High-Efficiency and High-Monochromaticity Semitransparent Organic Solar Cells Based on Optical Tamm States
Abstract
:1. Introduction
2. Materials and Methods
2.1. Device Structure and Materials
2.2. Optical Modeling Methods for ST-OSC Devices
3. Results and Discussion
3.1. The Optical Properties of the 1DPCs and Ag/1DPC Structure
3.2. Comparison of the Performance of ST-OSCs with/Without Ag/1DPC Structure
3.3. Effect of Ag Electrode Thickness on Device Performance
3.4. The Effect of the Thickness of the First WO3 Layer of the 1DPCs
3.5. The Effect of the Pair Number of WO3/LiF in 1DPCs
3.6. Devices with Optimized Structural Parameters
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bailey-Salzman, R.F.; Rand, B.P.; Forrest, S.R. Semitransparent organic photovoltaic cells. Appl. Phys. Lett. 2006, 88, 3693. [Google Scholar] [CrossRef]
- Traverse, C.J.; Pandey, R.; Barr, M.C.; Lunt, R.R. Emergence of highly transparent photovoltaics for distributed applications. Nat. Energy 2017, 2, 849–860. [Google Scholar] [CrossRef]
- Liu, Z.X.; Yu, Z.P.; Shen, Z.; He, C.; Lau, T.K.; Chen, Z.; Zhu, H.; Lu, X.; Xie, Z.; Chen, H.; et al. Molecular insights of exceptionally photostable electron acceptors for organic photovoltaics. Nat. Commun. 2021, 12, 3049. [Google Scholar] [CrossRef]
- Zhou, G.; Zhang, M.; Xu, J.; Yang, Y.; Hao, T.; Zhu, L.; Zhou, L.; Zhu, H.; Zou, Y.; Wei, G.; et al. Spontaneous carrier generation and low recombination in high-efficiency non-fullerene solar cells. Energ. Env. Sci. 2022, 15, 3483–3493. [Google Scholar] [CrossRef]
- Xu, T.; Deng, B.; Zheng, K.; Li, H.; Wang, Z.; Zhong, Y.; Zhang, C.; Leveque, G.; Grandidier, B.; Bachelot, R.; et al. Boosting the Performances of Semitransparent Organic Photovoltaics via Synergetic Near-Infrared Light Management. Adv. Mater. 2024, 36, 2311305. [Google Scholar] [CrossRef]
- Deng, B.; Zheng, K.; Wang, Z.; Yin, L.; Dong, H.; Zhang, C.; Treguer-Delapierre, M.; N’konou, K.; Grandidier, B.; Wang, S.; et al. Multifunctional Semitransparent Organic Photovoltaics with High-Throughput Screened Infrared Reflector. ACS Energy Lett. 2024, 9, 976–984. [Google Scholar] [CrossRef]
- Li, Y.; Wang, J.; Yan, C.; Zhang, S.; Cui, N.; Liu, Y.; Li, G.; Cheng, P. Optical and electrical losses in semitransparent organic photovoltaics. Joule 2024, 8, 527–541. [Google Scholar] [CrossRef]
- Kim, J.Y.; Jeon, S.J.; Lee, H.S.; Han, Y.W.; Kim, Y.C.; Yang, N.G.; Kim, G.W.; Jang, E.M.; Kim, J.H.; Moon, D.K. Distribution of dual additives enables efficient semi-transparent layer-by-layer architecture of organic solar cells. J. Mater. Chem. C Mater. Opt. Electron. Devices 2024, 12, 598–5915. [Google Scholar] [CrossRef]
