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Abstract: This paper explores the important role of blind source separation (BSS) techniques in
separating M mixtures including N sources using a dual-sensor array, i.e., M = 2, and proposes
an efficient two-stage underdetermined BSS (UBSS) algorithm to estimate the mixing matrix and
achieve source recovery by exploiting time–frequency (TF) sparsity. First, we design a mixing matrix
estimation method by precisely identifying high clustering property single-source TF points (HCP-
SSPs) with a spatial vector dictionary based on the principle of matching pursuit (MP). Second,
the problem of source recovery in the TF domain is reformulated as an equivalent sparse recovery
model with a relaxed sparse condition, i.e., enabling the number of active sources at each auto-source
TF point (ASP) to be larger than M. This sparse recovery model relies on the sparsity of an ASP
matrix formed by stacking a set of predefined spatial TF vectors; current sparse recovery tools could
be utilized to reconstruct N > 2 sources. Experimental results are provided to demonstrate the
effectiveness of the proposed UBSS algorithm with an easily configured two-sensor array.

Keywords: underdetermined blind source separation; dual-sensor; mixing matrix estimation; source
number estimation; time–frequency sparsity

1. Introduction
1.1. Background

With the rapid growth of wireless systems and their applications, frequency spectrum
has become increasingly congested, which might bring unwanted co-channel interference
(intentional or unintentional) to expected signals [1]. In order to further deal with the
signal of interest given the received mixtures, blind source separation (BSS) techniques
have exhibited potential ability to extract informative signals and suppress undesirable
signals with the aim of improving spectrum efficiency. Stemming from the cocktail party
problem, BSS attempts to reconstruct the original signals from observed mixtures without
the prior information of mixing weights and original sources, and is widely applied in
wireless communication [2,3], speech processing [4,5], image processing [6], biomedicine [7,8],
and more.

Typical techniques, which have achieved considerable success in addressing the BSS
problem, include but are not limited to independent component analysis (ICA) and its
variations [9,10], sparse component analysis (SCA) [7,11,12], sparse bounded component
analysis (SBCA) [13], and non-negative matrix factorization (NMF) [14,15]. Recently, there
has been an increasing interest in deep learning-based data-driven approaches [16,17].
Among these techniques, sparsity-based methods [18–22] have been extensively utilized
due to their versatility in various situations for both (over)determined and underdeter-
mined mixtures. The success of sparsity-based methods depends on the fact that sources
in different fields are either sparse or sparsely representable in a certain domain, e.g., the
time–frequency (TF) domain [19,23] or wavelet domain [24].

Taking into account the implementation cost and space arrangement, BSS with a
limited number of sensors [25] should be more attractive and appropriate for practical
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scenarios, e.g., speech enhancement systems [26] and multiple-input–multiple-output
radar or communication systems [27], where low-cost and small-space configuration are
highlighted. Despite the extensive prior works and applications laying a foundation for
BSS, dual-sensor BSS has not been effectively addressed in the literature. Therefore, our
focus is devoted to the underdetermined BSS (UBSS) problem with a two-sensor array,
aiming to solve the mixing matrix and source estimation problems by exploiting the TF
sparsity of sources.

1.2. Related Work

Traditionally, the UBSS model faces two challenging issues: mixing matrix estimation
(MME) and source recovery. In the literature, some BSS strategies determine both the mixing
matrix and sources simultaneously or circumvent the MME problem entirely [28,29]. As
opposed to these methods, we emphasize a two-step UBSS strategy [30], i.e., first estimating
the mixing matrix and then recovering the sources.

For the first issue, various MME methods [18,21,27,31–38] consider the TF points where
only single source occurs or possesses dominant energy. These single-source TF points
(SSPs) provide a directional clustering property, which can be associated with each column
of the mixing matrix. Hence, clustering the mixture TF vectors at correct SSPs significantly
improves the estimation accuracy. Reju et al. [31] proposed a simple method for detecting
SSPs by comparing the absolute directions of the real and imaginary parts of the mixture
TF coefficient vectors. Estimation methods [32,33] have been reported for discovering
SSPs by investigating the difference between the real and imaginary parts of mixture TF
vectors at SSPs and multi-source TF points (MSPs). Recently, Zhen et al. [34] exploited the
sparse coding technique to find SSPs with some one-dimensional (1D) subspaces from
all the TF vectors of observed mixtures. However, the above methods are specifically
designed for real-valued mixing matrix and are not suitable for complex-valued cases.
In [18], those TF points having sufficient energy were regarded as SSPs, and the complex-
valued mixing matrix was estimated by directly clustering them; however, the estimation
performance becomes degraded when sources are highly overlapped in the TF domain. A
noise-robust estimation method was developed in [21] by decomposing the signal energy of
each TF point into two parts and selecting those TF points where only one source possesses
dominant energy. In [35], agglomerative hierarchical clustering was applied for automatic
clustering of SSPs. Guo et al. [36] proposed a complex-valued mixing matrix estimation
method based on L-shaped arrays and uniform circular arrays, i.e., the arrangement of
arrays needs to be fixed.

