Effect of Light Conditions on Growth and Antioxidant Parameters of Two Hydroponically Grown Lettuce Cultivars (Green and Purple) in a Vertical Farm System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Growth Conditions
2.2. Light Treatments
2.3. Agronomic Characteristics
2.3.1. Fresh Weight (FW)
2.3.2. Dry Weight Percentage (DWP)
2.3.3. Leaf Number
2.3.4. Color
2.3.5. Normalized Difference Vegetation Index (NDVI) as a Relative Index of Chlorophyll Concentration
2.4. Antioxidant Parameters
2.4.1. Total Phenolic Content (TPC)
2.4.2. Antioxidant Capacity
2.4.3. Total Flavonoid Content (TFC)
2.5. Experimental Design and Statistical Analysis
3. Results
3.1. Agronomic Characteristics
3.1.1. Fresh Weight
3.1.2. Dry Weight Percentage (DWP)
3.1.3. Number of Leaves per Plant
3.1.4. NDVI (Normalized Difference Vegetation Index)
3.1.5. Color
3.2. Antioxidant Parameters
3.2.1. Total Phenolic Content (TPC)
3.2.2. Antioxidant Capacity
Antioxidant Capacity by FRAP Assay
Antioxidant Capacity by DPPH Assay
3.2.3. Total Flavonoid Content (TFC)
4. Discussion
4.1. Agronomic Characteristics
4.2. Antioxidant Parameters
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, M.; Wan, D.; Xie, X.; Bai, Z.; Wang, R.; Zhang, X.; Yi-Zhou, G.; Zhiliang, T.; Yin, Y. Crop-livestock integration: Implications for food security, resource efficiency and greenhouse gas mitigation. Innov. Life 2024, 2, 100103-1. [Google Scholar] [CrossRef]
- Alexandratos, N.; Bruinsma, J. World Agriculture Towards 2030/2050: The 2012 Revision; Food and Agriculture Organization of the United Nations: Rome, Italy, 2024; p. 147. [Google Scholar]
- Soares, L.L.; Priore, R. Fazenda vertical como modelo sustentável de agricultura urbana. Rev. Gest. Sustentabilidade Ambient. 2023, 12, 1–15. [Google Scholar]
- Li, J.; Wu, T.; Huang, K.; Liu, Y.; Liu, M.; Wang, J. Effect of LED spectrum on the quality and nitrogen metabolism of lettuce under recycled hydroponics. Front. Plant Sci. 2021, 12, 678197. [Google Scholar] [CrossRef]
- Boros, I.F.; Székely, G.; Balázs, L.; Csambalik, L.; Sipos, L. Effects of LED lighting environments on lettuce (Lactuca sativa L.) in PFAL systems—A review. Sci. Hortic. 2023, 321, 112351. [Google Scholar] [CrossRef]
- Bantis, F.; Smirnakou, S.; Ouzounis, T.; Koukounaras, A.; Ntagkas, N.; Radoglou, K. Current status and recent achievements in the field of horticulture with the use of light-emitting diodes (LEDs). Sci. Hortic. 2018, 235, 437–451. [Google Scholar] [CrossRef]
- Zhang, X.; He, D.; Niu, G.; Yan, Z.; Song, J. Effects of environment lighting on the growth, photosynthesis, and quality of hydroponic lettuce in a plant factory. Int. J. Agric. Biol. Eng. 2018, 11, 33–40. [Google Scholar] [CrossRef]
- Ahmed, H.A.; Yu-Xin, T.; Qi-Chang, Y. Optimal control of environmental conditions affecting lettuce plant growth in a controlled environment with artificial lighting: A review. S. Afr. J. Bot. 2020, 130, 75–89. [Google Scholar] [CrossRef]
- Arcasi, A.; Mauro, A.W.; Napoli, G.; Tariello, F.; Vanoli, G.P. Energy and cost analysis for a crop production in a vertical farm. Appl. Therm. Eng. 2024, 239, 122129. [Google Scholar] [CrossRef]
- Cui, J.; Song, S.; Yu, J.; Liu, H. Effect of daily light integral on cucumber plug seedlings in artificial light plant factory. Horticulturae 2021, 7, 139. [Google Scholar] [CrossRef]
- Stanghellini, C.; Katzin, D. The dark side of lighting: A critical analysis of vertical farms’ environmental impact. J. Clean. Prod. 2024, 458, 142359. [Google Scholar] [CrossRef]
- Nájera, C.; Urrestarazu, M. Effect of the intensity and spectral quality of LED light on yield and nitrate accumulation in vegetables. HortScience 2019, 54, 1745–1750. [Google Scholar] [CrossRef]
