Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (99)

Search Parameters:
Keywords = blue, green, and red light spectra

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 3551 KiB  
Article
Integration of Green and Far-Red Light with Red-Blue Light Enhances Shoot Multiplication in Micropropagated Strawberry
by Yali Li, Ping Huang, Xia Qiu, Feiyu Zhu, Hongwen Chen, Si Wang, Jiaxian He, Yadan Pang, Hui Ma and Fang Wang
Horticulturae 2025, 11(6), 701; https://doi.org/10.3390/horticulturae11060701 - 17 Jun 2025
Cited by 1 | Viewed by 367
Abstract
Light spectral composition critically regulates plant morphogenesis and molecular adaptation in controlled environments. This study investigated the synergistic effects of three light spectra, red-blue (RB, 7:3), red-blue-green (RGB, 7:3:1), and red-blue-far-red (RBFR, 7:3:1), on multiplication, morphogenesis, physiological traits, and transcriptomic dynamics in tissue-cultured [...] Read more.
Light spectral composition critically regulates plant morphogenesis and molecular adaptation in controlled environments. This study investigated the synergistic effects of three light spectra, red-blue (RB, 7:3), red-blue-green (RGB, 7:3:1), and red-blue-far-red (RBFR, 7:3:1), on multiplication, morphogenesis, physiological traits, and transcriptomic dynamics in tissue-cultured strawberry (Fragaria × ananassa cv. ‘Benihoppe’). After 28 days of cultivation under controlled conditions (25 °C/22 °C day/night, 50 μmol·m−2·s−1 PPFD), RBFR and RGB treatments significantly enhanced shoot multiplication (38.8% and 24.2%, respectively), plant height, and callus biomass compared to RB light. RGB elevated chlorophyll a and b by 1.8- and 1.6-fold, respectively, while RBFR increased soluble protein content by 16%. Transcriptome analysis identified 144 and 376 differentially expressed genes (DEGs) under RGB and RBFR, respectively, enriched in pathways linked to circadian rhythm, auxin transport, and photosynthesis. Far-red light upregulated light signaling and photomorphogenesis genes, whereas green light enhanced chlorophyll biosynthesis while suppressing stress-responsive genes. These findings elucidate the spectral-specific regulatory mechanisms underlying strawberry micropropagation and provide a framework for optimizing multispectral LED systems in controlled-environment horticulture. Full article
(This article belongs to the Section Propagation and Seeds)
Show Figures

Figure 1

32 pages, 5088 KiB  
Article
IoT-Based Adaptive Lighting Framework for Optimizing Energy Efficiency and Crop Yield in Indoor Farming
by Nezha Kharraz, András Revoly and István Szabó
J. Sens. Actuator Netw. 2025, 14(3), 59; https://doi.org/10.3390/jsan14030059 - 4 Jun 2025
Viewed by 925
Abstract
Indoor farming presents a sustainable response to urbanization and climate change, yet optimizing light use efficiency (LUE) remains vital for maximizing crop yield and minimizing energy use. This study introduces an IoT-based framework for adaptive light management in controlled environments, using lettuce ( [...] Read more.
Indoor farming presents a sustainable response to urbanization and climate change, yet optimizing light use efficiency (LUE) remains vital for maximizing crop yield and minimizing energy use. This study introduces an IoT-based framework for adaptive light management in controlled environments, using lettuce (Lactuca sativa L.) as a model crop due to its rapid growth and sensitivity to light spectra. The system integrates advanced LED lighting, real-time sensors, and cloud-based analytics to enhance light distribution and automate adjustments based on growth stages. The key findings indicate a 20% increase in energy efficiency and a 15% improvement in lettuce growth compared to traditional static models. Novel metrics—Light Use Efficiency at Growth stage Canopy Level (LUEP) and Lamp Level (LUEL)—were developed to assess system performance comprehensively. Simulations identified optimal growth conditions, including a light intensity of 350–400 µmol/m2/s and photoperiods of 16–17 h/day. Spectral optimization showed that a balanced blue-red light mix benefits vegetative growth, while higher red content supports flowering. The framework’s feedback control ensures rapid (<2 s) and accurate (>97%) adjustments to environmental deviations, maintaining ideal conditions throughout growth stages. Comparative analysis confirms the adaptive system’s superiority over static models in responding to dynamic environmental conditions and improving performance metrics like LUEP and LUEL. Practical recommendations include stage-specific guidelines for light spectrum, intensity, and duration to enhance both energy efficiency and crop productivity. While tailored to lettuce, the modular system design allows for adaptation to a variety of leafy greens and other crops with species-specific calibration. This research demonstrates the potential of IoT-driven adaptive lighting systems to advance precision agriculture in indoor environments, offering scalable, energy-efficient solutions for sustainable food production. Full article
Show Figures