The second issue is to separate those sources with fewer sensors. A number of early
works exploiting TF sparsity assumed the sources to be TF-disjoint, i.e., there most one
active source exists at any auto-source TF point (ASP). In [25,39], the authors proposed
the degenerate unmixing estimation technique (DUET) for separating more sources than
mixtures by assuming that the sources are W-disjoint orthogonal in the TF domain. The TF
ratio of mixtures (TIFROM) method was proposed in [40] to relax the restrictive W-disjoint
assumption; however, this approach still requires adjacent TF regions where only one
source occurs. Aissa-El-Bey et al. [18] applied the subspace projection technique to signal
synthesis to separate TF-nondisjoint sources, with the number of sources existing at every
ASP assumed to be less than the number of sensors. This sparse assumption was relaxed
in [41] where the number of active sources at an ASP does not exceed that of sensors.
A UBSS algorithm with free active sources was reported [20] based on the Wigner–Ville
distribution and Khatri–Rao product, which further relaxes the sparse constraint of sources
in the TF domain (see Table 1).

On the other hand, the source separation problem can be addressed based on sparse
recovery theory. Bofill et al. [42] proposed a staged UBSS approach performed in the
frequency domain (with much higher sparsity than the time domain), where the mixing
matrix was first estimated by a potential function-based method, then the sources were
inferred by minimal l1-norm decomposition obtained by solving low-dimensional linear
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programming problems. Subsequently, more and more attention has been paid to this
paradigm for sparse signal reconstruction. Li et al. [43] analyzed the two-stage cluster-
then-l1-optimization approach in [42] and its recoverability for UBSS. Later [24], they
further extended and discussed the applications of the two-stage sparse representation
approach. Recently, Xie et al. [7] proposed an improved l1-norm minimization algorithm to
estimate the source signals and employed preconditioned conjugate gradient technology
to accelerate the convergence rate such that the computational load is reduced. With the
development of compressed sensing (CS) [44], CS reconstruction methods, e.g., orthogonal
matching pursuit (OMP) [45,46], have been applied to handle the source signal recovery
problem. In order to reduce the sparsity limitation of signals, Liu et al. [47] proposed
a source recovery method based on submatrix transformation and multi-source point
compensation for the dual-channel underdetermined TF overlapped signals.

Table 1. Summary of existing two-step BSS algorithms.

Reference Mixing Matrix Estimation Source Recovery

[18] M ≥ 2 (Real/Complex) Ntf < M
[21] M > 2 (Real/Complex) Ntf < M
[41] M ≥ 2 (Real/Complex) Ntf ≤ M
[20] M ≥ 2 (Real) N ≤ 2M − 1
[34] M ≥ 2 (Real) Ntf < M

Proposed M ≥ 2 (Real/Complex) ∑ Ntf < MNasp

M is the number of sensors, N is the number of sources, Nasp is the number of ASPs, and Ntf denotes the number
of sources at each ASP in the TF domain.

1.3. Motivation and Contribution

Although much effort has been made to solve the UBSS problem, potential remains
for enhanced performance in the development of a UBSS model with a dual-sensor array,
which is in accordance with many practical situations requiring low computational cost.
Generally, the aforementioned works might have the following limitations. (i) Existing BSS
algorithms exploiting TF sparsity are summarized in Table 1, where the sparsity conditions
for both mixing matrix estimation and source recovery are specified. Note that an obstacle
to the application of BSS is the strict constraint imposed on the sparse conditions, e.g., the
MME method in [21] has the requirement that the number of sensors must be more than
two. (ii) To a large extent, the separation performance relies heavily on the distinction
between the number of sources and the number of sensors, i.e., when the number of sources
is augmented with a fixed sensor array, the performance suffers significant degradation.
(iii) Obtaining accurate sparse solutions while avoiding trivial solutions under a suitable
sparsity constraint remains challenging for the source recovery problem [7]. The above
difficulties are real challenges faced by researchers, and highlight the need for improved
UBSS performance using low-dimensional arrays.

In this paper, we take advantage of a two-sensor array and propose a novel UBSS
algorithm by exploiting auto-source TF sparsity (ASTFS-UBSS). The two-step paradigm
is adopted to separate multiple sources by first estimating the mixing matrix and then
separating the sources. In the first step, we design an MME method consisting of SSP
detection and subsequent clustering. Direct clustering is carried out to generate a spatial
vector dictionary, which is later employed to select SSPs with a high clustering property.
This selection is implemented by assigning a clustering property threshold according to
the principle of matching pursuit (MP) [48]. With the selected TF points, we then cluster
them through a postprocessing operation to obtain the estimated mixing matrix. Next, a
sparse recovery problem is formulated by reshaping all the mixture TF vectors at ASPs
into a 1D vector based on the fact that only a limited number of sources are active at
ASPs. As such, we formulate a dictionary matrix in which the TF domain sources can be
sparsely represented, then exploit this sparsity to identify the expected sources by l1-norm
minimization. The formulated sparse representation permits current sparse recovery
algorithms to acquire the reconstructed sources.
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The contribution of the proposed ASTFS-UBSS algorithm is twofold. First, the pro-
posed high clustering property SSP-based MME (HCP-SSP-MME) method shows the
potential of both real-valued and complex-valued mixing matrices. Second, according to
the particular properties and structure distribution of different sources in the TF domain,
e.g., regular harmonic pattern of speech sources, exploiting TF sparsity from the perspective
of ASPs enables us to separate multiple sources using only M = 2 sensors with the sparsity
constraint ∑ Ntf < MNasp in Table 1. Theoretical and experimental analyses demonstrate
the effectiveness and feasibility of the ASTFS-UBSS algorithm with a simply configured
dual-sensor array.