- Nájera, C.; Gallegos-Cedillo, V.M.; Ros, M.; Pascual, J.A. LED lighting in vertical farming systems enhances bioactive compounds and productivity of vegetables crops. Biol. Life Sci. Forum 2022, 16, 24. [Google Scholar] [CrossRef]
- Hopkins, W.G.; Huner, N.P.A. Introduction to Plant Physiology, 3rd ed.; Wiley: Hoboken, NJ, USA, 2004; pp. 93–100. [Google Scholar]
- Nelson, J.A.; Bugbee, B. Economic analysis of greenhouse lighting: Light emitting diodes vs. high intensity discharge fixtures. PLoS ONE 2014, 9, e99010. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Fang, H.; Xie, J.; Wu, Y.; Tang, Z.; Liu, Z.; Nivel, J.; Yu, J. Physiological responses of cucumber seedlings to different supplemental light duration of red and blue LED. Front. Plant Sci. 2021, 12, 709313. [Google Scholar] [CrossRef]
- Son, K.H.; Oh, M.M. Leaf shape, growth, and antioxidant phenolic compounds of two lettuce cultivars grown under various combinations of blue and red light-emitting diodes. HortScience 2013, 48, 988–995. [Google Scholar] [CrossRef]
- Stutte, G.W.; Edney, S.; Skerritt, T. Photoregulation of bioprotectant content of red leaf lettuce with light-emitting diodes. HortScience 2009, 44, 79–82. [Google Scholar] [CrossRef]
- Lee, J.H.; Kwon, Y.B.; Choi, I.-L.; Yoon, H.S.; Kim, J.; Kim, Y.; Kang, H.-M. Changes in spectral reflectance, photosynthetic performance, chlorophyll fluorescence, and growth of mini green romaine lettuce according to various light qualities in indoor cultivation. Horticulturae 2024, 10, 860. [Google Scholar] [CrossRef]
- Modarelli, G.C.; Paradiso, R.; Arena, C.; De Pascale, S.; Van Labeke, M.-C. High light intensity from blue-red LEDs enhance photosynthetic performance, plant growth, and optical properties of red lettuce in controlled environment. Horticulturae 2022, 8, 114. [Google Scholar] [CrossRef]
- Lee, J.H.; Kwon, Y.B.; Roh, Y.H.; Choi, I.-L.; Kim, J.; Kim, Y.; Yoon, H.S.; Kang, H.-M. Effect of various LED light qualities, including wide red spectrum-LED, on the growth and quality of mini red romaine lettuce (cv. Breen). Plants 2023, 12, 2056. [Google Scholar] [CrossRef]
- Brazaitytė, A.; Vaštakaitė-Kairienė, V.; Sutulienė, R.; Rasiukevičiūtė, N.; Viršilė, A.; Miliauskienė, J.; Laužikė, K.; Valiuškaitė, A.; Dene, L.; Chrapaciené, S.; et al. Phenolic compounds content evaluation of lettuce grown under short-term preharvest daytime or nighttime supplemental LEDs. Plants 2022, 11, 1123. [Google Scholar] [CrossRef]
- Samuolienė, G.; Viršilė, A.; Miliauskienė, J.; Haimi, P.; Laužikė, K.; Jankauskienė, J.; Novičkovas, A.; Kupčinskienė, A.; Brazaitytė, A. The photosynthetic performance of red leaf lettuce under UV-A irradiation. Agronomy 2020, 10, 761. [Google Scholar] [CrossRef]
- Hernández-Adasme, C.; Silva, H.; Escalona, V. In-door germination and seedling growth of green and red lettuce under LED-light spectrum and subsequent effect on baby leaf lettuce. Ital. J. Agron. 2022, 17, 1982. [Google Scholar] [CrossRef]
- Bi, X.; Xu, H.; Yang, C.; Zhang, H.; Li, W.; Su, W.; Zheng, M.; Lei, B. Investigating the influence of varied ratios of red and far-red light on lettuce (Lactuca sativa): Effects on growth, photosynthetic characteristics and chlorophyll fluorescence. Front. Plant Sci. 2024, 15, 1430241. [Google Scholar] [CrossRef]
- Hernández-Adasme, C.; Silva, H.; Peña, Á.; Vargas-Martínez, M.G.; Salazar-Parra, C.; Sun, B.; Escalona Contreras, V. Modifying the ambient light spectrum using LED lamps alters the phenolic profile of hydroponically grown greenhouse lettuce plants without affecting their agronomic characteristics. Plants 2024, 13, 2466. [Google Scholar] [CrossRef]