- Zhu, L.; Zhang, M.; Xu, J.; Li, C.; Yan, J.; Zhou, G.; Zhong, W.; Hao, T.; Song, J.; Xue, X.; et al. Single-junction organic solar cells with over 19% efficiency enabled by a refined double-fibril network morphology. Nat. Mater. 2022, 21, 656–663. [Google Scholar] [CrossRef] [PubMed]
- Guan, S.; Li, Y.; Xu, C.; Yin, N.; Xu, C.; Wang, C.; Wang, M.; Xu, Y.; Chen, Q.; Wang, D.; et al. Self-Assembled Interlayer Enables High-Performance Organic Photovoltaics with Power Conversion Efficiency Exceeding 20%. Adv. Mater. 2024, 36, 2400342. [Google Scholar] [CrossRef] [PubMed]
- Kini, G.P.; Jeon, S.J.; Moon, D.K. Latest Progress on Photoabsorbent Materials for Multifunctional Semitransparent Organic Solar Cells. Adv. Funct. Mater. 2021, 31, 2007931. [Google Scholar] [CrossRef]
- Fukuda, K.; Yu, K.; Someya, T. The Future of Flexible Organic Solar Cells. Adv. Energy Mater. 2020, 10, 2000765. [Google Scholar] [CrossRef]
- Ma, L.; Cui, Y.; Zhang, J.; Xian, K.; Chen, Z.; Zhou, K.; Zhang, T.; Wang, W.; Yao, H.; Zhang, S.; et al. High-Efficiency and Mechanically Robust All-Polymer Organic Photovoltaic Cells Enabled by Optimized Fibril Network Morphology. Adv. Mater. 2023, 35, 2208926. [Google Scholar] [CrossRef] [PubMed]
- Safat Dipta, S.; Schoenlaub, J.; Habibur Rahaman, M.; Uddin, A. Estimating the potential for semitransparent organic solar cells in agrophotovoltaic greenhouses. Appl. Energy 2022, 328, 120208. [Google Scholar] [CrossRef]
- Xiao, L.; Zhang, H.; Li, S.; Cheng, Q.; Zhang, Y.; Li, Y.; Zhang, Y.; Zhou, H. The Role of Device Architecture and Interfacial Layer on Performance of Semitransparent Organic Solar Cells. Sol. RRL 2024, 8, 2400126. [Google Scholar] [CrossRef]
- Zhong, J.; Liang, W.; Long, Y. Simultaneously improving efficiency and transparency of semitransparent organic solar cells by constructing semitransparent microcavity. Optik 2018, 171, 706–714. [Google Scholar] [CrossRef]
- Zhong, J.; Xu, H.; Zhao, J.; Gao, F.; Zhou, J.; Long, Y. Magnesium fluoride microcavity-based non-fullerene semitransparent organic solar cells with high peak transmittance and low efficiency loss rate. Org. Electron. 2023, 121, 106864. [Google Scholar] [CrossRef]
- Gao, N.; Bin, H.; Wu, S.; Janssen, R.A.J.; Li, Y. Semitransparent organic solar cells with high light utilization efficiency and color rendering index. Sci. China Chem. 2024, 67, 2248–2256. [Google Scholar] [CrossRef]
- Liu, X.; Liu, X.; Xia, Z.; Ji, Y.; Zhang, D.; Cheng, Y.; Liu, X.; Yuan, J.; Yang, X.; Huang, W. A semitransparent organic solar cell with a bifacial factor of 99.1%. Mater. Today Energy 2024, 44, 101614. [Google Scholar] [CrossRef]
- Zhao, M.; Wu, J.; Tang, H.; Yi, X.; Liu, Z.; Huang, M.; Fu, Y.; Xie, Z. A Novel Ultra-Thin and Smooth Sm:Ag Composite Electrode with High Visible Transmittance Enables Efficient Color-Neutral Semitransparent Organic Solar Cells. Adv. Opt. Mater. 2024, 2401776. [Google Scholar] [CrossRef]