Figure 1

12 pages, 6490 KiB  
Article
Pr3+-Activated Sr2LaF7 Nanoparticles as a Single-Phase White-Light-Emitting Nanophosphor
by Bojana Milićević, Aleksandar Ćirić, Katarina Milenković, Zoran Ristić, Jovana Periša, Željka Antić and Miroslav D. Dramićanin
Nanomaterials 2025, 15(10), 717; https://doi.org/10.3390/nano15100717 - 9 May 2025
Cited by 1 | Viewed by 392
Abstract
Sr2LaF7:xPr3+ (x = 0.2, 1, 2, 3, 5, 10, and 25 mol%) nanophosphors with a cubic Fm3m structure were hydrothermally synthesized, forming nearly spherical nanoparticles with an average diameter of approximately 32 nm. Diffuse reflectance [...] Read more.
Sr2LaF7:xPr3+ (x = 0.2, 1, 2, 3, 5, 10, and 25 mol%) nanophosphors with a cubic Fm3m structure were hydrothermally synthesized, forming nearly spherical nanoparticles with an average diameter of approximately 32 nm. Diffuse reflectance measurement and excitation spectra showed a primary excitation peak of Pr3+ at 443 nm, corresponding to the ground state to the 3P2 level transition. Upon blue light excitation, Pr3+-activated Sr2LaF7 nanophosphors showed rich emission structure across the visible region of the spectrum, with blue (~483 nm), green (~525 nm), orange (~600 nm), and red (~640 nm) emissions, blue and orange being the most prominent ones. The relative intensities of these emissions varied with Pr3+ concentration, leading to tunable emission colors. The chromaticity showed slight variation with the Pr3+ content (0.350 < x < 0.417, 0.374 < y < 0.380), while the CCT value increased from 3118 K to 4901 K as the doping concentration increased. The optimized Sr2LaF7 with 2 mol% Pr3+ had the most intense emission with correlated color temperature (CCT) of 3628 K, corresponding to the warm white color. The proposed Pr3+-doping strategy offers valuable insights into discovering or optimizing single-phase phosphors for white-light-emitting applications. Full article
(This article belongs to the Section Nanophotonics Materials and Devices)
Show Figures

Graphical abstract

12 pages, 14358 KiB  
Article
Light Adaptations of Ipomoea purpurea (L.) Roth: Functional Analysis of Leaf and Petal Interfaces
by Zhanlin Bei, Lulu Lu, Zubayda Amar and Xin Zhang
Plants 2025, 14(6), 862; https://doi.org/10.3390/plants14060862 - 10 Mar 2025
Viewed by 748
Abstract
In low-light environments, plants face challenges in maximizing light acquisition for growth and reproduction. This study investigates the light-related adaptations of Ipomoea purpurea (L.) Roth, a climbing annual vine commonly known as morning glory. Field and laboratory analyses focused on the functionality of [...] Read more.
In low-light environments, plants face challenges in maximizing light acquisition for growth and reproduction. This study investigates the light-related adaptations of Ipomoea purpurea (L.) Roth, a climbing annual vine commonly known as morning glory. Field and laboratory analyses focused on the functionality of its leaf and petal interfaces. We observed that tendrils of I. purpurea enable it to climb surrounding structures, optimizing light capture. The leaves display absorption peaks at 400 nm and 700 nm, typical for plants that absorb light in the red and blue regions, with microstructural features like protrusions and folds aiding in self-cleaning. Petals, exhibiting grid-like patterns and specific reflectance spectra, attract pollinators such as bees. These functional traits, including self-cleaning mechanisms and specialized light absorption, highlight I. purpurea’s unique strategies for thriving in low-light conditions. The findings offer valuable insights into the potential use of I. purpurea for urban landscaping, vertical greening, and ornamental plant selection. Full article
Show Figures

