Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (68)

Search Parameters:
Keywords = blue-energy harvesting

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2990 KiB  
Article
Examination of Interrupted Lighting Schedule in Indoor Vertical Farms
by Dafni D. Avgoustaki, Vasilis Vevelakis, Katerina Akrivopoulou, Stavros Kalogeropoulos and Thomas Bartzanas
AgriEngineering 2025, 7(8), 242; https://doi.org/10.3390/agriengineering7080242 - 1 Aug 2025
Viewed by 198
Abstract
Indoor horticulture requires a substantial quantity of electricity to meet crops extended photoperiodic requirements for optimal photosynthetic rate. Simultaneously, global electricity costs have grown dramatically in recent years, endangering the sustainability and profitability of indoor vertical farms and/or modern greenhouses that use artificial [...] Read more.
Indoor horticulture requires a substantial quantity of electricity to meet crops extended photoperiodic requirements for optimal photosynthetic rate. Simultaneously, global electricity costs have grown dramatically in recent years, endangering the sustainability and profitability of indoor vertical farms and/or modern greenhouses that use artificial lighting systems to accelerate crop development and growth. This study investigates the growth rate and physiological development of cherry tomato plants cultivated in a pilot indoor vertical farm at the Agricultural University of Athens’ Laboratory of Farm Structures (AUA) under continuous and disruptive lighting. The leaf physiological traits from multiple photoperiodic stress treatments were analyzed and utilized to estimate the plant’s tolerance rate under varied illumination conditions. Four different photoperiodic treatments were examined and compared, firstly plants grew under 14 h of continuous light (C-14L10D/control), secondly plants grew under a normalized photoperiod of 14 h with intermittent light intervals of 10 min of light followed by 50 min of dark (NI-14L10D/stress), the third treatment where plants grew under 14 h of a load-shifted energy demand response intermittent lighting schedule (LSI-14L10D/stress) and finally plants grew under 13 h photoperiod following of a load-shifted energy demand response intermittent lighting schedule (LSI-13L11D/stress). Plants were subjected also under two different light spectra for all the treatments, specifically WHITE and Blue/Red/Far-red light composition. The aim was to develop flexible, energy-efficient lighting protocols that maintain crop productivity while reducing electricity consumption in indoor settings. Results indicated that short periods of disruptive light did not negatively impact physiological responses, and plants exhibited tolerance to abiotic stress induced by intermittent lighting. Post-harvest data indicated that intermittent lighting regimes maintained or enhanced growth compared to continuous lighting, with spectral composition further influencing productivity. Plants under LSI-14L10D and B/R/FR spectra produced up to 93 g fresh fruit per plant and 30.4 g dry mass, while consuming up to 16 kWh less energy than continuous lighting—highlighting the potential of flexible lighting strategies for improved energy-use efficiency. Full article
(This article belongs to the Topic Digital Agriculture, Smart Farming and Crop Monitoring)
Show Figures

Figure 1

12 pages, 5002 KiB  
Article
Multi-Unit Coupled Motion Hybrid Generator Based on a Simple Pendulum Structure
by Yifan Li, Huiying Li and Lingyu Wan
Appl. Sci. 2025, 15(10), 5454; https://doi.org/10.3390/app15105454 - 13 May 2025
Viewed by 386
Abstract
Wave energy is a widely distributed, abundant, and clean renewable energy source with tremendous potential for development. This study presents a multi-unit coupled motion hybrid generator (MCM-HG) based on a pendulum structure for harvesting low-frequency wave energy. The device integrates eight power generation [...] Read more.
Wave energy is a widely distributed, abundant, and clean renewable energy source with tremendous potential for development. This study presents a multi-unit coupled motion hybrid generator (MCM-HG) based on a pendulum structure for harvesting low-frequency wave energy. The device integrates eight power generation units, including triboelectric nanogenerators (TENGs), electromagnetic generators (EMGs), and piezoelectric nanogenerators (PENGs), enhancing space utilization and energy conversion efficiency through coupled motion. Experiments show that at a frequency of 0.5 Hz and a swing angle of 15°, the MCM-HG achieves an output power of 22.07 mW and a power density of 7.36 Wm−3. The device successfully powers microelectronic devices, demonstrating its potential application value in the marine Internet of Things. Full article
(This article belongs to the Topic Advanced Energy Harvesting Technology, 2nd Edition)
Show Figures