- Samuolienė, G.; Brazaitytė, A.; Sirtautas, R.; Viršilė, A.; Sakalauskaitė, J.; Sakalauskienė, S.; Duchovskis, P. LED illumination affects bioactive compounds in romaine baby leaf lettuce. J. Sci. Food Agric. 2013, 93, 3286–3291. [Google Scholar] [CrossRef]
- Frutos-Totosa, A.; Hernández-Adasme, C.; Martínez, V.; Mestre, T.; Díaz-Mula, H.M.; Botella, M.A.; Flores, P.; Martínez-Moreno, A. Light spectrum effects on rocket and lamb’s lettuce cultivated in a vertical indoor farming system. Sci. Hortic. 2023, 321, 112221. [Google Scholar] [CrossRef]
- Hernández-Adasme, C.; Silva, H.; Saavedra-Romero, J.; Martínez, V.; Escalona, V. Light supplementation and growing season affect the quality and antioxidant activity of lettuce. Chil. J. Agric. Res. 2023, 83, 320–333. [Google Scholar] [CrossRef]
- Hernández-Adasme, C.; Palma-Dias, R.; Escalona, V.H. The effect of light intensity and photoperiod on the yield and antioxidant activity of beet microgreens produced in an indoor system. Horticulturae 2023, 9, 493. [Google Scholar] [CrossRef]
- Mohamed, S.J.; Rihan, H.Z.; Aljafer, N.; Fuller, M.P. The impact of light spectrum and intensity on the growth, physiology, and antioxidant activity of lettuce (Lactuca sativa L.). Plants 2021, 10, 2162. [Google Scholar] [CrossRef]
- Song, J.; Huang, H.; Hao, Y.; Song, S.; Zhang, Y.; Su, W.; Liu, H. Nutritional quality, mineral and antioxidant content in lettuce afected by interaction of light intensity and nutrient solution concentration. Sci. Rep. 2020, 10, 279. [Google Scholar]
- Tobar, G.; Antúnez, A.; Corradini, F.; Vidal, M. Lettuce. In Technical Aspects of Cultivation, Irrigation and Nutrition in Lettuce, Tomato and Melon for the Central Zone of Chile; Blanco, C., Ed.; Instituto de Investigaciones Agropecuarias: Santiago, Chile, 2019; pp. 7–48. Available online: https://bibliotecadigital.ciren.cl/server/api/core/bitstreams/b9f82a07-65f6-47d8-a0c3-1b66d913d774/content (accessed on 20 November 2024).
- Alucho, P.J.; Patin, Q.A. Agronomic and Productive Behavior of Three Varieties of Lettuce (Lactuca sativa L.), in a Hydroponic System (NFT), with the Application of Two Biostimulants, Under Two Types of Environments, in the Guanujo Parish, Bolívar Province. Bachelor’s Thesis, Bolívar State University, Guaranda, Ecuador, 2023. [Google Scholar]
- Lara, O.A.; Amoros, A.; Tapia, M.L.; Escalona, V.H. Effect of a photoselective filter on the yield and postharvest quality of ‘Viroflay’ baby spinach (Spinacia oleracea L.) leaves cultivated in a hydroponic system. Sci. Hortic. 2021, 277, 109804. [Google Scholar] [CrossRef]
- Singleton, S.; Rossi, A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic and reagents. Am. J. Enol. Vitic. 1965, 16, 144–157. [Google Scholar] [CrossRef]
- Benzie, I.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a canopy structure in wheat (Triticum aestivum L.) and wild oat (Avena fatua L.) exposed to enhanced ultraviolet-B radiation. Funct. Ecol. 1996, 2, 319–330. [Google Scholar]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C.L. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Flores, M.; Urrestarazu, M.; Amorós, A.; Escalona, V. High intensity and red enriched LED lights increased growth of lettuce and endive. Ital. J. Agron. 2022, 17, 1915. [Google Scholar] [CrossRef]
- Di Rienzo, J.A.; Casanoves, F.; Balzarini, M.G.; Gonzalez, L.; Tablada, M.; Robledo, C.W. InfoStat, version 2020. InfoStat Group, FCA, National University of Córdoba: Córdoba, Argentina, 2020. Available online: https://www.infostat.com.ar (accessed on 29 October 2024).