Figure 1

32 pages, 6969 KiB  
Article
Colorimetric Analysis of Transmitted Light Through Plasmonic Paper for Next-Generation Point-of-Care (PoC) Devices
by Caterina Serafinelli, Alessandro Fantoni, Elisabete C. B. A. Alegria and Manuela Vieira
Biosensors 2025, 15(3), 144; https://doi.org/10.3390/bios15030144 - 24 Feb 2025
Cited by 1 | Viewed by 1036
Abstract
This study identifies the optimal conditions for enhancing the performance of the Color Picker System, a device designed for colorimetric sensing using plasmonic paper. A simulation study was conducted toanalyze the transmittance spectra of plasmonic paper embedded in different mixtures, resulting in [...] Read more.
This study identifies the optimal conditions for enhancing the performance of the Color Picker System, a device designed for colorimetric sensing using plasmonic paper. A simulation study was conducted toanalyze the transmittance spectra of plasmonic paper embedded in different mixtures, resulting in a comprehensive color chart that includes the chromatic response as well as the RGB values of transmitted light. The filtering properties of the plasmonic paper were evaluated through colorimetric analysis, combining the transmittance characteristics with the spectrum of different light sources. Optimizing the correlation between these filtering properties and the light source enhances both sensitivity and precision. Arrays of nanoparticles with high absorbance, combined with Cold LED light sources, emerge as ideal components for the device set-up. Among the light sources tested, the White LED uniquely generates a red signal while producing the most significant variations in the green channel. In contrast, the Cold LED and Xenon Arc lamp produce the strongest colorimetric signals in the blue channel. This study provides a deep understanding of the filtering properties of plasmonic paper, opening a new way for the implementation of nanoparticle arrays in colorimetric sensing. Full article
(This article belongs to the Special Issue Photonics for Bioapplications: Sensors and Technology—2nd Edition)
Show Figures

Figure 1

21 pages, 1445 KiB  
Article
Effect of Light Conditions on Growth and Antioxidant Parameters of Two Hydroponically Grown Lettuce Cultivars (Green and Purple) in a Vertical Farm System
by Cristian Hernández-Adasme, María José Guevara, María Auxiliadora Faicán-Benenaula, Rodrigo Neira, Dakary Delgadillo, Violeta Muñoz, Carolina Salazar-Parra, Bo Sun, Xiao Yang and Víctor Hugo Escalona
Horticulturae 2025, 11(2), 220; https://doi.org/10.3390/horticulturae11020220 - 18 Feb 2025
Viewed by 1178
Abstract
The use of extended light spectra, including UV-A, green, and far-red, has been scarcely explored in vertical farming. This study evaluated the effects of full spectra under two intensities (90 and 180 µmol m−2 s−1) on the growth and antioxidant [...] Read more.
The use of extended light spectra, including UV-A, green, and far-red, has been scarcely explored in vertical farming. This study evaluated the effects of full spectra under two intensities (90 and 180 µmol m−2 s−1) on the growth and antioxidant properties of green and purple leaf lettuce. Three light spectra were tested: Blue-White (BW), Red-White (RW), and Red-Blue (RB). Fresh weight (FW), dry weight percentage (DWP), chlorophyll concentration (NDVI), and antioxidant parameters (total phenolic content (TPC), antioxidant capacity by DPPH and FRAP and total flavonoid content (TFC)) were assessed. Spectrum-intensity interactions significantly influenced FW, with RW-180 µmol m−2 s−1 yielding the highest FW (78.2 g plant−1 in green and 48.5 g plant−1 in purple lettuce). BW-90 µmol m−2 s−1 maximized DWP in green lettuce, while PAR intensity of 180 µmol m−2 s−1 favored DWP in purple lettuce. Chlorophyll concentration increased under PAR intensity of 180 µmol m−2 s−1, and leaf color varied with spectrum, with RW producing lighter leaves. Antioxidant parameters declined over time, but a PAR intensity of 180 µmol m−2 s−1, particularly under RW, boosted TPC and TFC contents in both lettuce cultivars during early stages (days 0 and 15). Conversely, a lower PAR intensity of 90 µmol m−2 s−1, mainly under RW, enhanced antioxidant capacity by FRAP at 15 days and by the end of the cycle for both cultivars. Overall, RW-180 µmol m−2 s−1 interactions promoted the best characteristics in lettuce. Nonetheless, the findings emphasize the significance of fine-tuning both light spectrum and intensity to enhance lettuce growth and quality in vertical farming systems considering the cultivar, time and variable to be evaluated. Full article
(This article belongs to the Special Issue Effects of Light Quantity and Quality on Horticultural Crops)
Show Figures