- Duan, L.; Hoex, B.; Uddin, A. Progress in Semitransparent Organic Solar Cells. Sol. RRL 2021, 5, 2100041. [Google Scholar] [CrossRef]
- Kumar, P.; You, S.; Vomiero, A. Recent Progress in Materials and Device Design for Semitransparent Photovoltaic Technologies. Adv. Energy Mater. 2023, 13, 2301555. [Google Scholar] [CrossRef]
- Han, G.; Yi, Y.; Shuai, Z. From Molecular Packing Structures to Electronic Processes: Theoretical Simulations for Organic Solar Cells. Adv. Energy Mater. 2018, 8, 201702743. [Google Scholar] [CrossRef]
- Su, W.; Fan, Q.; Guo, X.; Wu, J.; Zhang, M.; Li, Y. Efficient as-cast semi-transparent organic solar cells with efficiency over 9% and a high average visible transmittance of 27.6%. Phys. Chem. Chem. Phys. 2019, 21, 10660–10666. [Google Scholar] [CrossRef]
- Xu, T.; Luo, Y.; Wu, S.; Deng, B.; Chen, S.; Zhong, Y.; Wang, S.; Leveque, G.; Bachelot, R.; Zhu, F. High-Performance Semitransparent Organic Solar Cells: From Competing Indexes of Transparency and Efficiency Perspectives. Adv. Sci. 2022, 9, 2202150. [Google Scholar] [CrossRef]
- Hu, Z.; Wang, J.; Ma, X.; Gao, J.; Xu, C.; Yang, K.; Wang, Z.; Zhang, J.; Zhang, F. A critical review on semitransparent organic solar cells. Nano Energy 2020, 78, 105376. [Google Scholar] [CrossRef]
- Zhang, Y.F.; Chen, W.S.; Chen, J.D.; Ren, H.; Hou, H.Y.; Tian, S.; Ge, H.R.; Ling, H.H.; Zhang, J.L.; Mao, H.; et al. Optically Enhanced Semitransparent Organic Solar Cells with Light Utilization Efficiency Surpassing 5.5%. Adv. Energy Mater. 2024, 14, 202400970. [Google Scholar] [CrossRef]
- Zhao, L.; Huang, X.; Wang, Y.; Young Jeong, S.; Huang, B.; Deng, J.; Liu, J.; Cheng, Y.; Young Woo, H.; Wu, F.; et al. Combination of highly photovoltaic and highly transparent materials enables record performance semitransparent organic solar cells. Chem. Eng. J. 2023, 451, 139081. [Google Scholar] [CrossRef]
- Xu, T.; Deng, B.; Zhao, Y.; Wang, Z.; Lévêque, G.; Lambert, Y.; Grandidier, B.; Wang, S.; Zhu, F. High-Throughput Computing Guided Low/High Index Optical Coupling Layer for Record-Performance Semitransparent Organic Solar Cells. Adv. Energy Mater. 2023, 13, 202301367. [Google Scholar] [CrossRef]
- Hu, Z.; Wang, Z.; An, Q.; Zhang, F. Semitransparent polymer solar cells with 12.37% efficiency and 18.6% average visible transmittance. Sci. Bull. 2020, 65, 131–137. [Google Scholar] [CrossRef]
- Yuan, J.; Zhang, Y.; Zhou, L.; Zhang, G.; Yip, H.; Lau, T.; Lu, X.; Zhu, C.; Peng, H.; Johnson, P.A.; et al. Single-Junction Organic Solar Cell with over 15% Efficiency Using Fused-Ring Acceptor with Electron-Deficient Core. Joule 2019, 3, 1140–1151. [Google Scholar] [CrossRef]
