Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (25)

Search Parameters:
Keywords = body-centric antenna

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 43854 KiB  
Article
A Dual-Band Multi-Linear Polarization Reconfigurable Antenna for Body-Centric Wireless Communication Systems
by Dingzhao Chen, Foxiang Liu, Xuexuan Ruan and Yanhui Liu
Sensors 2025, 25(12), 3630; https://doi.org/10.3390/s25123630 - 9 Jun 2025
Viewed by 510
Abstract
A novel dual-band multi-linear polarization reconfigurable (MLPR) antenna for body-centric wireless communication systems (BWCS) is presented in this paper. The design comprises five symmetrically arranged multi-branch radiating units, each integrating an elliptical patch and curved spring branch for the Medical Implant Communication Service [...] Read more.
A novel dual-band multi-linear polarization reconfigurable (MLPR) antenna for body-centric wireless communication systems (BWCS) is presented in this paper. The design comprises five symmetrically arranged multi-branch radiating units, each integrating an elliptical patch and curved spring branch for the Medical Implant Communication Service (MICS) band (403–405 MHz), and a pair of orthogonal strip patches for the Industrial, Scientific and Medical (ISM) 2.45 GHz band (2.40–2.48 GHz). By selectively biasing PIN diodes between each unit and a central pentagonal feed, five distinct LP states with polarization directions of 0, 72, 144, 216, and 288 are achieved. A dual-line isolation structure is introduced to suppress mutual coupling between radiating units, ensuring cross-polarization levels (XPLs) better than 15.0 dB across the operation bands. Prototypes fabricated on a 160×160×1.5 mm3 substrate demonstrate measured |S11|<10 dB across 401–409 MHz and 2.34–2.53 GHz and stable omnidirectional patterns despite biasing circuitry perturbations. The compact form and robust dual-band, multi-polarization performance make the proposed antenna a promising candidate for implantable device wake-up signals and on-body data links in dense indoor environments. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

34 pages, 4041 KiB  
Review
Sensor Technologies for Non-Invasive Blood Glucose Monitoring
by Jiale Shi, Raúl Fernández-García and Ignacio Gil
Sensors 2025, 25(12), 3591; https://doi.org/10.3390/s25123591 - 7 Jun 2025
Viewed by 2040
Abstract
Diabetes poses a significant global health challenge, underscoring the urgent need for accurate and continuous glucose monitoring technologies. This review provides a comprehensive analysis of both invasive and non-invasive sensor technologies, with a particular focus on antenna-sensors and their working principle. Key aspects, [...] Read more.
Diabetes poses a significant global health challenge, underscoring the urgent need for accurate and continuous glucose monitoring technologies. This review provides a comprehensive analysis of both invasive and non-invasive sensor technologies, with a particular focus on antenna-sensors and their working principle. Key aspects, including the selection of substrates and conductive materials, fabrication techniques, and recent advancements in rigid and flexible antenna-sensor designs, are critically evaluated. Notably, textile antenna-sensors are gaining increasing attention due to their potential for seamless integration into daily clothing. Furthermore, the influence of the human body on antenna-sensor performance is examined, emphasizing the importance of human phantom simulation and fabrication for precise modeling and validation. Finally, this review highlights the current technical challenges in the development of flexible antenna-sensors and discusses their transformative potential in enabling next-generation, non-invasive, and patient-centric glucose monitoring solutions. Full article
Show Figures