The remainder of the paper is organized as follows: we elaborate the proposed ASTFS-
UBSS algorithm in Section 2, where the HCP-SSP-MME method is described based on MP
and a sparse recovery model is established by exploiting the sparsity of source TF vectors
at the ASPs; in Section 3, the proposed ASTFS-UBSS is evaluated in terms of mixing matrix
estimation and source separation; finally, Section 4 concludes the paper.

2. Proposed ASTFS-UBSS Algorithm

This paper considers the UBSS problem including M instantaneous mixtures and N
sources, which is modeled as

x(t) = As(t) + n(t), (1)

where A = [a1, . . . , an, . . . , aN ] denotes the mixing matrix and an = [an1, . . . , anm, . . . , anM]T

is the steering vector of the n-th source. Here, x(t) = [x1(t), . . . , xm(t), . . . , xM(t)]T

are observation mixtures, where T denotes the transpose operator, while s(t) = [s1(t),
. . . , sn(t), . . . , sN(t)]T are original sources and n(t) is the additive white noise vector. It
should be highlighted that a dual-sensor array, i.e., M = 2, is advocated in our model
(M > 2 mixtures are also considered for simulations). The objective is to estimate s(t) by
learning A using the received x(t).

The above UBSS model is generally built without any prior information about the
mixing process and the sources, which leads to infinite solutions of (1) even though the
mixing matrix A is available. Thanks to the sparse property of signal TF distributions, we
exploit the sparsity of ASP vectors to address the dual-sensor UBSS problem. Because the
short-time Fourier transform (STFT) is easy to implement and does not involve cross-terms
in the TF domain, we transform the time domain mixtures in (1) into the STFT domain,
which provides

Sx(t, f ) = ASs(t, f ) + Sn(t, f ), (2)

where S denotes the STFT operator and Sx(t, f ) ∈ CM×1, Ss(t, f ) ∈ CN×1, and Sn(t, f ) ∈
CM×1 are the mixture TF vector, source TF vector, and noise TF vector, respectively.

The block diagram of the proposed dual-sensor ASTFS-UBSS algorithm is illustrated in
Figure 1. In the MME stage, a spatial vector dictionary Ã is generated by directly clustering
the mixture TF vectors at some detected ASPs with strong energy. This initial Ã is utilized
to identify a set of HCP-SSPs with the principle of MP, then these HCP-SSPs are clustered
to obtain an accurate estimation of the mixing matrix Â. In the source recovery stage, a
sparse recovery model is established by exploiting the sparsity of auto-source TF vectors.
Detailed descriptions of the two-step ASTFS-UBSS algorithm are presented in the following
subsections.

2.1. HCP-SSP-Based Mixing Matrix Estimation (MME)

Auto-source TF points (ASPs), including SSPs and MSPs, represent the TF points
where at least one source exists [18,21]. The principal challenge in the design of an SSP-
based MME method is for the accurate detection of some SSPs at which the mixture TF
vectors embody a superior clustering property with respect to each steering vector, i.e.,
each column vector of the mixing matrix A. Mixture TF vectors in (2) for ideal SSPs would
provide helpful directional information about the steering vectors of each source, whereas
this clustering property tends to be distorted for MSPs. In addition, the superiority of
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the clustering property on SSPs will be weakened due to interference and strong noise,
resulting in a low clustering property. Therefore, in order to accurately estimate A, the high
clustering property SSPs (HCP-SSPs) need to be preserved while eliminating the MSPs and
low clustering property SSPs (LCP-SSPs).

...

...

(t) 

(t) 

(t) 

(t) 

(t) 

(t) 

ASP 

Detection

HCP-SSP

Detection

Mixing Matrix 

Estimation

ISTFT

Sparse

Representation

 

 

)

STFT
 

 

Sparse Recovery

Time-Frequency Domain

Dual-Sensor

SSP Single-Source TF Point ASP Auto-Source TF Point

Figure 1. Block diagram of the proposed ASTFS-UBSS algorithm (Ã and Â are the initial estimation
and final estimation of mixing matrix A, respectively).

In this subsection, we elaborate a simple yet efficient MME method by accurately
locating a group of HCP-SSPs (hereinafter termed as HCP-SSP-MME), which follows the
two assumptions below.