Figure 1

12 pages, 2536 KiB  
Communication
Synthesis and Electrochemiluminescence of a Di-Boron Thermally Activated Delayed Fluorescence Emitter
by Xiaojie Zhou, Jun Cheng and Hongbo Wang
Molecules 2025, 30(8), 1718; https://doi.org/10.3390/molecules30081718 - 11 Apr 2025
Viewed by 589
Abstract
Recent advances in electrochemiluminescence (ECL) leveraging thermally activated delayed fluorescence (TADF) have highlighted its potential for near-unity exciton harvesting. However, there are still very limited examples of TADF-ECL emitters. We present a rigid diboron-embedded multiple-resonance TADF emitter, which exhibits blue–green emission at 493 [...] Read more.
Recent advances in electrochemiluminescence (ECL) leveraging thermally activated delayed fluorescence (TADF) have highlighted its potential for near-unity exciton harvesting. However, there are still very limited examples of TADF-ECL emitters. We present a rigid diboron-embedded multiple-resonance TADF emitter, which exhibits blue–green emission at 493 nm with a remarkably narrow bandwidth (FWHM = 22 nm) and minimized singlet-triplet energy gap (ΔEST = 0.2 eV), achieving a 67% photoluminescence quantum yield. DFT calculations confirm the short-range charge transfer, enabling narrowband emission. Co-reactant-dependent ECL shows that tripropylamine (TPrA) improves the ECL efficiency from 11% (annihilation) to 51%, while benzoyl peroxide (BPO) yields 1% due to poor radical stabilization. ECL spectra align with photoluminescence, confirming the singlet-state dominance without exciplex interference. TPrA enhances stable radical formation and energy transfer, whereas BPO induces non-radiative losses. These findings establish molecular rigidity and co-reactant selection as pivotal factors in developing high-performance TADF-ECL systems, providing fundamental guidelines for designing organic electrochemiluminescent materials with optimized exciton harvesting efficiency. Full article
(This article belongs to the Special Issue Electrochemistry of Organic and Organometallic Compounds)
Show Figures

Graphical abstract

21 pages, 9752 KiB  
Article
Enhancing the Quality of Indoor-Grown Basil Microgreens with Low-Dose UV-B or UV-C Light Supplementation
by Ernest Skowron, Magdalena Trojak, Ilona Pacak, Paulina Węzigowska and Julia Szymkiewicz
Int. J. Mol. Sci. 2025, 26(5), 2352; https://doi.org/10.3390/ijms26052352 - 6 Mar 2025
Cited by 2 | Viewed by 792
Abstract
Controlled-environment crop production often weakens plants’ defense mechanisms, reducing the accumulation of protective phytochemicals essential to human health. Our previous studies demonstrated that short-term supplementation of low-dose ultraviolet (UV) light to the red–green–blue (RGB) spectrum effectively boosts secondary metabolite (SM) synthesis and antioxidant [...] Read more.
Controlled-environment crop production often weakens plants’ defense mechanisms, reducing the accumulation of protective phytochemicals essential to human health. Our previous studies demonstrated that short-term supplementation of low-dose ultraviolet (UV) light to the red–green–blue (RGB) spectrum effectively boosts secondary metabolite (SM) synthesis and antioxidant capacity in lettuce. This study explored whether similar effects occur in basil cultivars by supplementing the RGB spectrum with ultraviolet B (UV-B, 311 nm) or ultraviolet C (UV-C, 254 nm) light shortly before harvest. Molecular analyses focused on UV-induced polyphenol synthesis, particularly chalcone synthase (CHS) level, and UV light perception via the UVR8 receptor. The impact of high-energy UV radiation on the photosynthetic apparatus (PA) was also monitored. The results showed that UV-B supplementation did not harm the PA, while UV-C significantly impaired photosynthesis and restricted plant growth and biomass accumulation. In green-leaf (Sweet Large, SL) basil, UV-B enhanced total antioxidant capacity (TAC), increasing polyphenolic secondary metabolites and ascorbic acid (AsA) levels. UV-C also stimulated phenolic compound accumulation in SL basil but had no positive effects in the purple-leaf (Dark Opal, DO) cultivar. Interestingly, while the UV-B treatment promoted UVR8 monomerization in both cultivars, the enhanced CHS level and concomitant SM synthesis were noted only for SL basil. In addition, UV-C also induced CHS activity and SM synthesis in SL basil but clearly in a UVR8-independeted manner. These findings underscore the potential of UV light supplementation for enhancing plant functional properties, highlighting species- and cultivar-specific effects without compromising photosynthetic performance. Full article
(This article belongs to the Special Issue Molecular and Metabolic Regulation of Plant Secondary Metabolism)
Show Figures