Figure 1

17 pages, 6210 KiB  
Article
A Small Implantable Compact Antenna for Wireless Telemetry Applied to Wireless Body Area Networks
by Zongsheng Gan, Dan Wang, Lu Liu, Xiaofeng Fu, Xinju Wang and Peng Chen
Appl. Sci. 2025, 15(3), 1385; https://doi.org/10.3390/app15031385 - 29 Jan 2025
Viewed by 2824
Abstract
Wireless Body Area Networks (WBANs) are human-centric wireless networks, and implantable antennas represent a vital communication component within WBANs. The dielectric properties of human tissue are highly complex, with each layer exhibiting distinct dielectric constants that significantly influence the performance of implanted antennas. [...] Read more.
Wireless Body Area Networks (WBANs) are human-centric wireless networks, and implantable antennas represent a vital communication component within WBANs. The dielectric properties of human tissue are highly complex, with each layer exhibiting distinct dielectric constants that significantly influence the performance of implanted antennas. It is therefore imperative that a compact broadband implantable antenna be designed in order to address the instability in communication of medical implant devices. The antenna, coated in silicone, is a single-layer structure fed by a coaxial cable, with a volume of just 6 mm × 6 mm× 0.53 mm. A metallic patch is etched on the upper surface of the substrate, and the compact antenna design is enhanced with the introduction of S-shaped, F-shaped, and rectangular slots on the patch. The bottom side of the substrate is etched with rectangular ground planes, which broaden the impedance bandwidth of the antenna. The simulation results demonstrate that the antenna attains an impedance bandwidth of 23.8% (2.08–2.64 GHz), encompassing the entirety of the Industrial, Scientific, and Medical (ISM) band (2.4–2.48 GHz). In order to simulate the working environment of the antenna within the human body, physical tests were conducted on the antenna in pork tissue. The test results demonstrate that the antenna exhibits a measured bandwidth of 28% (2.3–3.03 GHz), with a radiation pattern that displays omnidirectional radiation characteristics. The antenna’s impedance matching and radiation characteristics remain essentially consistent in both bent and unbent states, indicating structural robustness. In comparison to other implantable antennas, this antenna displays a wider impedance bandwidth, a lower Specific Absorption Rate (SAR), and superior implant performance. Full article
(This article belongs to the Special Issue Recent Advances in Antennas and Propagation)
Show Figures

Figure 1

31 pages, 3762 KiB  
Review
A Comprehensive Review and Analysis of the Design Aspects, Structure, and Applications of Flexible Wearable Antennas
by Sunaina Singh, Ranjan Mishra, Ankush Kapoor and Soni Singh
Telecom 2025, 6(1), 3; https://doi.org/10.3390/telecom6010003 - 3 Jan 2025
Cited by 5 | Viewed by 2687
Abstract
This review provides a comprehensive analysis of the design, materials, fabrication techniques, and applications of flexible wearable antennas, with a primary focus on their roles in Wireless Body Area Networks (WBANs) and healthcare technologies. Wearable antennas are increasingly vital for applications that require [...] Read more.
This review provides a comprehensive analysis of the design, materials, fabrication techniques, and applications of flexible wearable antennas, with a primary focus on their roles in Wireless Body Area Networks (WBANs) and healthcare technologies. Wearable antennas are increasingly vital for applications that require seamless integration with the human body while maintaining optimal performance under deformation and environmental stress. Return loss, gain, bandwidth, efficiency, and the SAR are some of the most important parameters that define the performance of an antenna. Their interactions with human tissues are also studied in greater detail. Such studies are essential to ensure that wearable and body-centric communication systems perform optimally, remain safe, and are in compliance with regulatory standards. Advanced materials, including textiles, polymers, and conductive composites, are analyzed for their electromagnetic properties and mechanical resilience. This study also explores innovative fabrication techniques, such as inkjet printing, screen printing, and embroidery, which enable scalable and cost-effective production. Additionally, solutions for SAR optimization, including the use of metamaterials, electromagnetic band gap (EBG) structures, and frequency-selective surfaces (FSSs), are discussed. This review highlights the transformative potential of wearable antennas in healthcare, the IoT, and next-generation communication systems, emphasizing their adaptability for real-time monitoring and advanced wireless technologies, such as 5G and 6G. The integration of energy harvesting, biocompatible materials, and sustainable manufacturing processes is identified as a future direction, paving the way for wearable antennas to become integral to the evolution of smart healthcare and connected systems. Full article
Show Figures