Assumption 1. For each source, there are some TF points where only this source exists or where its
energy is dominant.

Assumption 2. Any M column vectors of the mixing matrix AM×N are linearly independent. All
the column vectors of A have a unit norm, i.e., ∥an∥ = 1, n = 1, . . . , N.

Note that Assumption 1, which extends the definition of SSPs by considering noise
influence and threshold operations, can be easily satisfied by a wide range of practical
scenarios, as it allows the corresponding SSPs belonging to each source to be arbitrarily
distributed in the TF domain rather than requiring a connected SSP region for every
source. Assumption 2 guarantees that all sources can be successfully recovered, and is a
common assumption in existing BSS algorithms [11,24,31,34,49]. Furthermore, it avoids
indeterminacies due to scaling and permutation [18].

2.1.1. Detection of ASPs with Strong Energy

To increase noise robustness while reducing computational complexity, we prefer to
deal with those ASPs having significant enough energy for MME. Specifically, a set of
strong-energy TF points (SEPs) in the STFT domain can be selected using the following
criterion:

If
∥Sx(t, f )∥

max
τ,v

{∥Sx(τ, v)∥} > T0, then (t, f ) ∈ Ωsep (3)

where ∥ · ∥ denotes the Euclidean norm and T0 ∈ (0, 1) is an empirical threshold value for
selecting SEPs. All the ASPs meeting the criterion in (3) are included in the set Ωsep. The
above process further enhances the signal sparsity and suppresses the influence of noise.



Electronics 2024, 13, 1227 6 of 19

Because the SEPs have negligible noise energy, the signal TF model in (2) for an SEP
(t, f ) is changed into

Sx(t, f ) ≈ ASs(t, f ) =
N

∑
n=1

S(n)
s (t, f )an, (4)

where S(n)
s (t, f ) denotes the STFT value of the n-th source and can be regarded as the

coefficient of the basis an. Thus, the term ∑N
n=1 S(n)

s (t, f )an represents a linear expansion of
Sx(t, f ). Assuming a desirable HCP-SSP on which only the n-th source is active, Equation (4)
degrades into

Sx(t, f ) ≈ S(n)
s (t, f )an, n ∈ {1, . . . , N}, (5)

which means that the steering vector an is co-linear with the observed mixture TF vec-
tor Sx(t, f ) at the TF point (t, f ). Clearly, the vector Sx(t, f ) at an HCP-SSP possesses
favourable directional information about an; thus, we can estimate aα by averaging the
mixture TF vectors of the n-th source-related HCP-SSPs:

ân =
1

♯Ω(n)
hcp

∑
(t, f )∈Ω(n)

hcp

Sx(t, f )
Sxre f (t, f )

, n = 1, . . . , N (6)

whereSxre f (t, f ) represents the TF value of the mixture reference channel, ♯Ω(n)
hcp denotes

the total number of HCP-SSPs included in the set Ω(n)
hcp, n = 1, . . . , N, and ∪ Ω(n)

hcp = Ωhcp;
in addition, note that Ωhcp ⊂ Ωsep. The aim of the proposed MME lies in determining the
set Ωhcp, i.e., locating a set of HCP-SSPs from the detected SEPs in (3), where the MSPs and
LCP-SSPs are regarded as outliers to be eliminated.

2.1.2. Estimation of Initial Dictionary Ã

To identify a set of HCP-SSPs which satisfy the condition in (5), an initial estimation of
the steering vectors {an}n=1,...,N is required. To address this problem, we generate a spatial
vector dictionary Ã by clustering the mixture TF vectors of all the SEPs defined in (3) using
k-means clustering. As a result, each mixture TF vector of Ã can be estimated the same way
as in (6), i.e.,

ãn =
1

♯Ω(n)
sep

∑
(t, f )∈Ω(n)

sep

Sx(t, f )
Sxre f (t, f )

, n = 1, . . . , N0, (7)

where ♯Ω(n)
sep denotes the number of SEPs in the n-th cluster set Ω(n)

sep, n = 1, ..., N0, and

∪ Ω(n)
sep = Ωsep. Herein, N0 is assigned a larger value than N to ensure that the steering

vectors of all sources are included in Ã.

2.1.3. Identification of HCP-SSPs

Next, we attempt to identify a group of HCP-SSPs from the SEPs in (3) while removing
the outliers, i.e., MSPs and LCP-SSPs. In this paper, we assume that there are at most two
sources contributing dominant energy at each MSP.

Based on the decompositions in (4) and (5), the observed mixture TF vector Sx(t, f ) can
be considered as a linear expansion of several bases (columns) belonging to Ã. In this sense,
we resort to the attractive property of MP [48], which defines a linear expansion of Sx(t, f )
to best match its inner structure by successive approximation of Sx(t, f ) with orthogonal
projection on the bases in Ã. According to this property of MP, the mixture TF vector of
each SEP in the set Ωsep can be decomposed as

Sx(t, f ) =
〈

Sx(t, f ), ãn1

〉
ãn1 + r(1)(t, f ), (8)
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where ãn1 is the n1-th column in Ã and ⟨·, ·⟩ is the inner product operator. The term r(1)(t, f )
denotes the residual vector after approximating Sx(t, f ) in the direction of ãn1 .