Figure 1

26 pages, 7794 KiB  
Article
Advancing Water Hyacinth Recognition: Integration of Deep Learning and Multispectral Imaging for Precise Identification
by Diego Alberto Herrera Ollachica, Bismark Kweku Asiedu Asante and Hiroki Imamura
Remote Sens. 2025, 17(4), 689; https://doi.org/10.3390/rs17040689 - 18 Feb 2025
Cited by 1 | Viewed by 1164
Abstract
The aquatic plant species Eichhornia crassipes, commonly known as water hyacinth, is indigenous to South America and is considered an invasive species. The invasive water hyacinth has caused significant economic and ecological damage by preventing sunlight from penetrating the surface of the water, [...] Read more.
The aquatic plant species Eichhornia crassipes, commonly known as water hyacinth, is indigenous to South America and is considered an invasive species. The invasive water hyacinth has caused significant economic and ecological damage by preventing sunlight from penetrating the surface of the water, resulting in the loss of aquatic life. To quantify the invasiveness and address the issue of accurately identifying plant species, water hyacinths have prompted numerous researchers to propose approaches to detect regions occupied by water hyacinths. One such solution involves the utilization of multispectral imaging which obtain detailed information about plant species based on the surface reflectance index. This is achieved by analyzing the intensity of light spectra at different wavelengths emitted by each plant. However, the use of multispectral imagery presents a potential challenge since there are various spectral indices that can be used to capture different information. Despite the high accuracy of these multispectral images, there remains a possibility that plants similar to water hyacinths may be misclassified if the right spectral index is not chosen. Considering this challenge, the objective of this research is to develop a low-cost multispectral camera capable of capturing multispectral images. The camera will be equipped with two infrared light spectrum filters with wavelengths of 720 and 850 nanometers, respectively, as well as red, blue, and green light spectrum filters. Additionally, the implementation of the U-Net architecture is proposed for semantic segmentation to accurately identify water hyacinths, as well as other classes such as lakes and land. An accuracy rate of 96% was obtained for the identification of water hyacinths using data captured by an autonomous drone constructed in the laboratory flying at an altitude of 10 m. We also analyzed the contribution each of the infrared layers to the camera’s spectrum setup. Full article
Show Figures

Graphical abstract

17 pages, 6472 KiB  
Article
A Method for Estimating Fluorescence Emission Spectra from the Image Data of Plant Grain and Leaves Without a Spectrometer
by Shoji Tominaga, Shogo Nishi, Ryo Ohtera and Hideaki Sakai
J. Imaging 2025, 11(2), 30; https://doi.org/10.3390/jimaging11020030 - 21 Jan 2025
Viewed by 1846
Abstract
This study proposes a method for estimating the spectral images of fluorescence spectral distributions emitted from plant grains and leaves without using a spectrometer. We construct two types of multiband imaging systems with six channels, using ordinary off-the-shelf cameras and a UV light. [...] Read more.
This study proposes a method for estimating the spectral images of fluorescence spectral distributions emitted from plant grains and leaves without using a spectrometer. We construct two types of multiband imaging systems with six channels, using ordinary off-the-shelf cameras and a UV light. A mobile phone camera is used to detect the fluorescence emission in the blue wavelength region of rice grains. For plant leaves, a small monochrome camera is used with additional optical filters to detect chlorophyll fluorescence in the red-to-far-red wavelength region. A ridge regression approach is used to obtain a reliable estimate of the spectral distribution of the fluorescence emission at each pixel point from the acquired image data. The spectral distributions can be estimated by optimally selecting the ridge parameter without statistically analyzing the fluorescence spectra. An algorithm for optimal parameter selection is developed using a cross-validation technique. In experiments using real rice grains and green leaves, the estimated fluorescence emission spectral distributions by the proposed method are compared to the direct measurements obtained with a spectroradiometer and the estimates obtained using the minimum norm estimation method. The estimated images of fluorescence emissions are presented for rice grains and green leaves. The reliability of the proposed estimation method is demonstrated. Full article
(This article belongs to the Special Issue Color in Image Processing and Computer Vision)
Show Figures