Figure 1

36 pages, 9270 KiB  
Review
Marine Renewable Energy Resources in Peru: A Sustainable Blue Energy for Explore and Develop
by Carlos Cacciuttolo, Giovene Perez and Mivael Falcón
J. Mar. Sci. Eng. 2025, 13(3), 501; https://doi.org/10.3390/jmse13030501 - 4 Mar 2025
Viewed by 2304
Abstract
The Peruvian coast covers more than 3000 km along the Pacific Ocean, being one of the richest seas in terms of biodiversity, productivity, fishing, and renewable energy potential. Marine renewable energy (MRE) in both offshore and coastal environments of Peru is, currently, a [...] Read more.
The Peruvian coast covers more than 3000 km along the Pacific Ocean, being one of the richest seas in terms of biodiversity, productivity, fishing, and renewable energy potential. Marine renewable energy (MRE) in both offshore and coastal environments of Peru is, currently, a huge reserve of practically unused renewable energy, with inexhaustible potential. In this context, renewable energies from hydroelectric, biomass, wind, and solar sources have been applied in the country, but geothermal, waves, tidal currents, and tidal range sources are currently underdeveloped. This article presents the enormous source of sustainable blue energy for generating electrical energy that exists in Peru from waves and tidal resource potential. In addition, this article presents the main opportunities, gaps, and key issues for the implementation of marine renewable energy (MRE), with emphasis on: (i) showing the available potential in the northern, central, and southern Pacific Ocean territories of Peru, (ii) characterizing the marine energy best available technologies to implement, (iii) the environmental and socio-economic impacts of marine renewable energy, and (iv) discussion of challenges, opportunities, and future directions for developments in the marine energy sector. Finally, the article concludes that the greatest possibilities for exploiting the abundant marine renewable energy (MRE) resource in Peru are large spaces in both offshore and coastal environments on the Pacific Ocean that can be considered for harvesting energy. These issues will depend strongly on the implementation of regulations and policies for the strategic use for planning of marine resources, encouraging research and development (R&D) for creating sustainable innovations, incentives for project finance mechanisms, and developing specialized local human capital, considering the sustainability of livelihoods of coastal communities and ecosystems. Full article
Show Figures

