Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (47)

Search Parameters:
Keywords = blind source separation methods (BSS)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 1865 KiB  
Article
A Robust Cross-Band Network for Blind Source Separation of Underwater Acoustic Mixed Signals
by Xingmei Wang, Peiran Wu, Haisu Wei, Yuezhu Xu and Siyu Wang
J. Mar. Sci. Eng. 2025, 13(7), 1334; https://doi.org/10.3390/jmse13071334 - 11 Jul 2025
Viewed by 245
Abstract
Blind source separation (BSS) of underwater acoustic mixed signals aims to improve signal clarity by separating noise components from aliased underwater signal sources. This enhancement directly increases target detection accuracy in underwater acoustic perception systems, particularly in scenarios involving multi-vessel interference or biological [...] Read more.
Blind source separation (BSS) of underwater acoustic mixed signals aims to improve signal clarity by separating noise components from aliased underwater signal sources. This enhancement directly increases target detection accuracy in underwater acoustic perception systems, particularly in scenarios involving multi-vessel interference or biological sound coexistence. Deep learning-based BSS methods have gained wide attention for their superior nonlinear modeling capabilities. However, existing approaches in underwater acoustic scenarios still face two key challenges: limited feature discrimination and inadequate robustness against non-stationary noise. To overcome these limitations, we propose a novel Robust Cross-Band Network (RCBNet) for the BSS of underwater acoustic mixed signals. To address insufficient feature discrimination, we decompose mixed signals into sub-bands aligned with ship noise harmonics. For intra-band modeling, we apply a parallel gating mechanism that strengthens long-range dependency learning so as to enhance robustness against non-stationary noise. For inter-band modeling, we design a bidirectional-frequency RNN to capture the global dependency relationships of the same signal across sub-bands. Our experiment demonstrates that RCBNet achieves a 0.779 dB improvement in the SDR compared to the advanced model. Additionally, the anti-noise experiment demonstrates that RCBNet exhibits satisfactory robustness across varying noise environments. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

22 pages, 2620 KiB  
Article
An Anti-Mainlobe Suppression Jamming Method Based on Improved Blind Source Separation Using Variational Mode Decomposition and Wavelet Packet Decomposition
by Ruike Li, Huafeng He, Xiang Liu, Liyuan Wang, Yongquan You, Zhen Li and Xiaofei Han
Sensors 2025, 25(11), 3404; https://doi.org/10.3390/s25113404 - 28 May 2025
Viewed by 372
Abstract
Mainlobe suppression jamming significantly degrades radar detection performance. The conventional blind source separation (BSS) algorithms often fail under high-jamming-to-signal-ratio (JSR) and low-signal-to-noise-ratio (SNR) conditions. To overcome this limitation, we propose an enhanced BSS method combining variational mode decomposition (VMD) and wavelet packet decomposition [...] Read more.
Mainlobe suppression jamming significantly degrades radar detection performance. The conventional blind source separation (BSS) algorithms often fail under high-jamming-to-signal-ratio (JSR) and low-signal-to-noise-ratio (SNR) conditions. To overcome this limitation, we propose an enhanced BSS method combining variational mode decomposition (VMD) and wavelet packet decomposition (WPD), termed VMD-WPD-JADE. The proposed approach first applies VMD-WPD for noise reduction in radar signals and then utilizes the JADE algorithm to compute the separation matrix of the denoised signals, effectively achieving blind source separation of radar echoes for interference suppression. We evaluate the method using noise-amplitude modulation and noise-frequency modulation jamming scenarios. The experimental results show that at a JSR = 50 dB and an SNR = −5 dB, our method successfully separates the target signals. Compared with the conventional blind source separation (BSS) algorithms, the proposed technique demonstrates superior robustness, achieving a 4–11% improvement in the target detection probability under noise-amplitude modulation (NAM) jamming and a 4–16% enhancement under noise-frequency modulation (NFM) jamming within a signal-to-noise ratio (SNR) range of −5 dB to 5 dB. Full article
(This article belongs to the Section Radar Sensors)
Show Figures