- Rasool, S.; Yeop, J.; Cho, H.W.; Lee, W.; Kim, J.W.; Yuk, D.; Kim, J.Y. Path to the fabrication of efficient, stable and commercially viable large-area organic solar cells. Mater. Futures 2023, 2, 32102. [Google Scholar] [CrossRef]
- Li, M.; An, T.; Ou, Z.; Jin, K.; Jin, Z.; Yan, K.; Tian, H.; Wang, W.; Yang, S.; Wang, G.; et al. A tetracyclic-bislactone-based copolymer donor for efficient semitransparent organic photovoltaics. Mater. Adv. 2023, 4, 2991–2998. [Google Scholar] [CrossRef]
- Hong, E.; Li, Z.; Zhang, X.; Fan, X.; Fang, X. Deterministic Fabrication and Quantum-Well Modulation of Phase-Pure 2D Perovskite Heterostructures for Encrypted Light Communication. Adv. Mater. 2024, 36, e2400365. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Yin, Y.; Liu, F.; Miao, C.; Zhuang, X.; Pang, Z.; Xu, M.; Chen, M.; Yang, Z. Thickness-dependent highly sensitive photodetection behavior of lead-free all-inorganic CsSnBr3 nanoplates. Rare Met. 2022, 41, 1753–1760. [Google Scholar] [CrossRef]
- Zhong, J.; Xiao, Z.; Liang, W.; Wu, Y.; Ye, Q.; Xu, H.; Deng, H.; Shen, L.; Feng, X.; Long, Y. Highly Efficient and High Peak Transmittance Colorful Semitransparent Organic Solar Cells with Hybrid-Electrode-Mirror Microcavity Structure. Acs Appl. Mater. Inter. 2019, 11, 47992–48001. [Google Scholar] [CrossRef]
- Li, X.; Xia, R.; Yan, K.; Ren, J.; Yip, H.; Li, C.; Chen, H. Semitransparent Organic Solar Cells with Vivid Colors. Acs Energy Lett. 2020, 5, 3115–3123. [Google Scholar] [CrossRef]
- Yeom, H.R.; Song, S.; Park, S.Y.; Ryu, H.S.; Kim, J.W.; Heo, J.; Cho, H.W.; Walker, B.; Ko, S.; Woo, H.Y.; et al. Aesthetic and colorful: Dichroic polymer solar cells using high-performance Fabry-Pérot etalon electrodes with a unique Sb2O3 cavity. Nano Energy 2020, 77, 105146. [Google Scholar] [CrossRef]
- Han, D.; Han, S.; Bu, Z.; Deng, Y.; Liu, C.; Guo, W. Flexible Color Tunability and High Transmittance Semitransparent Organic Solar Cells. Sol. RRL 2022, 6, 202200441. [Google Scholar] [CrossRef]
- Cetinkaya, C.; Cokduygulular, E.; Kinaci, B.; Emik, S.; Sonmez, N.A.; Ozcelik, S. Enhancement of color and photovoltaic performance of semi-transparent organic solar cell via fine-tuned 1D photonic crystal. Sci. Rep. 2022, 12, 19400. [Google Scholar] [CrossRef]
- Yu, W.; Shen, L.; Shen, P.; Long, Y.; Sun, H.; Chen, W.; Ruan, S. Semitransparent Polymer Solar Cells with 5% Power Conversion Efficiency Using Photonic Crystal Reflector. ACS Appl. Mater. Inter. 2014, 6, 599–605. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Jiang, X.; Wang, R.; Xie, H.; Ma, G.; Ou, Q.; Chen, Y.; Li, Y.; Tang, J. Enhanced Performance of Semitransparent Inverted Organic Photovoltaic Devices via a High Reflector Structure. ACS Appl. Mater. Inter. 2013, 5, 10185–10190. [Google Scholar] [CrossRef] [PubMed]