Assuming an SSP with the α-th source having the dominant energy, according to
(8) the steering vector aα of this SSP can be estimated by minimizing the norm of the
residual vector ∥r(1)(t, f )∥, expressed as follows:

âα = arg min
ãn1

{∥∥∥Sx(t, f )−
〈
Sx(t, f ), ãn1

〉
ãn1

∥∥∥}, (9)

where n1 = 1, . . . , N0.
This becomes more complicated for an MSP, as Sx(t, f ) in (8) involves multiple bases.

Fortunately, MP is an iterative process that continuously subdecomposes the residue
r(1)(t, f ) by projecting it on another base in Ã in the same way as in (8) and (9). Defin-
ing Sx(t, f ) = r(0)(t, f ), the residual vector r(i)(t, f ) in the i-th level of decomposition is
expressed as

r(i)(t, f ) =
〈

r(i)(t, f ), ãni+1

〉
ãni+1 + r(i+1)(t, f ), (10)

where ãni+1 is the ni+1-th column in Ã. Thus, the expression in (8) for a D-level decomposi-
tion is changed into

Sx(t, f ) =
D−1

∑
i=0

〈
r(i)(t, f ), ãni+1

〉
ãni+1 + r(D)(t, f ), (11)

where {ãni+1}i=0,...,D−1 are D bases from Ã, which can be estimated in a similar way as
in (9). This implies that for each SEP in Ωsep we can determine D sources which contribute
significant energy to Sx(t, f ) of this SEP.

It has been demonstrated that setting D = 2 in (11) would be capable of distinguishing
between MSPs, HCP-SSPs, and LCP-SSPs; in this way, Equation (11) can be rewritten as

Sx(t, f ) =
〈

Sx(t, f ), ãn1

〉
ãn1 +

〈
r(1)(t, f ), ãn2

〉
ãn2 + r(2)(t, f ), (12)

where ãn1 and ãn2 are two bases from Ã which correspond to the steering vectors of two
contributing sources.

Because the resulting approximation of MP after any finite number of iterations might
be suboptimal, as an alternative we apply orthogonal matching pursuit (OMP) [45,50,51] to
compute the residue r(1)(t, f ) in (12):

r(1)(t, f ) = Sx(t, f )− ãn1 ã†
n1

Sx(t, f ) (13)

where † denotes the Moore–Penrose pseudo-inversion operator. Then, Equation (12) is
further expressed as

Sx(t, f ) = C1ãn1 + C2ãn2 + r(2)(t, f ), (14)

and C1 =
〈

Sx(t, f ), ãn1

〉
C2 =

〈
Sx(t, f )− ãn1 ã†

n1
Sx(t, f ), ãn2

〉
,

(15)

where ãn1 is the first base in Ã determined by (9) and the second base ãn2 can be obtained via

ãn2 = arg min
ãn2

{∥∥∥Sx(t, f )− C1ãn1 − C2ãn2

∥∥∥}, (16)
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where n1, n2 ∈ {1, 2, . . . , N0} and C1 ≥ C2.
Under the noiseless situation and assuming known A, an SSP with the α-th active

source can be easily identified according to the value of C2 and (5), derived as follows:

C2 =
〈

Sx(t, f )− ãn1 ã†
n1

Sx(t, f ), ãn2

〉
=

〈
Sx(t, f )− aαa†

αSx(t, f ), ãn2

〉
=

〈
Sx(t, f )− S(α)

s (t, f )aαa†
αaα, ãn2

〉
=

〈
Sx(t, f )− S(α)

s (t, f )aα, ãn2

〉
=

〈
0, ãn2

〉
= 0. (17)

It is clear that C2 = 0 for SSPs, while C2 > 0 for MSPs in ideal conditions.
However, practically noisy environments with estimated Ã show great disparity from

the above theoretical analysis. Figure 2 presents noisy mixture TF vectors Sx(t, f ) of SEPs
(gray asterisks) detected by (3); the red plus signs and black circles are related to the real
parts of columns in A and HC-based Ã, respectively. We select four samples of SEPs,
including one HCP-SSP, one LCP-SSP, and two MSPs, denoted by the blue asterisks in
Figure 2. First, note that HCP-SSP1, which approaches one of steering vectors in A, can be
accurately identified, as one of columns in Ã, i.e., ãn1 in (14), is close to the ideal steering
vector. Unlike HCP-SSP1, LCP-SSP1 is located far from the ideal steering vectors, either due
to strong noise or weak source energy, although it falls within the range of SSPs. For this
LCP-SSP1, ãn1 and ãn2 in (14) are the two most relevant columns (the closest black circles) in
Ã, as indicated by the dotted lines in Figure 2. In this case, the values of C1 and C2 are both
greater than zero. In addition, MSP1 is a typical multi-source TF point; similar to LCP-SSP1,
its two bases in (14) correspond to the two black circles closest to it. Nevertheless, MSP2 is
a special MSP located very close to one of the black circles, resulting from the randomness
of noise and cluster distribution. According to the previous analysis, the C2 of MSP2 is
near zero, and MSP2 has a high probability of being erroneously identified as an SSP. Thus,
based on the above discussion, we can make the following remarks.