Figure 1

13 pages, 918 KiB  
Article
Color, Structure, and Thermal Stability of Alginate Films with Raspberry and/or Black Currant Seed Oils
by Jolanta Kowalonek, Bogna Łukomska and Aleksandra Szydłowska-Czerniak
Molecules 2025, 30(2), 245; https://doi.org/10.3390/molecules30020245 - 9 Jan 2025
Cited by 1 | Viewed by 1119
Abstract
In this study, biodegradable and active films based on sodium alginate incorporated with different concentrations of oils (25% and 50%) from fruit seeds were developed for potential applications in food packaging. The ultraviolet and visible (UV-VIS) spectra of raspberry seed oil (RSO) and [...] Read more.
In this study, biodegradable and active films based on sodium alginate incorporated with different concentrations of oils (25% and 50%) from fruit seeds were developed for potential applications in food packaging. The ultraviolet and visible (UV-VIS) spectra of raspberry seed oil (RSO) and black currant seed oil (BCSO) indicated differences in bioactive compounds, such as tocopherols, phenolic compounds, carotenoids, chlorophyll, and oxidative status (amounts of dienes, trienes, and tetraenes) of active components added to alginate films. The study encompassed the color, structure, and thermal stability analysis of sodium alginate films incorporated with RSO and BCSO and their mixtures. The color of alginate films before and after the addition of oils from both fruit seeds was evaluated by measuring color coordinates in the CIELab color space: L* (lightness), a* (red-green), and b* (yellow-blue). The lightness values ranged between 94.21 and 95.08, and the redness values varied from −2.20 to −2.65, slightly decreasing for the films enriched with oils. In contrast, yellowness values ranged between 2.93 and 5.80 for the obtained active materials, significantly increasing compared to the control alginate film (L* = 95.48, a* = −1.92, and b* = −0.14). Changes in the structure and morphology of the alginate films after incorporating bioactive-rich oils were observed using scanning electron microscopy (SEM). Films with RSO and oil mixtures had more developed surfaces than films with BCSO. Moreover, the cross-sections of the films with RSO showed holes evenly distributed inside the films, indicating traces of volatile compounds. Thermal decomposition of the alginate films loaded with oils showed five separate stages (to 125 °C, 125–300 °C, 310–410 °C, 410–510 °C, and 750–1000 °C, respectively) related to the oil and surfactant decomposition. The shape of the thermogravimetric curves did not depend on the oil type. The added oils reduced the efficiency of alginate decomposition in the first stage. The obtained results showed that new functional and thermally stable food packaging films based on sodium alginate with a visual appearance acceptable to consumers could be produced by utilizing oils from fruit seed residues. Full article
Show Figures