Figure 1

22 pages, 24849 KiB  
Article
Blind Signal Separation with Deep Residual Networks for Robust Synthetic Aperture Radar Signal Processing in Interference Electromagnetic Environments
by Lixiong Fang, Jianwen Zhang, Yi Ran, Kuiyu Chen, Aimer Maidan, Lu Huan and Huyang Liao
Electronics 2025, 14(10), 1950; https://doi.org/10.3390/electronics14101950 - 11 May 2025
Cited by 1 | Viewed by 554
Abstract
With the rapid development of electronic technology, the electromagnetic interference encountered by airborne synthetic aperture radar (SAR) is no longer satisfied with a single type of interference, and it often encounters both suppressive and deceptive interference. In this manuscript, an algorithm based on [...] Read more.
With the rapid development of electronic technology, the electromagnetic interference encountered by airborne synthetic aperture radar (SAR) is no longer satisfied with a single type of interference, and it often encounters both suppressive and deceptive interference. In this manuscript, an algorithm based on blind signal separation (BSS) and deep residual learning is proposed for airborne SAR multi-electromagnetic interference suppression. Firstly, theoretical airborne SAR imaging in a multi-electromagnetic interference environment model is established, and the signal-mixed model of multi-electromagnetic interference is proposed. Then, a BSS algorithm using maximum kurtosis deconvolution and improved principal component analysis (PCA) is presented for suppressing the composite electromagnetic interference encountered by airborne SAR. Finally, in order to find the desired signal among multiple separated sources and to cope with the residual noise, a deep residual network is designed for signal recognition and denoising. This method uses a BSS algorithm with maximum kurtosis deconvolution and improved PCA to perform mixed signal separation. After performing signal separation, the original echo signal and the jamming can be obtained. To solve the separation order uncertainty and residual noise problems of the existing BSS algorithms, the deep residual network is designed to recognize airborne SAR signals after airborne SAR imaging. This algorithm has a better signal restoration degree, higher image restoration degree, and better compound interference suppression performance before and after anti-interference. Simulation and measurement results demonstrate the effectiveness of our presented algorithm. Full article
(This article belongs to the Special Issue New Insights in Radar Signal Processing and Target Recognition)
Show Figures

Figure 1

19 pages, 4793 KiB  
Article
Enhanced Blind Separation of Rail Defect Signals with Time–Frequency Separation Neural Network and Smoothed Pseudo Wigner–Ville Distribution
by Mingxiang Zhang, Kangwei Wang, Yule Yang, Yaojia Cao and Yong You
Appl. Sci. 2025, 15(7), 3546; https://doi.org/10.3390/app15073546 - 24 Mar 2025
Cited by 1 | Viewed by 406
Abstract
Railways are crucial in economic development and improving people’s livelihoods. Therefore, defect detection and maintenance of rails are particularly important. In order to accurately separate and identify the rail defect from the mixed signals by acoustic emission (AE) techniques, this paper proposes a [...] Read more.
Railways are crucial in economic development and improving people’s livelihoods. Therefore, defect detection and maintenance of rails are particularly important. In order to accurately separate and identify the rail defect from the mixed signals by acoustic emission (AE) techniques, this paper proposes a novel time–frequency separation neural network (TFSNN) architecture to solve the problems existing in the blind source separation (BSS), such as in non-stationary signals and low stability in the convergence. Combined with the smoothed pseudo Wigner–Ville distribution (SPWVD), this method can increase the spectrogram resolution, suppress the noise interference, and effectively improve the extraction performance of crack signals. In addition, 1D-CNN and GRU structures were introduced in the TFSNN structure to exploit the dominant features from AE signals. A dense regressor was also subsequently used to estimate the separation weights. Simulation and experiments showed that compared with traditional algorithms like independent component analysis, shallow neural networks, and time–frequency blind source separation, the proposed algorithm can provide better separation performance and higher stability in rail crack detection. Full article
(This article belongs to the Special Issue Machine Learning in Vibration and Acoustics 2.0)
Show Figures