- Yu, W.; Shen, L.; Jia, X.; Liu, Y.; Guo, W.; Ruan, S. Improved color rendering index of low band gap semi-transparent polymer solar cells using one-dimensional photonic crystals. Rsc Adv. 2015, 5, 54638–54644. [Google Scholar] [CrossRef]
- Gao, H.; Li, P.; Yang, S. Tunable multichannel optical absorber based on coupling effects of optical Tamm states in metal-photonic crystal heterostructure-metal structure. Opt. Commun. 2020, 457, 124688. [Google Scholar] [CrossRef]
- Elsayed, H.A.; Taha, T.A.; Algarni, S.A.; Ahmed, A.M.; Mehaney, A. Evolution of optical Tamm states in a 1D photonic crystal comprising a nanocomposite layer for optical filtering and reflecting purposes. Opt. Quant. Electron. 2022, 54, 312. [Google Scholar] [CrossRef]
- Shen, P.; Yao, M.; Liu, J.; Long, Y.; Guo, W.; Shen, L. Colored semitransparent polymer solar cells with a power conversion efficiency of 9.36% achieved by controlling the optical Tamm state. J. Mater. Chem. A 2019, 7, 4102–4109. [Google Scholar] [CrossRef]
- Lu, S.; Guan, X.; Li, X.; Sha, W.E.I.; Xie, F.; Liu, H.; Wang, J.; Huang, F.; Choy, W.C.H. A New Interconnecting Layer of Metal Oxide/Dipole Layer/Metal Oxide for Efficient Tandem Organic Solar Cells. Adv. Energy Mater. 2015, 5, 1500631. [Google Scholar] [CrossRef]
- Bai, Y.; Han, F.; Tian, S.; Wang, F.; Jiang, S.; Wang, J.; Huang, T.; Tan, Z. Balance PCE, AVT and CRI for good eye comfort semi-transparent organic photovoltaics via Ga2O3 or In2O3 electron collection layers. Org. Electron. 2022, 108, 106572. [Google Scholar] [CrossRef]
- Long, Y. Effects of metal electrode reflection and layer thicknesses on the performance of inverted organic solar cells. Sol. Energy Mater. Sol. Cells 2010, 94, 744–749. [Google Scholar] [CrossRef]
- Huang, X.; Ren, X.; Cheng, Y.; Zhang, Y.; Sun, Z.; Yang, S.; Kim, S.; Yang, C.; Wu, F.; Chen, L. Collaborative regulation strategy of donor and acceptor analogues realizes multifunctional semitransparent organic solar cells with excellent comprehensive performance. Energy Environ. Sci. 2024, 17, 2825–2836. [Google Scholar] [CrossRef]
- Paci, B.; Righi Riva, F.; Generosi, A.; Guaragno, M.; Mangiacapre, E.; Brutti, S.; Wagner, M.; Distler, A.; Egelhaaf, H. Semitransparent Organic Photovoltaic Devices: Interface/Bulk Properties and Stability Issues. Nanomaterials 2024, 14, 269. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Sun, S.; Zhou, L.; Cui, Y.; Zhang, W.; Hou, J.; Liu, F.; Xu, S.; Zhu, X. Design of Near-Infrared Nonfullerene Acceptor with Ultralow Nonradiative Voltage Loss for High-Performance Semitransparent Ternary Organic Solar Cells. Angew. Chem. Int. Ed. 2022, 61, e202116111. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.; Han, F.; Shi, R.; Wang, F.; Jiang, S.; Wang, J.; Tan, Z. High-Efficiency Microcavity Semitransparent Organic Photovoltaics with Simultaneously Improved Average Visible Transmittance and Color Rendering Index. Sol. RRL 2022, 6, 202200174. [Google Scholar] [CrossRef]