Figure 1

14 pages, 1356 KiB  
Article
Plant Factory in a Restaurant: Light Quality Effects on the Development, Physiology, and Quality of Three Baby-Leaf Vegetables
by Filippos Bantis, Nikolaos Simos and Athanasios Koukounaras
Plants 2025, 14(2), 153; https://doi.org/10.3390/plants14020153 - 7 Jan 2025
Viewed by 1062
Abstract
Plant factories with artificial lighting (PFALs) are a notable choice for urban agriculture due to the system’s benefits, where light can be manipulated to enhance the product’s yield and quality. Our objective was to test the effect of light spectra with different red-blue [...] Read more.
Plant factories with artificial lighting (PFALs) are a notable choice for urban agriculture due to the system’s benefits, where light can be manipulated to enhance the product’s yield and quality. Our objective was to test the effect of light spectra with different red-blue combinations and white light on the growth, physiology, and overall quality of three baby-leaf vegetables (green lettuce, kale, and pak choi) grown in a restaurant’s PFAL. Leaf mass per area was lower under the most blue-containing treatments in all species. The performance indices (PIabs and PItot) of the photosynthetic apparatus were lower under more red light with the exception of PIabs in pak choi. Total soluble solids accumulation was diminished under most of the blue-containing LEDs, while total phenolics and antioxidant activity were induced by red-blue environments rich in blue light. Moreover, chlorophyll and carotenoid accumulation was also enhanced under blue-rich light treatments. Nitrate content was the lowest under monochromatic blue in all species. Finally, the employees were asked about their views on the PFAL within the restaurant’s compounds and they expressed positive opinions. Overall, a light environment including red and blue wavelengths proved beneficial for baby leafy vegetable production in terms of yield and quality. Full article
Show Figures

Figure 1

15 pages, 1900 KiB  
Article
Effects of Different Light Spectra on Oxidative Stress and Nutritional Quality of the Fish Plectropomus leopardus
by Wensheng Li, Zheng Zhang, Baoliang Liu, Yingying Fang, Shuquan Cao, Wenyang Li, Yan Sun, Chengbin He, Chuanxin Zhang and Fan Fei
Fishes 2025, 10(1), 10; https://doi.org/10.3390/fishes10010010 - 28 Dec 2024
Viewed by 703
Abstract
This study investigated the impacts of light spectra on oxidative stress and nutrient quality of the fish Plectropomus leopardus in indoor recirculating aquaculture systems. The fish (100 g ± 0.45 g [wet weight]) were cultures in five different light spectra (full-spectrum (400–800 nm), [...] Read more.
This study investigated the impacts of light spectra on oxidative stress and nutrient quality of the fish Plectropomus leopardus in indoor recirculating aquaculture systems. The fish (100 g ± 0.45 g [wet weight]) were cultures in five different light spectra (full-spectrum (400–800 nm), blue (450 nm), green (530 nm), red (630 nm), and dark) for 60 days. After experimentation, blood and muscle tissue were collected and analyzed for biochemical variables and nutritional quality. We demonstrated that the total cholesterol, triglycerides activities of P. leopardus in the dark groups were substantially elevated, relative to other groups (p < 0.05). Glutathione and glutathione peroxidase activities were elevated in the green light group versus other red groups, and cortisol was drastically reduced in the red group relative to other groups (p < 0.05). The crude ash concentration in the blue and full-spectrum group was substantially more elevated than in other groups (p < 0.05). Thr, Glu, Cys, Val, Met, Ile, Leu, Phe, Lys, His, Arg were markedly higher in the blue light versus the red light group (p < 0.05). The muscle of P. leopardus was rich in lysine and its essential AA index was in the order of blue light, full-spectrum, green light, dark and red group. The content of total saturated fatty acids in the blue light group was drastically lower relative to the dark, green and red groups (p < 0.05), and the total polyunsaturated fatty acids and DHA + EPA contents in the blue light group were substantially elevated relative to the other groups (p < 0.05). These results revealed that different light environments had certain effects on blood biochemical, antioxidant capacity, nutrient composition and proportion of P. leopardus. A comprehensive evaluation found that the blue light environment had more positive effects on the physiological, biochemical and nutritional quality of P. leopardus. This result provides a theoretical reference for the lighting strategy of an indoor recirculating aquaculture system. Full article
(This article belongs to the Section Sustainable Aquaculture)
Show Figures