Figure 1

25 pages, 3695 KiB  
Article
Blind Source Separation Using Time-Delayed Dynamic Mode Decomposition
by Gyurhan Nedzhibov
Computation 2025, 13(2), 31; https://doi.org/10.3390/computation13020031 - 1 Feb 2025
Cited by 1 | Viewed by 1096
Abstract
Blind Source Separation (BSS) is a significant field of study in signal processing, with many applications in various fields such as audio processing, speech recognition, biomedical signal analysis, image processing and communication systems. Traditional methods, such as Independent Component Analysis (ICA), often rely [...] Read more.
Blind Source Separation (BSS) is a significant field of study in signal processing, with many applications in various fields such as audio processing, speech recognition, biomedical signal analysis, image processing and communication systems. Traditional methods, such as Independent Component Analysis (ICA), often rely on statistical independence assumptions, which may limit their performance in systems with significant temporal dynamics. This paper introduces an extension of the dynamic mode decomposition (DMD) approach by using time-delayed coordinates to implement BSS. Time-delay embedding enhances the capability of the method to handle complex, nonstationary signals by incorporating their temporal dependencies. We validate the approach through numerical experiments and applications, including audio signal separation, image separation and EEG artifact removal. The results demonstrate that modification achieves superior performance compared to conventional techniques, particularly in scenarios where sources exhibit dynamic coupling or non-stationary behavior. Full article
(This article belongs to the Special Issue Mathematical Modeling and Study of Nonlinear Dynamic Processes)
Show Figures

Figure 1

20 pages, 11374 KiB  
Article
Investigation of Separating Temperature-Induced Structural Strain Using Improved Blind Source Separation (BSS) Technique
by Hao’an Gu, Xin Zhang, Dragoslav Sumarac, Jiayi Peng, László Dunai and Yufeng Zhang
Sensors 2024, 24(24), 8015; https://doi.org/10.3390/s24248015 - 15 Dec 2024
Viewed by 1270
Abstract
The strain data acquired from structural health monitoring (SHM) systems of large-span bridges are often contaminated by a mixture of temperature-induced and vehicle-induced strain components, thereby complicating the assessment of bridge health. Existing approaches for isolating temperature-induced strains predominantly rely on statistical temperature–strain [...] Read more.
The strain data acquired from structural health monitoring (SHM) systems of large-span bridges are often contaminated by a mixture of temperature-induced and vehicle-induced strain components, thereby complicating the assessment of bridge health. Existing approaches for isolating temperature-induced strains predominantly rely on statistical temperature–strain models, which can be significantly influenced by arbitrarily chosen parameters, thereby undermining the accuracy of the results. Additionally, signal processing techniques, including empirical mode decomposition (EMD) and others, frequently yield unstable outcomes when confronted with nonlinear strain signals. In response to these challenges, this study proposes a novel temperature-induced strain separation technique based on improved blind source separation (BSS), termed the Temperature-Separate Second-Order Blind Identification (TS-SOBI) method. Numerical verification using a finite element (FE) bridge model that considers both temperature loads and vehicle loads confirms the effectiveness of TS-SOBI in accurately separating temperature-induced strain components. Furthermore, real strain data from the SHM system of a long-span bridge are utilized to validate the application of TS-SOBI in practical engineering scenarios. By evaluating the remaining strain components after applying the TS-SOBI method, a clearer understanding of changes in the bridge’s loading conditions is achieved. The investigation of TS-SOBI introduces a novel perspective for mitigating temperature effects in SHM applications for bridges. Full article
Show Figures