Figure 1

29 pages, 20951 KiB  
Article
Design and SAR Analysis of an AMC-Integrated Wearable Cavity-Backed SIW Antenna
by Yathavi Thangavelu, Balakumaran Thangaraju and Rajagopal Maheswar
Micromachines 2024, 15(12), 1530; https://doi.org/10.3390/mi15121530 - 23 Dec 2024
Cited by 1 | Viewed by 1471
Abstract
Wearable communication technologies necessitate antenna designs that harmonize ergonomic compatibility, reliable performance, and minimal interaction with human tissues. However, high specific absorption rate (SAR) levels, limited radiation efficiency, and challenges in integration with flexible materials have significantly constrained widespread deployment. To address these [...] Read more.
Wearable communication technologies necessitate antenna designs that harmonize ergonomic compatibility, reliable performance, and minimal interaction with human tissues. However, high specific absorption rate (SAR) levels, limited radiation efficiency, and challenges in integration with flexible materials have significantly constrained widespread deployment. To address these limitations, this manuscript introduces a novel wearable cavity-backed substrate-integrated waveguide (SIW) antenna augmented with artificial magnetic conductor (AMC) structures. The proposed architecture is meticulously engineered using diverse textile substrates, including cotton, jeans, and jute, to synergistically integrate SIW and AMC technologies, mitigating body-induced performance degradation while ensuring safety and high radiation efficiency. The proposed design demonstrates significant performance enhancements, achieving SAR reductions to 0.672 W/kg on the spine and 0.341 W/kg on the forelimb for the cotton substrate. Furthermore, the AMC-backed implementation attains ultra-low reflection coefficients, as low as −26.56 dB, alongside a gain improvement of up to 1.37 dB, culminating in a total gain of 7.09 dBi. The impedance bandwidth exceeds the ISM band specifications, spanning 150 MHz (2.3–2.45 GHz). The design maintains remarkable resilience and operational stability under varying conditions, including dynamic bending and proximity to human body models. By substantially suppressing back radiation, enhancing directional gain, and preserving impedance matching, the AMC integration optimally adapts the antenna to body-centric communication scenarios. This study uniquely investigates the dielectric and mechanical properties of textile substrates within the AMC-SIW configuration, emphasizing their practicality for wearable applications. This research sets a precedent for wearable antenna innovation, achieving an unprecedented balance of flexibility, safety, and electromagnetic performance while establishing a foundation for next-generation wearable systems. Full article
(This article belongs to the Topic Innovation, Communication and Engineering)
Show Figures

Figure 1

19 pages, 12747 KiB  
Article
Unveiling the Impact: Human Exposure to Non-Ionizing Radiation in the Millimeter-Wave Band of Sixth-Generation Wireless Networks
by Naser Al-Falahy and Omar Y. Alani
Electronics 2024, 13(2), 246; https://doi.org/10.3390/electronics13020246 - 5 Jan 2024
Cited by 3 | Viewed by 3944
Abstract
The investigation into potential hazards linked with millimeter-wave (mmWave) radiation is crucial, given the widespread adoption of body-centric wireless sensor nodes operating within this frequency band. This is particularly pertinent in light of its envisaged use for the upcoming 5G/6G networks and beyond. [...] Read more.
The investigation into potential hazards linked with millimeter-wave (mmWave) radiation is crucial, given the widespread adoption of body-centric wireless sensor nodes operating within this frequency band. This is particularly pertinent in light of its envisaged use for the upcoming 5G/6G networks and beyond. As 6G is anticipated to leverage a broad spectrum, including both sub-6 GHz and mmWave bands (30–300 GHz), concerns arise regarding increased human exposure to non-ionizing radiation (NIR). This work highlights the advantages of deploying 6G in the mmWave band, focusing on evaluating human body exposure to NIR interactions. Additionally, this research aims to address mmWave NIR exposure by introducing a Distributed Base Station (DBS) network. Utilizing low-power remote antennas to extend network coverage, the DBS architecture seeks to effectively minimize NIR’s impact without compromising overall network performance. The findings underscore the significant potential of the DBS approach in mitigating NIR-related concerns associated with mmWave utilization in 6G networks. Full article
(This article belongs to the Special Issue Trends and Prospects in 6G Wireless Communication)
Show Figures