- Sung, Y.; Li, M.; Luo, D.; Li, Y.; Biring, S.; Huang, Y.; Wang, C.; Liu, S.; Wong, K. A micro-cavity forming electrode with high thermal stability for semi-transparent colorful organic photovoltaics exceeding 13% power conversion efficiency. Nano Energy 2021, 80, 105565. [Google Scholar] [CrossRef]
Device | Central Wavelength (nm) | Jsc (mA/cm2) | PCE (%) | PCE Loss Rate (%) | Transmittance Peak (nm) | Tmax (%) |
---|---|---|---|---|---|---|
ST-OSCs with Ag/1DPCs | 450 nm | 23.43 | 14.93 | 3.5 | 519 | 38.8 |
500 nm | 23.50 | 14.96 | 3.3 | 570 | 27.3 | |
550 nm | 23.49 | 14.97 | 3.2 | 617 | 17.2 | |
600 nm | 23.43 | 14.93 | 3.5 | 670 | 34.0 | |
650 nm | 23.46 | 14.95 | 3.4 | 722 | 27.7 | |
Control Device with 100 nm Ag electrode | / | 24.27 | 15.47 | / | / | / |
1DPCs | 10 nm Ag CIE-x | 10 nm Ag CIE-y | 40 nm Ag CIE-x | 40 nm Ag CIE-y |
---|---|---|---|---|
400 nm | 0.3182 | 0.4814 | 0.1984 | 0.2558 |
450 nm | 0.4500 | 0.4986 | 0.2656 | 0.6256 |
500 nm | 0.4948 | 0.3276 | 0.4340 | 0.4847 |
550 nm | 0.2398 | 0.0799 | 0.3496 | 0.1383 |
600 nm | 0.1510 | 0.0934 | 0.1873 | 0.0839 |
650 nm | 0.1468 | 0.2085 | 0.1451 | 0.1528 |
Ag (nm) | Jsc (mA/cm2) | PCE (%) | PCE Loss Rate (%) | Transmittance Peak (nm) | Tmax (%) | CIEx | CIEy |
---|---|---|---|---|---|---|---|
0 | 15.50 | 9.88 | 36.1 | - | - | 0.1443 | 0.1069 |
10 | 18.49 | 11.79 | 23.8 | - | - | 0.1510 | 0.0934 |
20 | 21.17 | 13.49 | 12.8 | 681 | 28.0 | 0.1616 | 0.0868 |
30 | 22.64 | 14.43 | 6.7 | 673 | 34.8 | 0.1751 | 0.0846 |
40 | 23.43 | 14.93 | 3.5 | 670 | 34.0 | 0.1873 | 0.0839 |
50 | 23.84 | 15.2 | 1.7 | 668 | 24.7 | 0.1940 | 0.0825 |
60 | 24.06 | 15.34 | 0.8 | 668 | 14.6 | 0.1949 | 0.0798 |
70 | 24.17 | 15.41 | 0.4 | 668 | 7.0 | 0.1927 | 0.0762 |
80 | 24.22 | 15.44 | 0.2 | 668 | 3.0 | 0.1892 | 0.0723 |
WO3 (nm) | Jsc (mA/cm2) | PCE (%) | PCE Loss Rate (%) | Transmittance Peak (nm) | Tmax (%) | CIEx | CIEy |
---|---|---|---|---|---|---|---|
0 | 23.42 | 14.94 | 3.4 | 501 | 36.9 | 0.1318 | 0.1200 |
10 | 22.23 | 14.81 | 4.3 | 512 | 44.2 | 0.1285 | 0.1712 |
20 | 22.14 | 14.75 | 4.7 | 530 | 37.4 | 0.1452 | 0.2346 |
30 | 22.14 | 14.75 | 4.7 | 556 | 27.2 | 0.1958 | 0.2459 |
40 | 23.11 | 14.73 | 4.8 | 585 | 16.8 | 0.2421 | 0.1826 |
50 | 23.10 | 14.72 | 4.8 | 618 | 14.0 | 0.2191 | 0.1308 |
60 | 23.09 | 14.72 | 4.8 | 649 | 23.0 | 0.2167 | 0.1014 |
70 | 23.10 | 14.73 | 4.8 | 676 | 37.4 | 0.1732 | 0.0805 |
80 | 23.10 | 14.73 | 4.8 | 700 | 35.9 | 0.1506 | 0.0699 |
90 | 23.10 | 14.72 | 4.8 | 718 | 27.0 | 0.1448 | 0.0683 |
Pairs | Jsc (mA/cm2) | PCE (%) | PCE Loss Rate (%) | Transmittance Peak (nm) | Tmax (%) | CIEx | CIEy |
---|---|---|---|---|---|---|---|