- Lee, M.; Xu, J.W.; Wang, W.Q.; Rajashekar, C.B. The effect of supplemental blue, red and rar-red light on the growth and the nutritional quality of red and green leaf lettuce. Am. J. Plant Sci. 2019, 10, 2219–2235. [Google Scholar] [CrossRef]
- Van Brenk, J.B.; Courbier, S.; Kleijweg, C.L.; Verdonk, J.C.; Marcelis, L.F.M. Paradise by the far-red light: Far-red and red:blue ratios independently affect yield, pigments, and carbohydrate production in lettuce, Lactuca sativa. Front. Plant Sci. 2024, 15, 1383100. [Google Scholar]
- Zou, J.; Zhang, Y.; Zhang, Y.; Bian, Z.; Fanourakis, D.; Yang, Q.; Li, T. Morphological and physiological properties of indoor cultivated lettuce in response to additional far-red light. Sci. Hortic. 2019, 257, 108725. [Google Scholar] [CrossRef]
- Tan, T.; Li, S.; Fan, Y.; Wang, Z.; Raza, M.A.; Shafiq, I.; Wang, B.; Wu, X.; Yong, T.; Wang, X.; et al. Far-red light: A regulator of plant morphology and photosynthetic capacity. Crop J. 2022, 10, 300–309. [Google Scholar] [CrossRef]
- Orlando, M.; Trivellini, A.; Incrocci, L.; Ferrante, A.; Mensuali, A. The inclusion of green light in a red and blue light background impact the growth and functional quality of vegetable and flower microgreen species. Horticulturae 2022, 8, 217. [Google Scholar] [CrossRef]
- Ghorbanzadeh, P.; Aliniaeifard, S.; Esmaeili, M.; Mashal, M.; Azadegan, B.; Seifet, M. Dependency of growth, water use efficiency, chlorophyll fluorescence, and stomatal characteristics of lettuce plants to light intensity. J. Plant Growth. Regul. 2021, 40, 2191–2207. [Google Scholar] [CrossRef]
- Jin, W.; Ji, Y.; Larsen, D.H.; Huang, Y.; Heuvelink, E.; Marcelis, L.F.M. Gradually increasing light intensity during the growth period increases dry weight production compared to constant or gradually decreasing light intensity in lettuce. Sci. Hortic. 2023, 311, 111807. [Google Scholar] [CrossRef]
- Wimalasekera, R. Effect of light intensity on photosynthesis. In Photosynthesis, Productivity and Environmental Stres; Ahmad, P., Ahanger, M.A., Alyemeni, M.N., Alam, P., Eds.; Wiley: Hoboken, NJ, USA, 2019; pp. 65–73. [Google Scholar]
- Niu, G. Ligh. In Plant Factory: An Indoor Vertical Farming System for Efficient Quality Food Production, 2nd ed.; Kozai, T., Niu, N., Takagaki, M., Eds.; Academic Press Ltd.: Cambridge, MA, USA, 2020; pp. 115–128. [Google Scholar]
- Brouwer, R. Nutritive influences on the distribution of dry matter in the plant. Neth. J. Agric. Sei. 1962, 10, 399–408. [Google Scholar] [CrossRef]
- Chen, J.-J.; Zhen, S.; Sun, Y. Estimating leaf chlorophyll content of buffaloberry using normalized difference vegetation index sensors. HortTechnology 2021, 31, 297–303. [Google Scholar] [CrossRef]
- Alsiņa, I.; Dūma, M.; Dubova, L.; Šenberga, A.; Daģis, S. Comparison of different chlorophylls determination methods for leafy vegetables. Agron. Res. 2016, 14, 309–316. [Google Scholar]
- Zhou, J.; Li, P.; Wang, J. Effects of light intensity and temperature on the photosynthesis characteristics and yield of lettuce. Horticulturae 2022, 8, 178. [Google Scholar] [CrossRef]
- Pennisi, G.; Pistillo, A.; Orsini, F.; Cellini, A.; Spinelli, F.; Nicola, S.; Fernandez, J.A.; Crepaldi, A.; Gianquinto, G.; Marcelis, L.F.M. Optimal light intensity for sustainable water and energy use in indoor cultivation of lettuce and basil under red and blue LEDs. Sci. Hortic. 2020, 272, 109508. [Google Scholar] [CrossRef]