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Real part of Sx1
(t, f)
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Figure 2. 2D plot depicting real parts of the observed mixture TF vectors of the SEPs (denoted by gray
asterisks) in Ωsep with M = 2, N = 4, N0 = 10, T0 = 0.2, and SNR = 0 dB. The blue asterisks indicate
selected samples of MSP, HCP-SSP, and LCP-SSP, the red plus signs correspond to ideal steering
vectors of A, and the black circles are related to columns of Ã obtained using the k-means method).
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Remark 1 (HCP-SSP). The base ãn1 in (14) comes from the closest column in Ã, and C1 > 0. The
base ãn2 in (14) corresponds to the second closest black circle to HCP-SSP; as such, it can be another
column of Ã, and C2 ≈ 0.

Remark 2 (LCP-SSP). The two bases ãn1 and ãn2 in (14) correspond to the two black circles closest
to LCP-SSP; as such, they can be any two columns of Ã, and C1 ≥ C2 > 0.

Remark 3 (MSP). The two bases ãn1 and ãn2 in (14) correspond to the two black circles closest to
MSP; as such, they can be any two columns of Ã, and C1 ≥ C2 > 0. Occasionally, C2 ≈ 0.

In view of the above remarks, we propose using the ratio of C1 to C2 as the detection
criterion for HCP-SSPs:

Thcp =
C1

C2
=

〈
Sx(t, f ), ãn1

〉
〈

Sx(t, f )− ãn1 ã†
n1

Sx(t, f ), ãn2

〉 (18)

and identifying a set of HCP-SSPs by assigning a proper threshold βhcp, i.e.,

If Thcp(ãn1 , ãn2) > βhcp, then (t, f ) ∈ Ωhcp. (19)

All the SEPs in Ωsep that satisfy (19) would then be identified as HCP-SSPs and included in
the Ωhcp mentioned in (6).

Finally, we apply the k-means clustering method to classify the HCP-SSPs in Ωhcp
into N clusters; each steering vector of A is estimated by averaging all of the mixture TF
vectors belonging to the corresponding cluster, as explained earlier in (6). The proposed
HCP-SSP-MME method is summarized in Algorithm 1.

Algorithm 1 Proposed HCP-SSP-MME Method
Input: T0, and βhcp.

1: Detect a group of SEPs by (3), and obtain the set Ωsep;
2: Use the k-means clustering method to classify all the SEPs in Ωsep, and estimate an

initial dictionary Ã by (7);
3: For each SEP in Ωsep, compute Thcp by (18), where ãn1 and ãn2 are determined by (9)

and (16); Identify a group of HCP-SSPs by (19), and obtain the set Ωhcp;
4: Classify the HCP-SSPs in Ωhcp via k-means clustering; Each column of estimated Â is

computed by (6), and the number of retained clusters gives an estimated N̂.

Output: Estimated Â.

2.2. Source Separation with Sparse Recovery Model

Based on the estimated Â and N̂, we next delineate the process of source separation,
i.e., recovering s(t) in (1). Existing UBSS algorithms have demonstrated that investigating
the sparsity in different ways plays a significant role in separating observed mixtures,
which motivates us to exploit the sparsity of ASPs. As STFT is used to transform time
domain mixtures into the TF domain, the objective of the proposed ASTFS-UBSS algorithm
in the stage of source separation is to estimate TF vectors of each source, i.e., Ss(t, f ) in (2),
based on which the time domain sources s(t) can be recovered by inverse STFT (ISTFT) [52].
Note that there is no need to estimate Ss(t, f ) in the entire TF domain; we only deal with
ASPs where at least one active source exists, thereby relieving the computational burden.

Because STFT is free of cross-terms, ideal ASPs are essentially the TF points with
nonzero STFT values in the noiseless case. In actual situation, ASPs are detected by
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assigning an energy threshold in the STFT domain. Specifically, we can select a set of ASPs
by applying a noise thresholding procedure in the same way as (3):

if
∥Sx(t, f )∥

max
τ,v

{∥Sx(τ, v)∥} > T1, then (t, f ) ∈ Ωasp (20)

where T1 is a small threshold value (empirically T1 = 0.03) used to guarantee accurate
selection of ASPs. The difference from T0 in (3) should be noted; it is relatively larger than
T1, as the estimate of A prefers ASPs with strong energy. All the TF points which satisfy
the above criterion are included in the set Ωasp. It can be concluded that the different sets
obtained thus far satisfy the relationship: Ωasp ⊃ Ωsep ⊃ Ωhcp.