Figure 1

23 pages, 7552 KiB  
Article
A Novel Data Fusion Method to Estimate Bridge Acceleration with Surrogate Inclination Mode Shapes through Independent Component Analysis
by Xuzhao Lu, Chenxi Wei, Limin Sun, Ye Xia and Wei Zhang
Appl. Sci. 2024, 14(18), 8556; https://doi.org/10.3390/app14188556 - 23 Sep 2024
Cited by 2 | Viewed by 1457
Abstract
Data fusion is an important issue in bridge health monitoring. Through data fusion, specific unknown bridge responses can be estimated with measured responses. However, existing data fusion methods always require a precise finite element model of the bridge or partially measured target responses, [...] Read more.
Data fusion is an important issue in bridge health monitoring. Through data fusion, specific unknown bridge responses can be estimated with measured responses. However, existing data fusion methods always require a precise finite element model of the bridge or partially measured target responses, which are hard to realize in actual engineering. In this study, we propose a novel data fusion method. Measured inclinations across multiple cross-sections of the target bridge and accelerations at a subset of these sections were used to estimate accelerations at the remaining sections. Theoretical analysis of a typical vehicle-bridge interaction (VBI) system has shown parallels with the blind source separation (BSS) problem. Based on this, Independent Component Analysis (ICA) was applied to derive surrogate inclination mode shapes. This was followed by calculating surrogate displacement mode shapes through numerical integration. Finally, a surrogate inter-section transfer matrix for both measured and unmeasured accelerations was constructed, enabling the estimation of the target accelerations. This paper presents three key principles involving the relationship between the surrogate and actual inter-section transfer matrices, the integration of mode shape functions, and the consistency of transfer matrices for low- and high-frequency responses, which form the basis of the proposed method. A series of numerical simulations and a large-scale laboratory experiment were proposed to validate the proposed method. Compared to existing approaches, our proposed method stands out as a purely data-driven technique, eliminating the need for finite element analysis assessment. By incorporating the ICA algorithm and surrogate mode shapes, this study addresses the challenges associated with obtaining accurate mode shape functions from low-frequency responses. Moreover, our method does not require partial measurements of the target responses, simplifying the data collection process. The validation results demonstrate the method’s practicality and convenience for real-world engineering applications, showcasing its potential for broad adoption in the field. Full article
(This article belongs to the Special Issue Advances in Intelligent Bridge: Maintenance and Monitoring)
Show Figures

Figure 1

19 pages, 33390 KiB  
Article
An Advanced Scheme for Radar Clutter Suppression Scheme Based on Blind Source Separation
by Dahu Wang, Chang Liu and Chao Wang
Remote Sens. 2024, 16(9), 1544; https://doi.org/10.3390/rs16091544 - 26 Apr 2024
Cited by 1 | Viewed by 3404
Abstract
In cluttered electromagnetic environments, radar is often disturbed by varied clutter, making target detection challenging. Therefore, achieving effective clutter suppression is crucial for radar target detection. However, traditional clutter suppression methods face three key challenges: (1) significant degradation in target signal detection performance [...] Read more.
In cluttered electromagnetic environments, radar is often disturbed by varied clutter, making target detection challenging. Therefore, achieving effective clutter suppression is crucial for radar target detection. However, traditional clutter suppression methods face three key challenges: (1) significant degradation in target signal detection performance when the clutter’s Doppler spectrum completely masks the target signal; (2) heavy reliance on prior knowledge for optimal performance; and (3) inherent signal energy loss during clutter suppression. To address these challenges, we propose a clutter suppression scheme based on blind source separation (BSS). Initially, the scheme utilizes parallel principal skewness analysis (PPSA) to process the echo signals in the range domain, which helps in identifying the position of moving targets. Subsequently, PPSA is applied once more to process the moving targets in the Doppler domain, allowing for the precise determination of their relative velocities. Subsequently, we evaluate the scheme’s performance with simulated and real data, comparing it with traditional clutter suppression methods and other BSS techniques. The results confirm the effectiveness of the scheme in clutter suppression. Full article
Show Figures

Graphical abstract

19 pages, 713 KiB  
Article
Exploiting Time–Frequency Sparsity for Dual-Sensor Blind Source Separation
by Jiajia Chen, Haijian Zhang and Siyu Sun
Electronics 2024, 13(7), 1227; https://doi.org/10.3390/electronics13071227 - 26 Mar 2024
Viewed by 937
Abstract
This paper explores the important role of blind source separation (BSS) techniques in separating M mixtures including N sources using a dual-sensor array, i.e., M=2, and proposes an efficient two-stage underdetermined BSS (UBSS) algorithm to estimate the mixing matrix and [...] Read more.
This paper explores the important role of blind source separation (BSS) techniques in separating M mixtures including N sources using a dual-sensor array, i.e., M=2, and proposes an efficient two-stage underdetermined BSS (UBSS) algorithm to estimate the mixing matrix and achieve source recovery by exploiting time–frequency (TF) sparsity. First, we design a mixing matrix estimation method by precisely identifying high clustering property single-source TF points (HCP-SSPs) with a spatial vector dictionary based on the principle of matching pursuit (MP). Second, the problem of source recovery in the TF domain is reformulated as an equivalent sparse recovery model with a relaxed sparse condition, i.e., enabling the number of active sources at each auto-source TF point (ASP) to be larger than M. This sparse recovery model relies on the sparsity of an ASP matrix formed by stacking a set of predefined spatial TF vectors; current sparse recovery tools could be utilized to reconstruct N>2 sources. Experimental results are provided to demonstrate the effectiveness of the proposed UBSS algorithm with an easily configured two-sensor array. Full article
(This article belongs to the Special Issue Advances in Array Signal Processing)
Show Figures