Figure 1

12 pages, 6177 KiB  
Article
A Conformal Tri-Band Antenna for Flexible Devices and Body-Centric Wireless Communications
by Wahaj Abbas Awan, Anees Abbas, Syeda Iffat Naqvi, Dalia H. Elkamchouchi, Muhammad Aslam and Niamat Hussain
Micromachines 2023, 14(10), 1842; https://doi.org/10.3390/mi14101842 - 27 Sep 2023
Cited by 18 | Viewed by 2040
Abstract
A conformal tri-band antenna tailored for flexible devices and body-centric wireless communications operating at the key frequency bands is proposed. The antenna is printed on a thin Rogers RT 5880 substrate, merely 0.254 mm thick, with an overall geometrical dimension of 15 × [...] Read more.
A conformal tri-band antenna tailored for flexible devices and body-centric wireless communications operating at the key frequency bands is proposed. The antenna is printed on a thin Rogers RT 5880 substrate, merely 0.254 mm thick, with an overall geometrical dimension of 15 × 20 × 0.254 mm3. This inventive design features a truncated corner monopole accompanied by branched stubs fed by a coplanar waveguide. The stubs, varying in length, serve as quarter-wavelength monopoles, facilitating multi-band functionality at 2.45, 3.5, and 5.8 GHz. Given the antenna’s intended applications in flexible devices and body-centric networks, the conformability of the proposed design is investigated. Furthermore, an in-depth analysis of the Specific Absorption Rate (SAR) is conducted using a four-layered human tissue model. Notably, the SAR values for the proposed geometry at 2.45, 3.5, and 5.8 GHz stand at 1.48, 1.26, and 1.1 W/kg for 1 g of tissue, and 1.52, 1.41, and 0.62 W/kg for 10 g of tissue, respectively. Remarkably, these values comfortably adhere to both FCC and European Union standards, as they remain substantially beneath the threshold values of 1.6 W/kg and 2 W/kg for 1 g and 10 g tissues, respectively. The radiation characteristics and performance of the antenna in flat and different bending configurations validate the suitability of the antenna for flexible devices and body-centric wireless communications. Full article
(This article belongs to the Section E:Engineering and Technology)
Show Figures

Figure 1

20 pages, 5545 KiB  
Article
Design and Realization of Wearable Textile Slotted Waveguide Antennas
by Davorin Mikulić, Evita Šopp, Davor Bonefačić, Juraj Bartolić and Zvonimir Šipuš
Sensors 2023, 23(17), 7509; https://doi.org/10.3390/s23177509 - 29 Aug 2023
Cited by 3 | Viewed by 1742
Abstract
The design of wearable antennas presents a challenge from multiple perspectives, as they must meet technical requirements and satisfy safety standards while also being suitable for integration into clothing and aesthetically pleasing. In recent years, the development of conductive fabrics has, in many [...] Read more.
The design of wearable antennas presents a challenge from multiple perspectives, as they must meet technical requirements and satisfy safety standards while also being suitable for integration into clothing and aesthetically pleasing. In recent years, the development of conductive fabrics has, in many ways, allowed for significant progress in the manufacturing of wearable antennas, and in previous work, we developed textile slotted waveguide antennas using conductive textiles and traditional sewing processes. However, various aspects of the design and realization of such antennas remain challenging. In particular, this work investigates the issue of using foam-based molds, which enables the realization of thin, flexible, wearable antennas, as well as the issue of antenna feed, specifically the transition from a classic coaxial transmission line to a waveguide. The design of the transition was focused on simplicity and robustness, due to which we limited the number of degrees of freedom in the design process in order to achieve a structure suitable for mounting on textile waveguide antennas. In addition, the antenna design procedure and the body-channel model were considered in order to optimize the performance of the antennas and the wireless body-centric system itself. Several prototypes of different kinds were developed in the 5.8 GHz ISM band, confirming the feasibility of the proposed concepts through experimental results. Full article
(This article belongs to the Special Issue Wearable Antennas and Sensors for Microwave Applications)
Show Figures