In the literature [18,41], the number of active sources Ntf at each ASP is generally
required to be less than or equal to the number of sensors, i.e., Ntf ≤ M (summarized in
Table 1). Clearly, this assumption significantly limits the application of UBSS, especially
when M = 2. Figure 3 illustrates the source TF amplitudes of a set of ASPs, which is a
standard sparse matrix with the rows corresponding to STFT amplitudes of N sources and
columns representing different ASPs in the STFT domain. Based on the ASPs from Figure 3,
we can make the following remarks.

Source 1

Source i

Source N

...
...

STFT amplitudes of auto-source TF points (ASPs)

Case 1 Case 2 Case 3

Figure 3. TF sparsity illustration of |Ss(t, f )| in (2) for different ASPs. Case 1: SSP with a dominant
source. Case 2: MSP with a limited number of sources. Case 3: MSP with N sources.

Remark 4 (Case 1). SSPs with dominant energy contributed by one single source. These SSPs are
randomly distributed in the STFT domain at either the TF-point level or the TF-zone level [53].

Remark 5 (Case 2). MSPs with energy mainly contributed by a limited number of sources, i.e.,
1 < Ntf < N. This kind of MSPs frequently emerges in a variety of applications (e.g., speech
signals) due to the randomness of the TF superposition.

Remark 6 (Case 3). MSPs with energy contributed by almost all N sources, i.e., Ntf ≈ N.
These MSPs rarely occur; however, they may be significant in certain applications, e.g., image and
multipath signals.

Based on the above cases, it is reasonable to assume that the energy at most of the
ASPs mainly comes from a limited number of sources, while allowing a handful of ASPs
where almost N sources are active. Therefore, we define the following assumption for the
proposed ASTFS-UBSS algorithm.
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Assumption 3. The majority of the ASPs detected in (20) belong to Case 1 and Case 2, i.e., only a
limited number of sources contribute their energy at these ASPs. Meanwhile, we allow the existence
of a minority of ASPs satisfying Case 3. Under these circumstances, the requirement on the number
of active sources Ntf relative to the number of sensors M at the ASPs can be greatly relaxed.

With Assumption 3, the 2D TF structure in Figure 3 would be a typical sparse matrix.
It is worth stressing that the constraints required by [18,41] in Table 1 are strictly imposed
on every ASP in order to guarantee the sparsity; however, in general there are always some
ASPs that do not meet these constraints, as analyzed in Figure 3. On the contrary, the
conditions in Assumption 3 are imposed on all the ASPs from an overall perspective; that
is, for a small number of ASPs where Ntf > M becomes feasible, as long as most of ASP
vectors are sparse we are still able to guarantee the sparse solvability of the 2D matrix.

In order to successfully recover the sources, these 2D sparse matrix data are treated by
vectorizing them to fit the compressed sensing model, i.e., a 1D sparse vector is formed
by connecting all the rows of the 2D matrix. The 1D vector generated in this way can be
recovered by implementing current sparse recovery tools. Therefore, the essence of the
proposed ASTFS-UBSS algorithm lies in its reformulation of the UBSS problem as a sparse
signal recovery problem involving estimating the STFT value matrix Ss(t, f ) in (2).

For convenience of derivation, the noise term is ignored for the ASPs in Ωasp; thus,
the expression in (2) degrades into

Sx(t, f ) = ÂSs(t, f ) = Â


S(1)

s (t, f )
...

S(N)
s (t, f )

, (t, f ) ∈ Ωasp. (21)

Letting Z and Y represent the combinations of Sx(t, f ) and Ss(t, f ) at all the ASPs in
Ωasp, respectively, we then obtain the following simplified expression:

Z = ÂY (22)

and 

ZM×Nasp =


S(1)

x (t1, f1) · · · S(1)
x (tNasp , fNasp)

S(2)
x (t1, f1) · · · S(2)

x (tNasp , fNasp)
...

. . .
...

S(M)
x (t1, f1) · · · S(M)

x (tNasp , fNasp)



YN×Nasp =


S(1)

s (t1, f1) · · · S(1)
s (tNasp , fNasp)

S(2)
s (t1, f1) · · · S(2)

s (tNasp , fNasp)
...

. . .
...

S(N)
s (t1, f1) · · · S(N)

s (tNasp , fNasp)

,

where Nasp is the number of ASPs in the set Ωasp. The M × Nasp matrix Z is composed
of observed mixtures in the STFT domain. The N × Nasp matrix Y is actually the sparse
structure illustrated in Figure 3, where Case 1 and Case 2 occur at most of the ASPs and Case
3 is relatively scarce, which guarantees the sparsity of Y.

As explained before, we can treat Z and Y by vectorizing them into two 1D vectors,
which is expressed as follows:

z =vec{Z} = vec
{

ÂY
}

=Ψvec{Y}
=Ψy (23)
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and 

Ψ = Â ⊗ INasp×Nasp =


∆11 ∆12 · · · ∆1N

∆21 ∆22 · · · ∆2N
...

...
. . .