Figure 1

16 pages, 864 KiB  
Article
Impact of LED Combinations and Light Intensity on Growth and Yields of Wasabi
by Soraya Ruamrungsri, Yanika Utrapen, Suriya Tateing, Kanokwan Panjama and Chaiartid Inkham
Horticulturae 2025, 11(1), 3; https://doi.org/10.3390/horticulturae11010003 - 24 Dec 2024
Cited by 1 | Viewed by 2063
Abstract
This study examines the effects of different LED light spectra and intensities on the growth, photosynthetic performance, and biochemical composition of the ‘Daruma’ cultivar of wasabi (Eutrema japonicum). The primary objective is to enhance the efficiency of indoor cultivation techniques for [...] Read more.
This study examines the effects of different LED light spectra and intensities on the growth, photosynthetic performance, and biochemical composition of the ‘Daruma’ cultivar of wasabi (Eutrema japonicum). The primary objective is to enhance the efficiency of indoor cultivation techniques for this economically significant crop. Wasabi seedlings were cultivated under LED lighting with four light intensities (35, 60, 90, and 140 µmol m⁻2 s⁻1) and three spectral combinations: red and white (1:1); red, white, and blue (1:1:1); and white. Growth parameters, including plant height, petiole length, leaf number, and yield metrics such as fresh weight and leaf area, were measured alongside photosynthetic activity and chemical analysis of glucosinolate levels. The results indicate that higher light intensities (particularly 140 µmol m⁻2 s⁻1) greatly enhance overall plant biomass, with red-dominant spectra promoting more significant growth and glucosinolate accumulation, a key secondary metabolite in wasabi. Lower intensities increased chlorophyll content and produced darker green foliage but decreased growth performance. Additionally, the interaction of red and blue light spectra with increased light intensity suggests that specific red light conditions are optimal for maximizing wasabi biomass and biochemical yield. These findings contribute valuable insights for optimizing light regimes for wasabi and similar shade-adapted crops in controlled indoor farming systems, potentially improving yield and quality in plant factories and supporting the future of indoor farming. Full article
(This article belongs to the Section Protected Culture)
Show Figures

Figure 1

14 pages, 2037 KiB  
Article
Design of a Deep Learning-Based Metalens Color Router for RGB-NIR Sensing
by Hua Mu, Yu Zhang, Zhenyu Liang, Haoqi Gao, Haoli Xu, Bingwen Wang, Yangyang Wang and Xing Yang
Nanomaterials 2024, 14(23), 1973; https://doi.org/10.3390/nano14231973 - 8 Dec 2024
Viewed by 1298
Abstract
Metalens can achieve arbitrary light modulation by controlling the amplitude, phase, and polarization of the incident waves and have been applied across various fields. This paper presents a color router designed based on metalens, capable of effectively separating spectra from visible light to [...] Read more.
Metalens can achieve arbitrary light modulation by controlling the amplitude, phase, and polarization of the incident waves and have been applied across various fields. This paper presents a color router designed based on metalens, capable of effectively separating spectra from visible light to near-infrared light. Traditional design methods for meta-lenses require extensive simulations, making them time-consuming. In this study, we propose a deep learning network capable of forward prediction across a broad wavelength range, combined with a particle swarm optimization algorithm to design metalens efficiently. The simulation results align closely with theoretical predictions. The designed color router can simultaneously meet the theoretical transmission phase of the target spectra, specifically for red, green, blue, and near-infrared light, and focus them into designated areas. Notably, the optical efficiency of this design reaches 40%, significantly surpassing the efficiency of traditional color filters. Full article
Show Figures