Figure 1

34 pages, 6927 KiB  
Article
Efficient Blind Hyperspectral Unmixing Framework Based on CUR Decomposition (CUR-HU)
by Muhammad A. A. Abdelgawad, Ray C. C. Cheung and Hong Yan
Remote Sens. 2024, 16(5), 766; https://doi.org/10.3390/rs16050766 - 22 Feb 2024
Cited by 2 | Viewed by 2016
Abstract
Hyperspectral imaging captures detailed spectral data for remote sensing. However, due to the limited spatial resolution of hyperspectral sensors, each pixel of a hyperspectral image (HSI) may contain information from multiple materials. Although the hyperspectral unmixing (HU) process involves estimating endmembers, identifying pure [...] Read more.
Hyperspectral imaging captures detailed spectral data for remote sensing. However, due to the limited spatial resolution of hyperspectral sensors, each pixel of a hyperspectral image (HSI) may contain information from multiple materials. Although the hyperspectral unmixing (HU) process involves estimating endmembers, identifying pure spectral components, and estimating pixel abundances, existing algorithms mostly focus on just one or two tasks. Blind source separation (BSS) based on nonnegative matrix factorization (NMF) algorithms identify endmembers and their abundances at each pixel of HSI simultaneously. Although they perform well, the factorization results are unstable, require high computational costs, and are difficult to interpret from the original HSI. CUR matrix decomposition selects specific columns and rows from a dataset to represent it as a product of three small submatrices, resulting in interpretable low-rank factorization. In this paper, we propose a new blind HU framework based on CUR factorization called CUR-HU that performs the entire HU process by exploiting the low-rank structure of given HSIs. CUR-HU incorporates several techniques to perform the HU process with a performance comparable to state-of-the-art methods but with higher computational efficiency. We adopt a deterministic sampling method to select the most informative pixels and spectrum components in HSIs. We use an incremental QR decomposition method to reduce computation complexity and estimate the number of endmembers. Various experiments on synthetic and real HSIs are conducted to evaluate the performance of CUR-HU. CUR-HU performs comparably to state-of-the-art methods for estimating the number of endmembers and abundance maps, but it outperforms other methods for estimating the endmembers and the computational efficiency. It has a 9.4 to 249.5 times speedup over different methods for different real HSIs. Full article
(This article belongs to the Special Issue New Methods and Approaches in Airborne Hyperspectral Data Processing)
Show Figures

Figure 1

14 pages, 708 KiB  
Communication
Underwater Acoustic Nonlinear Blind Ship Noise Separation Using Recurrent Attention Neural Networks
by Ruiping Song, Xiao Feng, Junfeng Wang, Haixin Sun, Mingzhang Zhou and Hamada Esmaiel
Remote Sens. 2024, 16(4), 653; https://doi.org/10.3390/rs16040653 - 9 Feb 2024
Cited by 8 | Viewed by 2429
Abstract
Ship-radiated noise is the main basis for ship detection in underwater acoustic environments. Due to the increasing human activity in the ocean, the captured ship noise is usually mixed with or covered by other signals or noise. On the other hand, due to [...] Read more.
Ship-radiated noise is the main basis for ship detection in underwater acoustic environments. Due to the increasing human activity in the ocean, the captured ship noise is usually mixed with or covered by other signals or noise. On the other hand, due to the softening effect of bubbles in the water generated by ships, ship noise undergoes non-negligible nonlinear distortion. To mitigate the nonlinear distortion and separate the target ship noise, blind source separation (BSS) becomes a promising solution. However, underwater acoustic nonlinear models are seldom used in research for nonlinear BSS. This paper is based on the hypothesis that the recovery and separation accuracy can be improved by considering this nonlinear effect in the underwater environment. The purpose of this research is to explore and discover a method with the above advantages. In this paper, a model is used in underwater BSS to describe the nonlinear impact of the softening effect of bubbles on ship noise. To separate the target ship-radiated noise from the nonlinear mixtures, an end-to-end network combining an attention mechanism and bidirectional long short-term memory (Bi-LSTM) recurrent neural network is proposed. Ship noise from the database ShipsEar and line spectrum signals are used in the simulation. The simulation results show that, compared with several recent neural networks used for linear and nonlinear BSS, the proposed scheme has an advantage in terms of the mean square error, correlation coefficient and signal-to-distortion ratio. Full article
(This article belongs to the Special Issue Advanced Array Signal Processing for Target Imaging and Detection)
Show Figures