Figure 1

14 pages, 9705 KiB  
Article
ZnO Nanoparticles by Hydrothermal Method: Synthesis and Characterization
by Juan Carlos Anaya-Zavaleta, Antonio Serguei Ledezma-Pérez, Carlos Gallardo-Vega, Joelis Rodríguez-Hernández, Carmen Natividad Alvarado-Canché, Perla Elvia García-Casillas, Arxel de León and Agustín Leobardo Herrera-May
Technologies 2025, 13(1), 18; https://doi.org/10.3390/technologies13010018 - 1 Jan 2025
Cited by 5 | Viewed by 4207
Abstract
The synthesis of reliable, cost-effective, and eco-friendly ZnO piezoelectric nanoparticles (NPs) can contribute to nanotechnology applications in electronics, sensors, and energy harvesting. Herein, ZnO NPs were synthesized using a hydrothermal method under varied reaction times and adding ammonium hydroxide, which provided an advantage [...] Read more.
The synthesis of reliable, cost-effective, and eco-friendly ZnO piezoelectric nanoparticles (NPs) can contribute to nanotechnology applications in electronics, sensors, and energy harvesting. Herein, ZnO NPs were synthesized using a hydrothermal method under varied reaction times and adding ammonium hydroxide, which provided an advantage of a low-cost, scalable, low-temperature, and environmentally friendly process. Characterization through UV–Vis spectroscopy revealed absorption peaks between 374 and 397 nm, showing a blue shift compared to bulk ZnO (400 nm) attributable to nanoscale dimensions. Transmission Electron Microscopy (TEM) analysis indicated particle dimensions with length and width ranges from 150 to 341 nm and from 83 to 120 nm, respectively. X-ray diffraction (XRD) confirmed high-crystalline quality, with crystallite sizes calculated using the Scherrer equation. In addition, the effective mass model provided an estimated band gap that matched with the reported data. Also, the lattice parameters, interplanar distances, and Zn-O bond lengths were consistent with Joint Committee on Powder Diffraction Standards (JCPDS). Finally, a ZnO NP film was deposited on a steel substrate, which generated a displacement of 150 nm under a square wave voltage of 10 V. The piezoelectric behavior of the synthesized ZnO NPs can be useful for fabrication of piezoelectric nanogenerators. The proposed synthesis can allow ZnO NPs with potential application in electronic devices, energy harvesters, and transducers. Full article
(This article belongs to the Special Issue Technological Advances in Science, Medicine, and Engineering 2024)
Show Figures

Graphical abstract

22 pages, 3999 KiB  
Article
Leather Waste Hydrolysation, Carbonization, and Microbial Treatment for Nitrogen Recovery by Ryegrass Cultivation
by Ksawery Kuligowski, Dawid Skrzypczak, Katarzyna Mikula, Katarzyna Chojnacka, Paulina Bandrów, Robert Tylingo, Szymon Mania, Adrian Woźniak and Adam Cenian
Materials 2024, 17(23), 5741; https://doi.org/10.3390/ma17235741 - 23 Nov 2024
Cited by 1 | Viewed by 1314
Abstract
Leather waste contains up to 10% nitrogen (N); thus, combustion or gasification only for the energy recovery would not be rational, if safety standards are met. On the other hand, the chromium (Cr) content exceeding 5% in half of the waste stream ( [...] Read more.
Leather waste contains up to 10% nitrogen (N); thus, combustion or gasification only for the energy recovery would not be rational, if safety standards are met. On the other hand, the chromium (Cr) content exceeding 5% in half of the waste stream (w/w) is too significant to be applied in agriculture. In this work, four acid hydrolysates from leather waste shavings, both wet-white free of Cr and wet-blue with Cr, were used: two with a mixture of acids and supplemented with Cu, Mn, and Zn, and the other two as semi-products from collagen extraction using hydrochloric acid. Additionally wet-green leather waste shavings, e.g., impregnated with olive extract, were used followed by the two treatments: amendment with a biochar from “wet white” leather waste shavings and amendment with this biochar incubated with the commercial phosphorus stimulating microbial consortia BactoFos. They were applied as organic nitrogen-based fertilizers in a glasshouse experiment, consisting of 4–5 subsequent harvests every 30 days, under spring–autumn conditions in northern Poland. Biochar-amended wet-greens provided the highest nitrogen use efficiencies, exceeding 100% after 4 months of growth (for 20 kg N/ha) and varying from 17% to 37% in particular months. This is backed up by another parameter (relative agronomic effectiveness) that for these materials exceeded 150% for a single month and in total was around 33%. Biochar amendments significantly increased agronomic parameters for wet-greens, and their microbial treatment enhanced them even further. Recycling this type of waste can replace inorganic fertilizers, reducing greenhouse gas emissions and carbon footprint. Full article
(This article belongs to the Special Issue Current Approaches to Biomass Waste Material Utilization)
Show Figures