- Huo, J.; Zhang, N.; Gong, Y.; Bao, Y.; Li, Y.; Zhang, L.; Nie, S. Effects of different light intensity on leaf color changes in a Chinese cabbage yellow cotyledon mutant. Front. Plant Sci. 2024, 15, 1371451. [Google Scholar] [CrossRef]
- Hoppu, U.; Puputti, S.; Sandell, M. Factors related to sensory properties and consumer acceptance of vegetables. Crit. Rev. Food Sci. Nutr. 2021, 61, 1751–1761. [Google Scholar] [CrossRef]
- Carotti, L.; Pistillo, A.; Zauli, I.; Pennisi, G.; Martin, M.; Gianquinto, G.; Orsini, F. Far-red radiation management for lettuce growth: Physiological and morphological features leading to energy optimization in vertical farming. Sci. Hortic. 2024, 334, 113264. [Google Scholar] [CrossRef]
- Meng, Q.; Kelly, N.; Runkle, E.S. Substituting green or far-red radiation for blue radiation induces shade avoidance and promotes growth in lettuce and kale. Environ. Exp. Bot. 2019, 162, 383–391. [Google Scholar] [CrossRef]
- Meng, Q.; Runkle, E.S. Far-red radiation interacts with relative and absolute blue and red photon flux densities to regulate growth, morphology, and pigmentation of lettuce and basil seedlings. Sci. Hortic. 2019, 255, 269–280. [Google Scholar] [CrossRef]
- Hameed, M.K.; Umar, W.; Razzaq, A.; Wei, S.; Niu, Q.; Huang, D.; Chang, L. Quantification of total polyphenols, antioxidants, anthocyanins and secondary metabolites by UPLC VION IMS QTOF MS/MS analysis in green and red lettuce cultivars. Sci. Hortic. 2023, 315, 111994. [Google Scholar] [CrossRef]
- Materska, M.; Olszówka, K.; Chilczuk, B.; Stochmal, A.; Pecio, Ł.; Pacholczyk-Sienicka, B.; Piacente, S.; Pizza, C.; Masullo, M. Polyphenolic profiles in lettuce (Lactuca sativa L.) after CaCl2 treatment and cold storage. Eur. Food Res. Technol. 2019, 245, 733–744. [Google Scholar] [CrossRef]
- Yang, X.; Gil, M.I.; Yang, Q.; Tomás-Barberán, F.A. Bioactive compounds in lettuce: Highlighting the benefits to human health and impacts of preharvest and postharvest practices. Compr. Rev. Food Sci. Food Saf. 2021, 21, 4–45. [Google Scholar] [CrossRef]
- Chen, R.; Wang, Z.; Liu, W.; Ding, Y.; Zhang, Q.; Wang, S. Side lighting of red, blue and green spectral combinations altered the growth, yield and quality of lettuce (Lactuca sativa L. cv. “Yidali”) in plant factory. Plants 2023, 12, 4147. [Google Scholar] [CrossRef]
- Lee, M.-J.; Son, J.E.; Oh, M.-M. Growth and phenolic compounds of Lactuca sativa L. grown in a closed-type plant production system with UV-A, -B, or -C lamp. J. Sci. Food Agric. 2014, 94, 197–204. [Google Scholar] [CrossRef]
- Kitazaki, K.; Fukushima, A.; Nakabayashi, R.; Okazaki, Y.; Kobayashi, M.; Mori, T.; Nishizawa, T.; Reyes-Chin-Wo, S.; Michelmore, R.W.; Saito, K.; et al. Metabolic reprogramming in leaf lettuce grown under different light quality and intensity conditions using narrow-band LEDs. Sci. Rep. 2018, 8, 7914. [Google Scholar] [CrossRef]
- Naznin, M.T.; Lefsrud, M.; Gravel, V.; Azad, M.O.K. Blue light added with red LEDs enhance growth characteristics, pigments content, and antioxidant capacity in lettuce, spinach, kale, basil, and sweet pepper in a controlled environment. Plants 2019, 8, 93. [Google Scholar] [CrossRef]
- Soufi, H.R.; Roosta, H.R.; Stępień, P.; Malekzadeh, K.; Hamidpour, M. Manipulation of light spectrum is an efective tool to regulate biochemical traits and gene expression in lettuce under diferent replacement methods of nutrient solution. Sci. Rep. 2023, 13, 8600. [Google Scholar] [CrossRef]