Figure 1

33 pages, 15443 KiB  
Article
Design and Evaluation of a Button Sensor Antenna for On-Body Monitoring Activity in Healthcare Applications
by Shahid Muhammad Ali, Cheab Sovuthy, Sima Noghanian, Tale Saeidi, Muhammad Faran Majeed, Amir Hussain, Faisal Masood, Shariq Mahmood Khan, Syed Aziz Shah and Qammer H. Abbasi
Micromachines 2022, 13(3), 475; https://doi.org/10.3390/mi13030475 - 20 Mar 2022
Cited by 11 | Viewed by 5185
Abstract
A button sensor antenna for on-body monitoring in wireless body area network (WBAN) systems is presented. Due to the close coupling between the sensor antenna and the human body, it is highly challenging to design sensor antenna devices. In this paper, a mechanically [...] Read more.
A button sensor antenna for on-body monitoring in wireless body area network (WBAN) systems is presented. Due to the close coupling between the sensor antenna and the human body, it is highly challenging to design sensor antenna devices. In this paper, a mechanically robust system is proposed that integrates a dual-band button antenna with a wireless sensor module designed on a printed circuit board (PCB). The system features a small footprint and has good radiation characteristics and efficiency. This was fabricated, and the measured and simulated results are in good agreement. The design offers a wide range of omnidirectional radiation patterns in free space, with a reflection coefficient (S11) of 29.30 (30.97) dB, a maximum gain of 1.75 (5.65) dBi, and radiation efficiency of 71.91 (92.51)% in the lower and upper bands, respectively. S11 reaches 23.07 (27.07) dB and 30.76 (31.12) dB, respectively, with a gain of 2.09 (6.70) dBi and 2.16 (5.67) dBi, and radiation efficiency of 65.12 (81.63)% and 75.00 (85.00)%, when located on the body for the lower and upper bands, respectively. The performance is minimally affected by bending, movement, and fabrication tolerances. The specific absorption rate (SAR) values are below the regulatory limitations for the spatial average over 1 g (1.6 W/Kg) and 10 g of tissues (2.0 W/Kg). For both indoor and outdoor conditions, experimental results of the range tests confirm the coverage of up to 40 m. Full article
(This article belongs to the Special Issue Electronic Textiles and Wearable Technology)
Show Figures

Figure 1

15 pages, 2318 KiB  
Article
Textile Slotted Waveguide Antennas for Body-Centric Applications
by Davorin Mikulić, Evita Šopp, Davor Bonefačić and Zvonimir Šipuš
Sensors 2022, 22(3), 1046; https://doi.org/10.3390/s22031046 - 28 Jan 2022
Cited by 15 | Viewed by 4150
Abstract
One of the major challenges in the development of wearable antennas is to design an antenna that can at the same time satisfy technical requirements, be aesthetically acceptable, and be suitable for wearable applications. In this paper, a novel wearable antenna is proposed—textile [...] Read more.
One of the major challenges in the development of wearable antennas is to design an antenna that can at the same time satisfy technical requirements, be aesthetically acceptable, and be suitable for wearable applications. In this paper, a novel wearable antenna is proposed—textile realization of a slotted waveguide antenna. The antenna is realized using conductive fabric to manufacture the walls of a rectangular waveguide in which the slots were cut out. All connections and cuts are sewn with conductive thread taking over advantages of the traditional process of manufacturing textile objects. The developed slotted waveguide array prototype, containing three slots and designed for operation in the 5.8-GHz ISM band, is experimentally characterized and compared to an equivalent metallic antenna. The achieved operating bandwidth is larger than 300 MHz in both cases. The measured gain of a textile slotted waveguide array is around 9 dBi with a radiation efficiency larger than 50% in the whole operating bandwidth, i.e., the textile array showed a 2 dB lower gain in comparison to the metallic counterpart. The gain is stable in the whole bandwidth and the radiation patterns do not differ. The results demonstrated that such textile antennas are suitable for body-centric communication and sensor systems and can be integrated into clothing, e.g., into a smart safety vest or into a uniform. Further analysis of various realizations of slotted waveguide antennas is presented showing that different versions of the proposed antenna can be used in all three off-body, on-body, and in-body communication scenarios. Full article
(This article belongs to the Special Issue Feature Papers in Wearables Section 2021)
Show Figures