Figure 1

17 pages, 7091 KiB  
Article
High-Efficiency and High-Monochromaticity Semitransparent Organic Solar Cells Based on Optical Tamm States
by Junwei Zhao, Senxuan Lin, Jinxin Zhou, Fuhao Gao, Jingfeng Liu, Yongbing Long and Haitao Xu
Photonics 2024, 11(11), 1030; https://doi.org/10.3390/photonics11111030 - 1 Nov 2024
Cited by 1 | Viewed by 1371
Abstract
Semitransparent organic solar cells (ST-OSCs) have garnered more interest and stand out as promising candidates for next-generation solar energy harvesters with their unique advantages. However, challenges remain for the advancement of colorful ST-OSCs, such as enhancing the light absorption and transmittance without considerable [...] Read more.
Semitransparent organic solar cells (ST-OSCs) have garnered more interest and stand out as promising candidates for next-generation solar energy harvesters with their unique advantages. However, challenges remain for the advancement of colorful ST-OSCs, such as enhancing the light absorption and transmittance without considerable power conversion efficiency (PCE) losses. Herein, an optical analysis of silver (Ag) electrodes and one-dimensional photonic crystals (1DPCs) was conducted by simulations, revealing the presence of optical Tamm states (OTSs) at the interface of Ag/1DPCs. Furthermore, the spectral and electrical properties were fine-tuned by modulating the OTSs through theoretical simulations, utilizing PM6:Y6 as the active layer. The structural parameters of the ST-OSCs were optimized, including the Ag layer thickness, the central wavelength of 1DPCs, the first WO3 layer thickness, and the pair number of WO3/LiF. The optimization resulted in the successful development of blue, violet-blue, and red ST-OSC devices, which exhibited transmittance peak intensities ranging from 31.5% to 37.9% and PCE losses between 1.5% and 5.2%. Notably, the blue device exhibited a peak intensity of 37.0% and a PCE of 15.24%, with only a 1.5% loss in efficiency. This research presents an innovative approach to enhancing the performance of ST-OSCs, achieving a balance between high transparency and high efficiency. Full article
(This article belongs to the Special Issue Recent Advances in Micro/Nano-Optics and Photonics)
Show Figures

Figure 1

24 pages, 4661 KiB  
Article
Effects of UV-B and UV-C Spectrum Supplementation on the Antioxidant Properties and Photosynthetic Activity of Lettuce Cultivars
by Ernest Skowron, Magdalena Trojak and Ilona Pacak
Int. J. Mol. Sci. 2024, 25(17), 9298; https://doi.org/10.3390/ijms25179298 - 27 Aug 2024
Cited by 8 | Viewed by 1832
Abstract
Indoor farming systems enable plant production in precisely controlled environments. However, implementing stable growth conditions and the absence of stress stimulants can weaken plants’ defense responses and limit the accumulation of bioactive, health-beneficial phytochemicals. A potential solution is the controlled application of stressors, [...] Read more.
Indoor farming systems enable plant production in precisely controlled environments. However, implementing stable growth conditions and the absence of stress stimulants can weaken plants’ defense responses and limit the accumulation of bioactive, health-beneficial phytochemicals. A potential solution is the controlled application of stressors, such as supplemental ultraviolet (UV) light. To this end, we analyzed the efficiency of short-term pre-harvest supplementation of the red–green–blue (RGB, LED) spectrum with ultraviolet B (UV-B) or C (UV-C) light to boost phytochemical synthesis. Additionally, given the biological harm of UV radiation due to high-energy photons, we monitored plants’ photosynthetic activity during treatment and their morphology as well as sensory attributes after the treatment. Our analyses showed that UV-B radiation did not negatively impact photosynthetic activity while significantly increasing the overall antioxidant potential of lettuce through enhanced levels of secondary metabolites (total phenolics, flavonoids, anthocyanins), carotenoids, and ascorbic acid. On the contrary, UV-C radiation-induced anthocyanin accumulation in the green leaf cultivar significantly harmed the photosynthetic apparatus and limited plant growth. Taken together, we showed that short-term UV-B light supplementation is an efficient method for lettuce biofortification with healthy phytochemicals, while UV-C treatment is not recommended due to the negative impact on the quality (morphology, sensory properties) of the obtained leafy products. These results are crucial for understanding the potential of UV light supplementation for producing functional plants. Full article
Show Figures