- Karami, A.; Ansari, N.A.; Hasibi, P. Evaluation of some chemical/biochemical compounds of leaf lettuce (Lactuca sativa L.) to the quality of radiant light in floating system. Sci. Hortic. 2022, 304, 111319. [Google Scholar] [CrossRef]
- Ouzounis, T.; Parjikolaei, B.R.; Fretté, X.; Rosenqvist, E.; Ottosen, C.-O. Predawn and high intensity application of supplemental blue light decreases the quantum yield of PSII and enhances the amount of phenolic acids, flavonoids, and pigments in Lactuca sativa. Front. Plant Sci. 2015, 6, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Koh, M.X.; Singh, A. Effects of LED treatments on the growth and nutritional content of lettuce (Lactuca sativa) in a hydroponic vertical farming system. Mal. J. Nutr. 2024, 30, 257–270. [Google Scholar] [CrossRef]
- Gerhardt, K.E.; Lampi, M.A.; Greenberg, B.M. The effects of far-red light on plant growth and flavonoid accumulation in Brassica napus in the presence of ultraviolet B radiation. J. Photochem. Photobiol. 2008, 84, 1445–1454. [Google Scholar] [CrossRef]
- Vrábl, D.; Nezval, J.; Pech, R.; Volná, A.; Mašková, P.; Pleva, J.; Kuzniciusová, N.; Provazová, M.; Štroch, M.; Špunda, V. Light drives and temperature modulates: Variation of phenolic compounds profile in relation to photosynthesis in spring barley. Int. J. Mol. Sci. 2023, 24, 2427. [Google Scholar] [CrossRef]
Light Treatments | Spectrum (%) UV:B:G:R:FR 2 | R:B Ratio | PAR 1 µmol m−2 s−1 | Photoperiod h |
---|---|---|---|---|
Blue-White (BW) | 0:18:40:39:3 | 2.2:1.0 | 90 | 12 |
180 | ||||
Red-White (RW) | 1:17:25:49:8 | 2.9:1.0 | 90 | |
180 | ||||
Red-Blue (RB) | 1:17:4:76:2 | 4.5:1.0 | 90 | |
180 |
Factor | Level | Leaf Number Plant−1 | NDVI | ||
---|---|---|---|---|---|
Bartimer cv. | Soltero cv. | Bartimer cv. | Soltero cv. | ||
Spectrum (S) | BW | 23.9 ± 0.7 ab 1 | 22.0 ± 0.4 a | 0.37 ± 0.010 | 0.44 ± 0.009 |
RW | 25.0 ± 0.7 a | 21.3 ± 0.5 ab | 0.37 ± 0.011 | 0.42 ± 0.011 | |
RB | 23.5 ± 0.4 b | 20.5 ± 0.6 b | 0.38 ± 0.012 | 0.44 ± 0.007 | |
Significance | * | * | ns 2 | ns | |
Intensity (I) | 90 | 22.7 ± 0.4 b | 20.0 ± 0.4 b | 0.40 ± 0.007 b | 0.40 ± 0.007 b |
180 | 25.6 ± 0.4 a | 22.6 ± 0.4 a | 0.47 ± 0.004 a | 0.47 ± 0.004 a | |
Significance | * | * | * | * | |
Interaction (S × I) | BW-90 | 22.5 ± 0.8 | 20.6 ± 0.4 | 0.34 ± 0.015 | 0.40 ± 0.009 |
RW-90 | 23.5 ± 0.9 | 20.6 ± 0.6 | 0.35 ± 0.015 | 0.39 ± 0.014 | |
RB-90 | 22.3 ± 0.6 | 18.5 ± 0.6 | 0.33 ± 0.015 | 0.42 ± 0.008 | |
BW-180 | 25.4 ± 0.7 | 23.3 ± 0.4 | 0.40 ± 0.009 | 0.48 ± 0.007 | |
RW-180 | 26.6 ± 0.7 | 22.1 ± 0.8 | 0.39 ± 0.014 | 0.46 ± 0.007 | |
RB-180 | 24.8 ± 0.6 | 22.3 ± 0.8 | 0.42 ± 0.008 | 0.46 ± 0.008 | |
Significance | ns | ns | ns | ns |
Factor | Level | Lightness (L*) | Chroma (C*) | Hue (H°) | |||
---|---|---|---|---|---|---|---|
Bartimer cv. | Soltero cv. | Bartimer cv. | Soltero cv. | Bartimer cv. | Soltero cv. | ||
Spectrum (S) | BW | 65 ± 0.84 b 1 | 45 ± 1.67 c | 47 ± 2.48 | 26 ± 4.09 b | 123 ± 1.99 | 112 ± 1.18 b |
RW | 67 ± 0.85 a | 49 ± 1.66 a | 50 ± 2.41 | 39 ± 4.09 a | 122 ± 1.96 | 117 ± 1.20 a | |
RB | 62 ± 0.86 c | 46 ± 1.67 b | 46 ± 2.79 | 27 ± 4.34 b | 123 ± 2.10 | 113 ± 1.17 b | |
Significance | * | * | ns 2 | * | ns | * | |
Intensity (I) | 90 | 64 ± 0.69 | 47 ± 1.69 | 49 ± 0.87 | 30 ± 3.04 | 123 ± 1.96 | 114 ± 1.45 |
