. 2015, 15, 90–97. [Google Scholar] [CrossRef] [PubMed]
- Pilli, E.; Vai, S.; Caruso, M.G.; D’Errico, G.; Berti, A.; Caramelli, D. Neither femur nor tooth: Petrous bone for identifying archaeological bone samples via forensic approach. Forensic Sci. Int. 2018, 283, 144–149. [Google Scholar] [CrossRef] [PubMed]
- Pinhasi, R.; Fernandes, D.; Sirak, K.; Novak, M.; Connell, S.; Alpaslan-Roodenberg, S.; Gerritsen, F.; Moiseyev, V.; Gromov, A.; Raczky, P.; et al. Optimal Ancient DNA Yields from the Inner Ear Part of the Human Petrous Bone. PLoS ONE 2015, 10, e0129102. [Google Scholar] [CrossRef] [PubMed]
- Zupanič Pajnič, I.; Mlinšek, T.; Počivavšek, T.; Leskovar, T. Genetic sexing of subadult skeletal remains. Sci. Rep. 2023, 13, 20463. [Google Scholar] [CrossRef] [PubMed]
- Kravanja, P.; Golob, A.; Concato, M.; Leskovar, T.; Zupanič Pajnič, I. Effects of different environmental factors on preservation of DNA in petrous bones: A comparative study of two Slovenian archaeological sites. Forensic Sci. Int. 2025, 371, 112495. [Google Scholar] [CrossRef] [PubMed]
- Jeromelj, T.; Leskovar, T.; Zupanič Pajnič, I. The Impact of Storage Conditions on DNA Preservation in Human Skeletal Remains: A Comparison of Freshly Excavated Samples and Those Stored for 12 Years in a Museum Depot. Genes 2025, 16, 78. [Google Scholar] [CrossRef] [PubMed]
- Kulstein, G.; Hadrys, T.; Wiegand, P. As solid as a rock-comparison of CE- and MPS-based analyses of the petrosal bone as a source of DNA for forensic identification of challenging cranial bones. Int. J. Leg. Med. 2018, 132, 13–24. [Google Scholar] [CrossRef] [PubMed]
- Zupanič Pajnič, I.; Petaros, A.; Balažic, J.; Geršak, K. Searching for the mother missed since the Second World War. J. Forensic Leg. Med. 2016, 44, 138–142. [Google Scholar] [CrossRef] [PubMed]
- Zupanič Pajnič, I.; Inkret, J.; Zupanc, T.; Podovšovnik, E. Comparison of nuclear DNA yield and STR typing success in Second World War petrous bones and metacarpals III. Forensic Sci. Int. Genet. 2021, 55, 102578. [Google Scholar] [CrossRef] [PubMed]
- von Cramon-Taubadel, N. Evolutionary insights into global patterns of human cranial diversity: Population history, climactic, and dietary effects. J. Anthropol. Sci. 2014, 92, 43–77. [Google Scholar] [PubMed]
- Sirak, K.A.; Fernandes, D.M.; Cheronet, O.; Novak, M.; Gamarra, B.; Balassa, T.; Bernert, Z.; Cséki, A.; Dani, J.; Gallina, J.Z.; et al. A minimally-invasive method for sampling human petrous bones from the cranial base for ancient DNA analysis. BioTechniques 2017, 62, 283–289. [Google Scholar] [CrossRef] [PubMed]
- Parker, C.; Rohrlach, A.B.; Friederich, S.; Nagel, S.; Meyer, M.; Krause, J.; Bos, K.I.; Haak, W. A systematic investigation of human DNA preservation in medieval skeletons. Sci. Rep. 2020, 10, 18225. [Google Scholar] [CrossRef] [PubMed]
- Zupanič Pajnič, I.; Jeromelj, T.; Leskovar, T. Petrous bones versus tooth cementum for genetic analysis of aged skeletal remains. Int. J. Leg. Med. 2025, 139, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Scott, S.; Jantz, R.L. Survivability versus rate of recovery for skeletal elements in forensic anthropology. J. Forensic Sci. 2022, 67, 1758–1765. [Google Scholar] [CrossRef] [PubMed]
Studies Evaluating Skeletal Sample Selection | ||
---|---|---|
Studies Supporting Current Guidelines | Recent Studies Challenging Current Guidelines | |
Number of Anatomically Different Bones | 15–20 | 20–55 |
Number of Samples | 1021–24,656 | 144–3868 |
PMI | 4–59 years | Months to 75 years |
Top-Ranked Skeletal Elements | Rib, Femur, Tibiae, Teeth | Phalanges, Carpals, Metacarpals, Metatarsals, Petrous bone, Teeth |
Authors | Edson et al., 2004; [49] Leney, 2006; [76] Miloš et al., 2007 [50] | Mundorff et al., 2009; [51] Mundorff and Davoren, 2014; [73] Emmons et al., 2020; [74] Zupanc et al., 2021; [75] Otagiri et al., 2024; [77] Inkret et al., 2025; [78] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Inkret, J.; Zupanič Pajnič, I. Bone Type Selection for Human Molecular Genetic Identification of Skeletal Remains. Genes 2025, 16, 872. https://doi.org/10.3390/genes16080872
Inkret J, Zupanič Pajnič I. Bone Type Selection for Human Molecular Genetic Identification of Skeletal Remains. Genes. 2025; 16(8):872. https://doi.org/10.3390/genes16080872
Chicago/Turabian StyleInkret, Jezerka, and Irena Zupanič Pajnič. 2025. "Bone Type Selection for Human Molecular Genetic Identification of Skeletal Remains" Genes 16, no. 8: 872. https://doi.org/10.3390/genes16080872
APA StyleInkret, J., & Zupanič Pajnič, I. (2025). Bone Type Selection for Human Molecular Genetic Identification of Skeletal Remains. Genes, 16(8), 872. https://doi.org/10.3390/genes16080872