Figure 1

29 pages, 5562 KiB  
Article
On the Necessity for Improving Water Efficiency in Commercial Buildings: A Green Design Approach in Hot Humid Climates
by A. Chandana Hemantha J. Thebuwena, S. M. Samindi M. K. Samarakoon and R. M. Chandima Ratnayake
Water 2024, 16(17), 2396; https://doi.org/10.3390/w16172396 - 26 Aug 2024
Cited by 4 | Viewed by 4765
Abstract
Water, a fundamental and indispensable resource necessary for the survival of living beings, has become a pressing issue in numerous regions worldwide due to scarcity. Urban areas, where the majority of the global population resides, witness a substantial consumption of blue water, particularly [...] Read more.
Water, a fundamental and indispensable resource necessary for the survival of living beings, has become a pressing issue in numerous regions worldwide due to scarcity. Urban areas, where the majority of the global population resides, witness a substantial consumption of blue water, particularly in commercial buildings. This study investigates the potential for enhancing water efficiency within an ongoing high-rise office building construction situated in a tropical climate. The investigation utilizes the green building guidelines of leadership in energy and environmental design (LEED) through a case-study-based research approach. Strategies included using efficient plumbing fixtures (such as high air–water ratio fixtures and dual-flush toilets), the selection of native plants, implementing a suitable irrigation system, introducing a rainwater harvesting system (RWHS) and improving the mechanical ventilation and air conditioning (MVAC) system. The results showed a 55% reduction in water use from efficient fixtures, a 93% reduction in landscaping water needs and a 73% overall water efficiency with a RWHS from the baseline design. Additionally, efficient cooling towers and the redirection of condensed water into the cooling tower make-up water tank improved the overall water efficiency to 38%, accounting for the water requirements of the MVAC system. The findings of this study can contribute to more sustainable and water-efficient urban development, particularly in regions facing water scarcity challenges. The significance of these findings lies in their potential to establish industry standards and inform policymakers in the building sector. They offer valuable insights for implementing effective strategies aimed at reducing blue water consumption across different building types. Full article
(This article belongs to the Special Issue Water-Sensitive and Sustainable Urban Development)
Show Figures

Figure 1

18 pages, 10597 KiB  
Review
Recent Progress in Blue Energy Harvesting Based on Triboelectric Nanogenerators
by Long Liu, Tong Hu, Xinmao Zhao and Chengkuo Lee
Nanoenergy Adv. 2024, 4(2), 156-173; https://doi.org/10.3390/nanoenergyadv4020010 - 23 May 2024
Cited by 8 | Viewed by 2710
Abstract
This paper reviews and summarizes recent progress in blue energy harvesting based on a triboelectric nanogenerator (TENG). This review covers TENG-based blue energy harvesters (BEHs) with different inertial units in spherical structures, derivative spherical structures, buoy structures, and liquid–solid contact structures. These research [...] Read more.
This paper reviews and summarizes recent progress in blue energy harvesting based on a triboelectric nanogenerator (TENG). This review covers TENG-based blue energy harvesters (BEHs) with different inertial units in spherical structures, derivative spherical structures, buoy structures, and liquid–solid contact structures. These research works have paved the way for TENG-based BEHs working under low-frequency waves and harvesting wave energy efficiently. The TENG-based BEH unit design and networking strategy are also discussed, along with highlighted research works. The advantages and disadvantages of different TENG structures with other inertial units are explored and discussed. Meanwhile, power management strategies are also mentioned in this paper. Thus, as a promising blue energy harvesting technology, the TENG is expected to significantly contribute to developing low-cost, lightweight, and high-performance BEHs supporting more frequent marine activities. Full article
Show Figures