Figure 1

13 pages, 1515 KiB  
Article
Blind Source Separation with Strength Pareto Evolutionary Algorithm 2 (SPEA2) Using Discrete Wavelet Transform
by Husamettin Celik and Nurhan Karaboga
Electronics 2023, 12(21), 4383; https://doi.org/10.3390/electronics12214383 - 24 Oct 2023
Cited by 4 | Viewed by 1598
Abstract
This paper presents a new method for separating the mixed audio signals of simultaneous speakers using Blind Source Separation (BSS). The separation of mixed signals is an important issue today. In order to obtain more efficient and superior source estimation performance, a new [...] Read more.
This paper presents a new method for separating the mixed audio signals of simultaneous speakers using Blind Source Separation (BSS). The separation of mixed signals is an important issue today. In order to obtain more efficient and superior source estimation performance, a new algorithm that solves the BSS problem with Multi-Objective Optimization (MOO) methods was developed in this study. In this direction, we tested the application of two methods. Firstly, the Discrete Wavelet Transform (DWT) was used to eliminate the limited aspects of the traditional methods used in BSS and the small coefficients in the signals. Afterwards, the BSS process was optimized with the multi-purpose Strength Pareto Evolutionary Algorithm 2 (SPEA2). Secondly, the Minkowski distance method was proposed for distance measurement by using density information in the discrimination of individuals with raw fitness values for the concept of Pareto dominance. With this proposed method, the originals (original source signals) were estimated by separating the randomly mixed male and two female speech signals. Simulation and experimental results proved that the efficiency and performance of the proposed method can effectively solve BSS problems. In addition, the Pareto front approximation performance of this method also confirmed that it is superior in the Inverted Generational Distance (IGD) indicator. Full article
(This article belongs to the Special Issue Recent Advances in Audio, Speech and Music Processing and Analysis)
Show Figures

Figure 1

18 pages, 549 KiB  
Article
Blind Source Separation of Intermittent Frequency Hopping Sources over LOS and NLOS Channels
by Anushreya Ghosh, Annan Dong, Alexander Haimovich, Osvaldo Simeone and Jason Dabin
Entropy 2023, 25(9), 1292; https://doi.org/10.3390/e25091292 - 3 Sep 2023
Viewed by 1860
Abstract
This paper studies blind source separation (BSS) for frequency hopping (FH) sources. These radio frequency (RF) signals are observed by a uniform linear array (ULA) over (i) line-of-sight (LOS), (ii) single-cluster, and (iii) multiple-cluster Spatial Channel Model (SCM) settings. The sources are stationary, [...] Read more.
This paper studies blind source separation (BSS) for frequency hopping (FH) sources. These radio frequency (RF) signals are observed by a uniform linear array (ULA) over (i) line-of-sight (LOS), (ii) single-cluster, and (iii) multiple-cluster Spatial Channel Model (SCM) settings. The sources are stationary, spatially sparse, and their activity is intermittent and assumed to follow a hidden Markov model (HMM). BSS is achieved by leveraging direction of arrival (DOA) information through an FH estimation stage, a DOA estimation stage, and a pairing stage with the latter associating FH patterns with physical sources via their estimated DOAs. Current methods in the literature do not perform the association of multiple frequency hops to the sources they are transmitted from. We bridge this gap by pairing the FH estimates with DOA estimates and labeling signals to their sources, irrespective of their hopped frequencies. A state filtering technique, referred to as hidden state filtering (HSF), is developed to refine DOA estimates for sources that follow a HMM. Numerical results demonstrate that the proposed approach is capable of separating multiple intermittent FH sources. Full article
(This article belongs to the Special Issue Information Theory and Coding for Wireless Communications II)
Show Figures