Figure 1

18 pages, 4405 KiB  
Article
The Improvement in the Growth and Biosynthesis of Polyphenols in Ocimum basilicum L. Plants Through Simultaneous Modulation of Light Conditions and Soil Supplementation
by Galina N. Veremeichik, Valeria P. Grigorchuk, Evgenii P. Subbotin, Sergei O. Kozhanov, Olga A. Tikhonova, Evgenia V. Brodovskaya, Slavena A. Silantieva, Natalia I. Subbotina, Yulia L. Yaroshenko, Yurii N. Kulchin and Victor P. Bulgakov
Horticulturae 2024, 10(12), 1295; https://doi.org/10.3390/horticulturae10121295 - 4 Dec 2024
Viewed by 1259
Abstract
The sweet basil Ocimum basilicum L. is the subject of numerous studies and is cultivated as a food and ornamental plant. Moreover, O. basilicum could be useful in the prevention of stroke ischemia, and its anticancer properties were recently shown. Caffeic acid derivatives, such [...] Read more.
The sweet basil Ocimum basilicum L. is the subject of numerous studies and is cultivated as a food and ornamental plant. Moreover, O. basilicum could be useful in the prevention of stroke ischemia, and its anticancer properties were recently shown. Caffeic acid derivatives, such as rosmarinic acid (RA), chicoric acid, salvianolic acids, and anthocyanins, provide the medicinal properties of basil. Therefore, investigations of the optimal growth conditions that can provide cost-effective cultivation of highly productive basil plants are relevant and important. The aim of the present work was to study the effects of a combination of soil composition and light conditions on the morphological and biochemical characteristics of O. basilicum. In totally artificial (indoor) environments, light-emitting diodes (LEDs) may provide a broad range of narrowband wavelengths with different intensities. This technology can lower operating costs. In addition to the spectral composition, light intensity (PPFD, µmol m−2s−1) is an important parameter for the optimal growth of plants. In the experiment, we used different spectra of LED lamps with intensities of 300 µmol m−2s−1: warm white, monochromatic (green and red), and a combination of blue and red. Plants were grown under various lighting conditions in soil supplemented with fertilizer, Z-ion, and Crystallon. The results showed that supplementation of soil with Crystallon had a greater effect on the growth of both above- and below-ground parts of O. basilicum plants. Interestingly, growing O. basilicum plants under R and RB light led to a 2-fold increase in the biosynthesis of both the key caffeic acid derivative RA and anthocyanin. However, given that under RB light, there is no positive effect of Crystallon on growth, the productivity of RA and anthocyanin reached a maximum when O. basilicum plants were grown under R light and Crystallon. Under these conditions, the productivity of anthocyanins and caffeic acid derivatives in O. basilicum was more than eight times greater than that in untreated O. basilicum plants. Full article
Show Figures

Figure 1

19 pages, 1811 KiB  
Article
Postharvest LED Treatment of Tomatoes Harvested at an Early Stage of Coloration
by Maria Grzegorzewska, Justyna Szwejda-Grzybowska, Monika Mieszczakowska-Frąc and Bożena Matysiak
Agronomy 2024, 14(11), 2727; https://doi.org/10.3390/agronomy14112727 - 19 Nov 2024
Cited by 2 | Viewed by 1284
Abstract
The tomato plant is one of the most important vegetable crops, with a global production of around 188 million tones. The greatest losses in quantity and quality occur during storage, transport, and sale. The aim of the study was to determine the effect [...] Read more.
The tomato plant is one of the most important vegetable crops, with a global production of around 188 million tones. The greatest losses in quantity and quality occur during storage, transport, and sale. The aim of the study was to determine the effect of irradiation on the quality and storability of the tomato ‘Tomimaru Muchoo’. Fruit harvested at the turning ripening stage were illuminated for the first two weeks at 15 °C with four visible LED light spectra, with different percentages of blue, green, and red light (BGR). The illumination times were 4 and 8 h per day (hpd). After illumination, the tomatoes were stored at 20 °C in the dark for 4 weeks. Immediately after 14 d of illumination, all tomatoes were fully ripe, although they showed varying red color intensity. In addition, all fruit retained very good quality and freshness. During further storage at 20 °C, there was a gradual decrease in tomato quality. However, LED lighting helped delay softening, reduce rotting, and thus maintain better tomato quality. Longer daily irradiation (8 h) delayed tomato senescence to a greater extent than shorter irradiation (4 hpd). Comparing the spectra, the greatest reduction in softening and rotting occurred in tomatoes illuminated with the spectrum containing the highest amount of blue light (56%). These tomatoes also maintained the lowest color index (a*/b*) throughout storage at 20 °C, which was especially evident in tomatoes that had been illuminated for 8 hpd. The light treatment influenced the maintenance of higher levels of ascorbic acid and antioxidant activity in tomatoes. However, irradiation did not increase the polyphenol content of tomatoes or reduce the lycopene levels in the fruit. Overall, the results showed that LED irradiation during storage improves storability and affects the health-promoting components of tomato fruit. It is a promising tool for reducing losses of horticultural produce. Full article
(This article belongs to the Special Issue Light Environment Regulation of Crop Growth)
Show Figures

Figure 1

Back to TopTop