0 | 23.43 | 14.94 | 3.4 | - | - | 0.2001 | 0.2183 |
1 | 23.08 | 14.71 | 4.9 | 670 | 5 | 0.2157 | 0.2674 |
2 | 22.86 | 14.57 | 5.8 | 686 | 10.0 | 0.2841 | 0.2918 |
3 | 22.94 | 14.62 | 5.5 | 690 | 21.3 | 0.2493 | 0.1468 |
4 | 23.03 | 14.68 | 5.1 | 679 | 33.3 | 0.2135 | 0.0920 |
5 | 23.04 | 14.69 | 5.0 | 673 | 38.8 | 0.1980 | 0.0921 |
6 | 23.10 | 14.72 | 4.8 | 671 | 35.3 | 0.1816 | 0.0842 |
7 | 23.19 | 14.80 | 4.3 | 670 | 26.9 | 0.1666 | 0.0781 |
8 | 23.2 | 14.80 | 4.3 | 669 | 17.8 | 0.1549 | 0.0751 |
9 | 23.2 | 14.80 | 4.3 | 669 | 10.6 | 0.1477 | 0.0754 |
Ag (nm) | WO3 (nm) | Central Wavelength (nm) | Jsc (mA/cm2) | PCE (%) | PCE Loss Rate (%) | Transmittance Peak (nm) | Tmax (%) | CIEx | CIEy | |
---|---|---|---|---|---|---|---|---|---|---|
Devic1 (green) | 50 | 47 | 465 | 23.84 | 15.20 | 1.7 | 521 | 31.5 | 0.2006 | 0.6767 |
Devic2 (blue) | 55 | 40 | 385 | 23.90 | 15.24 | 1.5 | 447 | 37.0 | 0.1870 | 0.1159 |
Devic3 (purple) | 35 | 65 | 600 | 23.02 | 14.67 | 5.2 | 665 | 37.9 | 0.1958 | 0.0906 |
Ref | Active Layer | Top Electrode | PCE (%) | Tmax (%) | λ@Tmax |
---|---|---|---|---|---|
Huang [50] | PCE10-2F/Y6 | Ag 15 nm | 10.48 | / | / |
Huang [50] | PM6:L8-BO | Ag 15 nm | 12.88 | / | / |
Paci [51] | PM6:Y6 | AgNWs | 6.7 | / | / |
Liu [52] | PM6:Y6:SN | Ag 20 nm | 15.9 | / | / |
Bai [53] | PM6:Y6 | Ag/MoO3/Ag | 11.44–11.91 | / | / |
Sung [54] | PM6:Y6 | Ag/HATCN/Ag | 13.28 | 15.6 | 470 |
Li [37] | PM6:Y6 | Ag/TeO2/Ag | 13.95 | 31.0 | 438 |
Li [37] | PM6:Y6 | Ag/TeO2/Ag | 14.30 | 21.8 | 529 |
Li [37] | PM6:Y6 | Ag/TeO2/Ag | 14.10 | 25.2 | 656 |
This work | PM6:Y6 | Ag/1DPCs | 15.24 | 37.0 | 447 |
This work | PM6:Y6 | Ag/1DPCs | 15.20 | 31.5 | 521 |
This work | PM6:Y6 | Ag/1DPCs | 14.67 | 37.9 | 665 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, J.; Lin, S.; Zhou, J.; Gao, F.; Liu, J.; Long, Y.; Xu, H. High-Efficiency and High-Monochromaticity Semitransparent Organic Solar Cells Based on Optical Tamm States. Photonics 2024, 11, 1030. https://doi.org/10.3390/photonics11111030
Zhao J, Lin S, Zhou J, Gao F, Liu J, Long Y, Xu H. High-Efficiency and High-Monochromaticity Semitransparent Organic Solar Cells Based on Optical Tamm States. Photonics. 2024; 11(11):1030. https://doi.org/10.3390/photonics11111030
Chicago/Turabian StyleZhao, Junwei, Senxuan Lin, Jinxin Zhou, Fuhao Gao, Jingfeng Liu, Yongbing Long, and Haitao Xu. 2024. "High-Efficiency and High-Monochromaticity Semitransparent Organic Solar Cells Based on Optical Tamm States" Photonics 11, no. 11: 1030. https://doi.org/10.3390/photonics11111030
APA StyleZhao, J., Lin, S., Zhou, J., Gao, F., Liu, J., Long, Y., & Xu, H. (2024). High-Efficiency and High-Monochromaticity Semitransparent Organic Solar Cells Based on Optical Tamm States. Photonics, 11(11), 1030. https://doi.org/10.3390/photonics11111030