Figure 1

36 pages, 2661 KiB  
Review
A Review of Tags Anti-Collision Identification Methods Used in RFID Technology
by Ling Wang, Zhongqiang Luo, Ruiming Guo and Yongqi Li
Electronics 2023, 12(17), 3644; https://doi.org/10.3390/electronics12173644 - 29 Aug 2023
Cited by 11 | Viewed by 5178
Abstract
With radio frequency identification (RFID) becoming a popular wireless technology, more and more relevant applications are emerging. Therefore, anti-collision algorithms, which determine the time to tag identification and the accuracy of identification, have become very important in RFID systems. This paper presents the [...] Read more.
With radio frequency identification (RFID) becoming a popular wireless technology, more and more relevant applications are emerging. Therefore, anti-collision algorithms, which determine the time to tag identification and the accuracy of identification, have become very important in RFID systems. This paper presents the algorithms of ALOHA for randomness, the binary tree algorithm for determinism, and a hybrid anti-collision algorithm that combines these two algorithms. To compensate for the low throughput of traditional algorithms, RFID anti-collision algorithms based on blind source separation (BSS) are described, as the tag signals of RFID systems conform to the basic assumptions of the independent component analysis (ICA) algorithm. In the determined case, the ICA algorithm-based RFID anti-collision method is described. In the under-determined case, a combination of tag grouping with a blind separation algorithm and constrained non-negative matrix factorization (NMF) is used to separate the multi-tag mixing problem. Since the estimation of tag or frame length is the main step to solve the RFID anti-collision problem, this paper introduces an anti-collision algorithm based on machine learning to estimate the number of tags. Full article
Show Figures

Figure 1

16 pages, 4977 KiB  
Article
Bridge Damage Detection Using Complexity Pursuit and Extreme Value Theory
by Xun Liu, Weidong Zhuo and Jie Yang
Buildings 2023, 13(9), 2183; https://doi.org/10.3390/buildings13092183 - 28 Aug 2023
Viewed by 1411
Abstract
Bridge structures are susceptible to environmental and operational variations (EOVs). Improperly handling these influences may result in incorrect assessments of the bridge’s health condition. Blind source separation (BSS) techniques show promising potential in suppressing the effects of EOVs. However, major challenges such as [...] Read more.
Bridge structures are susceptible to environmental and operational variations (EOVs). Improperly handling these influences may result in incorrect assessments of the bridge’s health condition. Blind source separation (BSS) techniques show promising potential in suppressing the effects of EOVs. However, major challenges such as high data variability, difficulty in parameter selection, lack of reliable decision thresholds, and practical engineering validation have seriously hindered the application of such techniques in bridge health monitoring. Consequently, this paper proposes a new method for bridge damage detection that combines complexity pursuit (CP) and extreme value theory (EVT). This method first uses the exponentially weighted moving average (EWMA) technique to preprocess the measured modal frequencies. The CP algorithm and information entropy are then used to extract structural damage sources from the preprocessed data automatically. Based on the extracted structural damage sources, the damage index (DI) is defined using k-means clustering and Euclidean distance. Following that, the generalized extreme value (GEV) distribution is used to fit the DI data under the normal condition of the bridge, and the damage detection threshold is given according to the fitted distribution. Benchmark data of the KW51 railway bridge are considered to verify the effectiveness of the proposed method along with several comparative studies. The results show that even under strong EOV influences, the proposed method still maintains good damage detection accuracy and robustness, and its effectiveness is superior to some well-known damage detection methods. Full article
(This article belongs to the Special Issue Advances in Structural Monitoring for Infrastructures in Construction)
Show Figures

Figure 1

Back to TopTop