Figure 1

19 pages, 3712 KiB  
Review
Electrically Conductive Textile Materials—Application in Flexible Sensors and Antennas
by Mourad Krifa
Textiles 2021, 1(2), 239-257; https://doi.org/10.3390/textiles1020012 - 30 Jul 2021
Cited by 54 | Viewed by 10199
Abstract
This paper reviews some prominent applications and approaches to developing smart fabrics for wearable technology. The importance of flexible and electrically conductive textiles in the emerging body-centric sensing and wireless communication systems is highlighted. Examples of applications are discussed with a focus on [...] Read more.
This paper reviews some prominent applications and approaches to developing smart fabrics for wearable technology. The importance of flexible and electrically conductive textiles in the emerging body-centric sensing and wireless communication systems is highlighted. Examples of applications are discussed with a focus on a range of textile-based sensors and antennas. Developments in alternative materials and structures for producing flexible and conductive textiles are reviewed, including inherently conductive polymers, carbon-based materials, and nano-enhanced composite fibers and fibrous structures. Full article
(This article belongs to the Special Issue Fibrous Materials (Textiles) for Functional Applications)
Show Figures

Figure 1

17 pages, 8142 KiB  
Article
Investigation on Wireless Link for Medical Telemetry Including Impedance Matching of Implanted Antennas
by Ilkyu Kim, Sun-Gyu Lee, Yong-Hyun Nam and Jeong-Hae Lee
Sensors 2021, 21(4), 1431; https://doi.org/10.3390/s21041431 - 18 Feb 2021
Cited by 8 | Viewed by 4058
Abstract
The development of biomedical devices benefits patients by offering real-time healthcare. In particular, pacemakers have gained a great deal of attention because they offer opportunities for monitoring the patient’s vitals and biological statics in real time. One of the important factors in realizing [...] Read more.
The development of biomedical devices benefits patients by offering real-time healthcare. In particular, pacemakers have gained a great deal of attention because they offer opportunities for monitoring the patient’s vitals and biological statics in real time. One of the important factors in realizing real-time body-centric sensing is to establish a robust wireless communication link among the medical devices. In this paper, radio transmission and the optimal characteristics for impedance matching the medical telemetry of an implant are investigated. For radio transmission, an integral coupling formula based on 3D vector far-field patterns was firstly applied to compute the antenna coupling between two antennas placed inside and outside of the body. The formula provides the capability for computing the antenna coupling in the near-field and far-field region. In order to include the effects of human implantation, the far-field pattern was characterized taking into account a sphere enclosing an antenna made of human tissue. Furthermore, the characteristics of impedance matching inside the human body were studied by means of inherent wave impedances of electrical and magnetic dipoles. Here, we demonstrate that the implantation of a magnetic dipole is advantageous because it provides similar impedance characteristics to those of the human body. Full article
(This article belongs to the Special Issue Antennas and Propagation)
Show Figures

Figure 1

13 pages, 3048 KiB  
Article
Hybrid Development of a Compact Antenna Based on a Novel Skin-Matched Ceramic Composite for Body Fat Measurement
by Siamak Sarjoghian, Ardavan Rahimian, Yasir Alfadhl, Theo G. Saunders, Jiamin Liu and Clive G. Parini
Electronics 2020, 9(12), 2139; https://doi.org/10.3390/electronics9122139 - 14 Dec 2020
Cited by 1 | Viewed by 2978
Abstract
This work presents the thorough hybrid (numerical and experimental) development of a miniaturized microwave antenna, to be better matched to the permittivity of the human skin. This would allow the abdominal fat to be measured more accurately, based on the employed reflection methods [...] Read more.
This work presents the thorough hybrid (numerical and experimental) development of a miniaturized microwave antenna, to be better matched to the permittivity of the human skin. This would allow the abdominal fat to be measured more accurately, based on the employed reflection methods with minimal mismatches. This objective was achieved by designing the pyramidal horn antenna that was modeled based on the proposed and manufactured ceramic composite material. Moreover, by using the developed composite of barium titanate and titanium oxide, the ratio of the two could be precisely adjusted, so that the permittivity was a reasonable match to that of the skin. This step was validated by the open-ended probe method. This framework can be instrumental in a range of microwave biomedical applications, which aim to realize the body-centric systems. Full article
(This article belongs to the Special Issue Antennas for Wearable and Implantable Applications)
Show Figures