180 | 64 ± 0.76 | 47 ± 1.71 | 47 ± 0.85 | 31 ± 3.65 | 123 ± 1.97 | 114 ± 1.24 | |
Significance | ns | ns | ns | ns | ns | ns | |
Interaction (S × I) | BW-90 | 65 ± 0.86 | 45 ± 0.55 | 47 ± 0.90 | 26 ± 0.56 | 123 ± 1.97 | 112 ± 0.86 |
RW-90 | 67 ± 0.85 | 49 ± 0.51 | 54 ± 0.91 | 39 ± 7.92 | 122 ± 1.61 | 117 ± 0.40 | |
RB-90 | 62 ± 0.89 | 46 ± 0.69 | 46 ± 0.89 | 27 ± 0.70 | 123 ± 2.34 | 112 ± 0.83 | |
BW-180 | 65 ± 0.73 | 45 ± 0.56 | 47 ± 0.86 | 26 ± 0.65 | 123 ± 1.97 | 112 ± 0.85 | |
RW-180 | 67 ± 0.74 | 49 ± 0.54 | 47 ± 0.86 | 39 ± 7.91 | 122 ± 1.60 | 117 ± 0.41 | |
RB-180 | 62 ± 0.76 | 46 ± 0.65 | 46 ± 0.87 | 27 ± 0.68 | 123 ± 2.33 | 112 ± 0.79 | |
Significance | ns | ns | ns | ns | ns | ns |
Factor | Level | TPC 1 mg GAE100 g−1 FW | TFC 2 mg RE 100 g−1 FW | FRAP 3 mg TE 100 g−1 FW | DPPH 4 mg TE 100 g−1 FW | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Days | Days | Days | Days | ||||||||||
0 | 15 | 45 | 0 | 15 | 45 | 0 | 15 | 45 | 0 | 15 | 45 | ||
Spectrum (S) | BW | 215 ± 17 ab 5 | 223 ± 30 b | 72 ± 4 b | 380 ± 148 | 339 ± 57 | 30 ± 6 b | 213 ± 80 b | 78 ± 10 c | 17 ± 2 b | 1236 ± 4 b | 1215 ± 21 b | 1024 ± 7 a |
RW | 258 ± 17 a | 281 ± 33 a | 81 ± 3 a | 533 ± 149 | 437 ± 73 | 49 ± 3 a | 337 ± 80 a | 169 ± 26 a | 38 ± 6 a | 1355 ± 37 a | 1276 ± 15 a | 984 ± 10 b | |
RB | 202 ± 17 b | 252 ± 31 ab | 71 ± 2 b | 440 ± 174 | 398 ± 72 | 36 ± 3 b | 230 ± 84 b | 117 ± 16 b | 14 ± 2 c | 1251 ± 25 b | 1221 ± 22 b | 1022 ± 15 a | |
Significance | * | * | * | ns 6 | ns | * | * | * | * | * | * | * | |
Intensity (I) | 90 | 121 ± 12 b | 96 ± 4 b | 67 ± 3 b | 113 ± 29 b | 67 ± 2 b | 39 ± 3 | 82 ± 21 b | 213 ± 12 a | 40 ± 3 a | 1296 ± 35 | 1174 ± 11 b | 1034 ± 10 a |
180 | 330 ± 15 a | 408 ± 14 a | 82 ± 2 a | 788 ± 51 a | 715 ± 36 a | 37 ± 4 | 439 ± 24 a | 29 ± 1 b | 6 ± 0 b | 1265 ± 15 | 1300 ± 15 a | 986 ± 7 b | |
Significance | * | * | * | * | * | ns | * | * | * | ns | * | * | |
Interaction (S × I) | BW-90 | 110 ± 6 c | 68 ± 4 d | 51 ± 2 d | 50 ± 5 c | 69 ± 4 c | 16 ± 2 c | 37 ± 2 d | 129 ± 6 c | 28 ± 1 b | 1239 ± 2 b | 1151 ± 16 c | 1026 ± 16 b |
RW-90 | 165 ± 8 b | 132 ± 4 c | 87 ± 3 a | 227 ± 13 b | 76 ± 3 c | 60 ± 3 a | 163 ± 15 c | 307 ± 7 a | 70 ± 2 a | 1420 ± 43 a | 1235 ± 20 b | 1014 ± 15 bc | |
RB-90 | 86 ± 6 c | 89 ± 3 cd | 64 ± 2 c | 63 ± 5 bc | 56 ± 4 c | 41 ± 2 b | 44 ± 1 d | 204 ± 5 b | 22 ± 1 c | 1228 ± 40 b | 1137 ± 8 c | 1063 ± 23 a | |
BW-180 | 321 ± 19 a | 378 ± 17 b | 93 ± 3 a | 710 ± 21 a | 608 ± 54 b | 43 ± 11 b | 389 ± 31 b | 27 ± 1 d | 7 ± 0 d | 1231 ± 7 b | 1278 ± 31 ab | 1023 ± 11 b | |
RW-180 | 351 ± 31 a | 431 ± 34 a | 74 ± 3 b | 839 ± 131 a | 798 ± 57 a | 38 ± 5 b | 511 ± 31 a | 32 ± 2 d | 5 ± 0 d | 1289 ± 26 b | 1317 ± 17 a | 954 ± 8 d | |
RB-180 | 317 ± 31 a | 416 ± 15 ab | 78 ± 2 b | 816 ± 93 a | 740 ± 70 a | 30 ± 5 bc | 416 ± 28 b | 30 ± 1 d | 6 ± 0 d | 1274 ± 32 b | 1306 ± 29 a | 981 ± 10 cd | |
Significance | * | * | * | * | * | * | * | * | * | * | * | * |
Factor | Level | TPC 1 mg GAE 100 g−1 FW | TFC 2 mg RE 100 g−1 FW | FRAP 3 mg TE 100 g−1 FW | DPPH 4 mg TE 100 g−1 FW | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Days | Days | Days | Days | ||||||||||
0 | 15 | 45 | 0 | 15 | 45 | 0 | 15 | 45 | 0 | 15 | 45 | ||
Spectrum (S) | BW | 191 ± 14 | 274 ± 36 b 5 | 172 ± 5 a | 439 ± 117 c | 353 ± 37 b | 144 ± 10 | 261 ± 58 c | 72 ± 6 c | 71 ± 11 b | 1288 ± 83 b | 1236 ± 20 c | 1097 ± 19 b |