Figure 1

19 pages, 4583 KiB  
Article
Lipidome Plasticity Enables Unusual Photosynthetic Flexibility in Arctic vs. Temperate Diatoms
by Jon Brage Svenning, Terje Vasskog, Karley Campbell, Agnethe Hansen Bæverud, Torbjørn Norberg Myhre, Lars Dalheim, Zoé Lulu Forgereau, Janina Emilia Osanen, Espen Holst Hansen and Hans C. Bernstein
Mar. Drugs 2024, 22(2), 67; https://doi.org/10.3390/md22020067 - 27 Jan 2024
Cited by 3 | Viewed by 2736
Abstract
The diatom lipidome actively regulates photosynthesis and displays a high degree of plasticity in response to a light environment, either directly as structural modifications of thylakoid membranes and protein–pigment complexes, or indirectly via photoprotection mechanisms that dissipate excess light energy. This acclimation is [...] Read more.
The diatom lipidome actively regulates photosynthesis and displays a high degree of plasticity in response to a light environment, either directly as structural modifications of thylakoid membranes and protein–pigment complexes, or indirectly via photoprotection mechanisms that dissipate excess light energy. This acclimation is crucial to maintaining primary production in marine systems, particularly in polar environments, due to the large temporal variations in both the intensity and wavelength distributions of downwelling solar irradiance. This study investigated the hypothesis that Arctic marine diatoms uniquely modify their lipidome, including their concentration and type of pigments, in response to wavelength-specific light quality in their environment. We postulate that Arctic-adapted diatoms can adapt to regulate their lipidome to maintain growth in response to the extreme variability in photosynthetically active radiation. This was tested by comparing the untargeted lipidomic profiles, pigmentation, specific growth rates and carbon assimilation of the Arctic diatom Porosira glacialis vs. the temperate species Coscinodiscus radiatus during exponential growth under red, blue and white light. Here, we found that the chromatic wavelength influenced lipidome remodeling and growth in each strain, with P. glacialis showing effective utilization of red light coupled with increased inclusion of primary light-harvesting pigments and polar lipid classes. These results indicate a unique photoadaptation strategy that enables Arctic diatoms like P. glacialis to capitalize on a wide chromatic growth range and demonstrates the importance of active lipid regulation in the Arctic light environment. Full article
(This article belongs to the Special Issue Ecology, Diversity and Evolution of Diatoms)
Show Figures

Figure 1

24 pages, 24104 KiB  
Article
Flowering and Runnering of Seasonal Strawberry under Different Photoperiods Are Affected by Intensity of Supplemental or Night-Interrupting Blue Light
by Jingli Yang, Jinnan Song and Byoung Ryong Jeong
Plants 2024, 13(3), 375; https://doi.org/10.3390/plants13030375 - 26 Jan 2024
Cited by 4 | Viewed by 2743
Abstract
The strawberry (Fragaria × ananassa Duch.) “Sulhyang” is a typical seasonal flowering (SF) strawberry that produces flower buds in day lengths shorter than a critical limit (variable, but often defined as <12 h). There is a trade-off between photoperiod-controlled flowering and gibberellin [...] Read more.
The strawberry (Fragaria × ananassa Duch.) “Sulhyang” is a typical seasonal flowering (SF) strawberry that produces flower buds in day lengths shorter than a critical limit (variable, but often defined as <12 h). There is a trade-off between photoperiod-controlled flowering and gibberellin (GA) signaling pathway-mediated runnering. Some related genes (such as CO, FT1, SOC1, and TFL1) participating in light signaling and circadian rhythm in plants are altered under blue light (BL). Sugars for flowering and runnering are mainly produced by photosynthetic carbon assimilation. The intensity of light could affect photosynthesis, thereby regulating flowering and runnering. Here, we investigated the effect of the intensity of supplemental blue light (S-BL) or night-interrupting blue light (NI-BL) in photoperiodic flowering and runnering regulation by applying 4 h of S-BL or NI-BL with either 0, 10, 20, 30, or 40 μmol·m−2·s−1 photosynthetic photon flux density (PPFD) in a 10 h short-day (SD10) (SD10 + S-BL4 or + NI-BL4 (0, 10, 20, 30, or 40)) or 14 h long-day (LD14) conditions (LD14 + S-BL4 or + NI-BL4 (0, 10, 20, 30, or 40)). Approximately 45 days after the photoperiodic light treatment, generally, whether S-BL or NI-BL, BL (20) was the most promotive in runnering, leading to more runners in both the LD and SD conditions. For flowering, except the treatment LD14 + S-BL, BL (20) was still the key light, either from BL (20) or BL (40), promoting flowering, especially when BL acted as the night-interrupting light, regardless of the photoperiod. At the harvest stage, larger numbers of inflorescences and runners were observed in the LD14 + NI-BL4 treatment, and the most were observed in the LD14 + NI-BL (20). Moreover, the SD10 + NI-BL4 was slightly inferior to the LD14 + NI-BL4 in increasing the numbers of inflorescences and runners, but it caused earlier flowering. Additionally, the circadian rhythm expression of flowering-related genes was affected differently by the S-BL and NI-BL. After the application of BL in LD conditions, the expression of an LD-specific floral activator FaFT1 was stimulated, while that of a flowering suppressor FaTFL1 was inhibited, resetting the balance of expression between these two opposite flowering regulators. The SD runnering was caused by BL in non-runnering SD conditions associated with the stimulation of two key genes that regulate runner formation in the GA pathway, FaGRAS32 and FaGA20ox4. In addition, the positive effects of BL on enhancing photosynthesis and carbohydrate production also provided an abundant energy supply for the flowering and runnering processes. Full article
(This article belongs to the Special Issue Horticultural Plant Cultivation and Fruit Quality Enhancement)
Show Figures