Figure 1

6 pages, 452 KiB  
Proceeding Paper
Compact Planar Inverted F Antenna (PIFA) for Smart Wireless Body Sensors Networks
by Mohammad Monirujjaman Khan and Tabia Hossain
Eng. Proc. 2020, 2(1), 63; https://doi.org/10.3390/ecsa-7-08253 - 14 Nov 2020
Cited by 7 | Viewed by 4637
Abstract
In this paper a dual band, a dual band Planar Inverted F antenna (PIFA) is designed for wireless communication intended to be used in wireless body sensor networks. The designed PIFA operates at two different frequency bands, 2.45 GHz Industrial, Scientific and Medical [...] Read more.
In this paper a dual band, a dual band Planar Inverted F antenna (PIFA) is designed for wireless communication intended to be used in wireless body sensor networks. The designed PIFA operates at two different frequency bands, 2.45 GHz Industrial, Scientific and Medical band (ISM) and 5.2 GHz (HiperLAN band). In body-centric wireless networks, antennas need to be integrated with wireless wearable sensors. An antenna is an essential part of wearable body sensor networks. For on-body communications, antennas need to be less sensitive to human body effects. For body-centric communications, wearable devices need to communicate with the devices located over the surface, and there is a need of communication from on-body devices to off-body units. Based on this need, a dual band planar inverted F antenna is designed that works at two different frequency bands, i.e., 2.45 GHz and 5.2 GHz. The 2.45 GHz is proposed for establishing communication among the wireless sensor devices attached to the human body, while 5.2 GHz is proposed for the communications for from on-body to off-body devices. The proposed antenna is very compact, and due to having ground plane at the backside it is less sensitive to the effects of the human body tissues. Computer Simulation Technology (CST) microwave studio™ was used for antenna design and simulation purposes. Performance parameters such as return loss, bandwidth, radiation pattern and efficiency of this antenna are shown and investigated. These performance parameters of the proposed antenna have been investigated at free space and close proximity to the human body. Simulation results and analysis show that the performance parameters produce very good results for both frequency bands. Due to its compact size, low sensitivity to human body tissues, and dual band functionality, it will be a good candidate for wireless wearable body sensor networks. Full article
(This article belongs to the Proceedings of 7th International Electronic Conference on Sensors and Applications)
Show Figures

Figure 1

41 pages, 4549 KiB  
Review
Recent Advances of Wearable Antennas in Materials, Fabrication Methods, Designs, and Their Applications: State-of-the-Art
by Shahid M. Ali, Cheab Sovuthy, Muhammad A. Imran, Soeung Socheatra, Qammer H. Abbasi and Zuhairiah Zainal Abidin
Micromachines 2020, 11(10), 888; https://doi.org/10.3390/mi11100888 - 24 Sep 2020
Cited by 95 | Viewed by 11543
Abstract
The demand for wearable technologies has grown tremendously in recent years. Wearable antennas are used for various applications, in many cases within the context of wireless body area networks (WBAN). In WBAN, the presence of the human body poses a significant challenge to [...] Read more.
The demand for wearable technologies has grown tremendously in recent years. Wearable antennas are used for various applications, in many cases within the context of wireless body area networks (WBAN). In WBAN, the presence of the human body poses a significant challenge to the wearable antennas. Specifically, such requirements are required to be considered on a priority basis in the wearable antennas, such as structural deformation, precision, and accuracy in fabrication methods and their size. Various researchers are active in this field and, accordingly, some significant progress has been achieved recently. This article attempts to critically review the wearable antennas especially in light of new materials and fabrication methods, and novel designs, such as miniaturized button antennas and miniaturized single and multi-band antennas, and their unique smart applications in WBAN. Finally, the conclusion has been drawn with respect to some future directions. Full article
(This article belongs to the Special Issue Future Wearable and Implants)
Show Figures

Figure 1

Back to TopTop