RW | 217 ± 45 | 361 ± 27 a | 169 ± 6 a | 681 ± 187 a | 395 ± 49 a | 147 ± 7 | 491 ± 118 a | 193 ± 27 a | 97 ± 16 a | 1587 ± 107 a | 1364 ± 19 a | 1159 ± 17 a | |
RB | 190 ± 18 | 261 ± 31 b | 151 ± 4 b | 556 ± 125 b | 362 ± 57 ab | 159 ± 13 | 371 ± 73 b | 92 ± 10 b | 67 ± 11 b | 1425 ± 89 ab | 1287 ± 23 b | 1096 ± 24 b | |
Significance | ns 6 | * | * | * | * | ns | * | * | * | * | * | * | |
Intensity (I) | 90 | 149 ± 11 b | 143 ± 11 b | 159 ± 3 | 242 ± 18 b | 126 ± 8 b | 157 ± 4 | 195 ± 17 b | 198 ± 16 b | 145 ± 5 a | 1578 ± 79 a | 1230 ± 16 b | 1168 ± 16 a |
180 | 250 ± 19 a | 459 ± 11 a | 169 ± 5 | 875 ± 62 a | 614 ± 18 a | 143 ± 11 | 553 ± 58 a | 41 ± 1 a | 12 ± 0 b | 1289 ± 77 b | 1362 ± 15 a | 1067 ± 15 b | |
Significance | * | * | ns | * | * | ns | * | * | * | * | * | * | |
Interaction (S × I) | BW-90 | 176 ± 19 cd | 89 ± 3 d | 168 ± 5 | 181 ± 4 e | 168 ± 5 c | 136 ± 6 | 137 ± 13 d | 104 ± 4 c | 129 ± 6 b | 1425 ± 80 | 1142 ± 15 | 1123 ± 34 |
RW-90 | 119 ± 12 e | 234 ± 11 c | 157 ± 6 | 264 ± 23 de | 147 ± 9 c | 156 ± 7 | 235 ± 17 d | 345 ± 9 a | 182 ± 8 a | 1758 ± 155 | 1323 ± 27 | 1206 ± 23 | |
RB-90 | 152 ± 9 de | 107 ± 5 d | 153 ± 6 | 281 ± 23 d | 62 ± 3 d | 178 ± 6 | 216 ± 17 d | 144 ± 6 b | 124 ± 6 b | 1551 ± 126 | 1226 ± 17 | 1175 ± 21 | |
BW-180 | 206 ± 18 bc | 459 ± 18 ab | 176 ± 9 | 696 ± 49 c | 537 ± 27 b | 152 ± 20 | 384 ± 34 c | 40 ± 2 d | 13 ± 0 c | 1150 ± 98 | 1331 ± 15 | 1071 ± 16 | |
RW-180 | 315 ± 18 a | 488 ± 22 a | 182 ± 9 | 1098 ± 17 a | 642 ± 32 a | 138 ± 12 | 748 ± 59 a | 41 ± 1 d | 12 ± 1 c | 1416 ± 60 | 1406 ± 23 | 1112 ± 19 | |
RB-180 | 228 ± 13 b | 427 ± 18 b | 150 ± 6 | 830 ± 41 b | 662 ± 23 a | 140 ± 25 | 527 ± 49 b | 41 ± 2 d | 10 ± 0 c | 1300 ± 92 | 1348 ± 36 | 1017 ± 33 | |
Significance | * | * | ns | * | * | ns | * | * | * | ns | ns | ns |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hernández-Adasme, C.; Guevara, M.J.; Faicán-Benenaula, M.A.; Neira, R.; Delgadillo, D.; Muñoz, V.; Salazar-Parra, C.; Sun, B.; Yang, X.; Escalona, V.H. Effect of Light Conditions on Growth and Antioxidant Parameters of Two Hydroponically Grown Lettuce Cultivars (Green and Purple) in a Vertical Farm System. Horticulturae 2025, 11, 220. https://doi.org/10.3390/horticulturae11020220
Hernández-Adasme C, Guevara MJ, Faicán-Benenaula MA, Neira R, Delgadillo D, Muñoz V, Salazar-Parra C, Sun B, Yang X, Escalona VH. Effect of Light Conditions on Growth and Antioxidant Parameters of Two Hydroponically Grown Lettuce Cultivars (Green and Purple) in a Vertical Farm System. Horticulturae. 2025; 11(2):220. https://doi.org/10.3390/horticulturae11020220
Chicago/Turabian StyleHernández-Adasme, Cristian, María José Guevara, María Auxiliadora Faicán-Benenaula, Rodrigo Neira, Dakary Delgadillo, Violeta Muñoz, Carolina Salazar-Parra, Bo Sun, Xiao Yang, and Víctor Hugo Escalona. 2025. "Effect of Light Conditions on Growth and Antioxidant Parameters of Two Hydroponically Grown Lettuce Cultivars (Green and Purple) in a Vertical Farm System" Horticulturae 11, no. 2: 220. https://doi.org/10.3390/horticulturae11020220
APA StyleHernández-Adasme, C., Guevara, M. J., Faicán-Benenaula, M. A., Neira, R., Delgadillo, D., Muñoz, V., Salazar-Parra, C., Sun, B., Yang, X., & Escalona, V. H. (2025). Effect of Light Conditions on Growth and Antioxidant Parameters of Two Hydroponically Grown Lettuce Cultivars (Green and Purple) in a Vertical Farm System. Horticulturae, 11(2), 220. https://doi.org/10.3390/horticulturae11020220