Figure 1

27 pages, 11679 KiB  
Review
Networking Strategies of Triboelectric Nanogenerators for Harvesting Ocean Blue Energy
by Xianye Li, Liang Xu and Zhong Lin Wang
Nanoenergy Adv. 2024, 4(1), 70-96; https://doi.org/10.3390/nanoenergyadv4010004 - 22 Jan 2024
Cited by 5 | Viewed by 2433
Abstract
The utilization of abundant blue energy in the ocean could greatly contribute to achieving carbon neutrality. However, the unsolved economic and technical challenges of traditional technologies for harvesting blue energy have resulted in slow progress. Triboelectric nanogenerators (TENGs), as a new approach for [...] Read more.
The utilization of abundant blue energy in the ocean could greatly contribute to achieving carbon neutrality. However, the unsolved economic and technical challenges of traditional technologies for harvesting blue energy have resulted in slow progress. Triboelectric nanogenerators (TENGs), as a new approach for converting mechanical energy into electricity, have great potential for blue energy harvesting, which can be connected as networks with different numbers of units for varying scales of energy harvesting. Here, recent advances of networking strategies of TENGs for harvesting blue energy are reviewed, mainly concerning mechanical and electrical connection designs. Anchoring strategies of devices and networks are also discussed. The development of TENG networks could provide an effective solution for large-scale ocean blue energy harvesting, which can also serve as an in-situ energy station or power source for self-powered systems, supporting various marine equipment and activities. Full article
Show Figures

Figure 1

11 pages, 1486 KiB  
Article
An Electrolyte-Free Thermo-Rechargeable Battery Made of Prussian Blue Analog Thin Films
by Takayuki Shibata, Hirotada Matsushima, Ichiro Nagai and Hitoshi Ohnuki
Processes 2024, 12(1), 175; https://doi.org/10.3390/pr12010175 - 12 Jan 2024
Viewed by 1493
Abstract
Thermo-rechargeable batteries, or tertiary batteries, are prospective energy-harvesting devices that are charged by changes in the battery temperature. Previous studies on tertiary batteries have utilized an electrolyte solution, yet the volume of this electrolyte solution could be a disadvantage in terms of the [...] Read more.
Thermo-rechargeable batteries, or tertiary batteries, are prospective energy-harvesting devices that are charged by changes in the battery temperature. Previous studies on tertiary batteries have utilized an electrolyte solution, yet the volume of this electrolyte solution could be a disadvantage in terms of the heat capacity given to the tertiary batteries. To overcome this drawback, the performance of an electrolyte-free tertiary battery consisting of physically joined Na1.60Co[Fe(CN)6]0.902.9H2O (NCF90) and Na0.72Ni[Fe(CN)6]0.685.1H2O (NNF68) thin films was investigated for the first time. During thermal cycling between 5 °C and 15 °C, the thermal voltage (VTB) was observed to be 8.4 mV. This result is comparable to the VTB of conventional tertiary batteries that use electrolyte solutions made of NCF90 and NNF68 thin films. Full article
(This article belongs to the Special Issue Energy Storage Systems and Thermal Management)
Show Figures

Graphical abstract

Back to TopTop