...
∆M1 ∆M2 · · · ∆MN


z =

[
S(1)

x (t1, f1) · · · S(1)
x (tNasp , fNasp) S(2)

x (t1, f1)

· · · S(M)
x (t1, f1) · · · S(M)

x (tNasp , fNasp)
]T

y =

[
S(1)

s (t1, f1) · · · S(1)
s (tNasp , fNasp) S(2)

s (t1, f1)

· · · S(N)
s (t1, f1) · · · S(N)

s (tNasp , fNasp)
]T ,

where vec{·} means the vectorization operation that stacks the rows of the corresponding
matrix to form a long vector, ’⊗’ denotes the tensor (Kronecker) product, INasp×Nasp denotes
an Nasp × Nasp identity matrix, ∆mn, m = 1, . . . , M and n = 1, . . . , N, and denotes an
Nasp × Nasp diagonal matrix with its diagonal elements equal to âmn in Â.

The UBSS model in (23) is equivalent to a sparse signal recovery model, where Ψ ∈
RMNasp×NNasp (M < N) can be regarded as a basis or dictionary matrix and z ∈ RMNasp×1 is
the available measurement vector. The task of estimating STFT values can be accomplished
by recovering the underlying sparse vector y ∈ RNNasp×1. The indeterminacy of the
solution in (23) is eliminated using the sparse prior information of y. Unlike the commonly
used approach in which the dictionary matrix is randomly generated, the dictionary Ψ in
our work is a very sparse matrix formulated from the elements of the estimated Â.

When attempting to find sparse solutions in (23), the original approach is to solve the
following l0-norm minimization problem (P0):

(P0) : min ∥y∥0 s.t. z = Ψy (24)

where ∥ · ∥0 denotes the l0-norm operator. It is revealed that if y is sufficiently sparse, the
solution in (24) is equal to the solution of the l1-norm minimization problem (P1) [54]:

(P1) : min ∥y∥1 s.t. z = Ψy (25)

where ∥ · ∥1 denotes the l1-norm operator. Because the practical observation is always
contaminated by noise, the traditional equality constraint in (25) is relaxed by introducing a
noise-aware variant. Thus, our task of estimating the STFT values of the sources is realized
by solving the following optimization problem (P2):

(P2) : min
y

{
1
2
∥z − Ψy∥2

2 + λ∥y∥1

}
(26)

where λ ≥ 0 is a regularization parameter and its value governs the sparsity of the solution.
For the sparsity-regularized problem in (26), its solutions have been widely available

from the wealth of knowledge in the literature. It should be noted that although choosing
ASPs for source recovery reduces computational burden to an extent, the model in (23) is
still a large-scale underdetermined problem. Hence, we solve (26) by applying the spectral
projected gradient for l1 minimization (SPGL1) [55] due to its efficiency for large-scale
problem and its suitability for complex-valued domains. Finally, each time domain source
is recovered using ISTFT based on the estimated STFT values in y. The overall procedure
of the proposed ASTFS-UBSS algorithm is presented in Algorithm 2.
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Algorithm 2 The Proposed ASTFS-UBSS Algorithm
Input: N0, T0, T1, and βhcp.

1: Estimate the mixing matrix A by Algorithm 1;
2: Detect a set of ASPs by (20), and obtain the set Ωasp;
3: Establish the sparse recovery model by (23);
4: Reconstruct Ss(t, f ) by (26) via SPGL1;
5: Recover time domain s(t) via ISTFT.

Output: Recovered ŝ(t).

3. Experimental Results

In this section, we evaluate the proposed ASTFS-UBSS algorithm on synthetic data. We
consider a uniform linear array (ULA) with its sensors separated by a half-wavelength spacing,
and use M = 2 sensors; the estimation accuracies of the mixing matrix and separated sources
are both assessed via the normalized mean square error (NMSE). In addition, the quality
of the separated sources is measured by the evaluation criteria reported in [56], termed the
signal-to-distortion ratio (SDR). Time domain sources are simulated using speech signals
randomly chosen from the TIMIT Corpus [57], and different sources are overlapped in the
STFT domain. The duration of each source is 3 s, the sampling rate is 16 kHz, the window
length of STFT is 1024 samples, and the overlapping size is 256 samples.

In the following, we first demonstrate the influence of N0 and βhcp on the performance
of the proposed HCP-SSP-MME, and thereby determine the optimal parameter setting in
Algorithm 1. Second, various MME methods are compared and evaluated in terms of their
NMSE performance. Lastly, performance comparisons with different evaluation metrics are
presented to validate the effectiveness of our proposed ASTFS-UBSS in Algorithm 2.

3.1. Optimization of Parameter Settings

We separately discuss the optimal selection of N0 and βhcp for the mixing matrix A
generated in [18,21], where we assume that N = 4 sources come from different directions of
arrival (DOA). N0 is the first determined to achieve optimal estimation of Â. Figure 4 presents
the NMSE results of estimated Â under different SNR situations. It can be seen that the proposed
HCP-SSP-MSE achieves significant performance under both low and high SNRs. Figure 4 shows
that the proposed HCP-SSP-MME performs better when N0 reaches 6, then improves extremely
slightly with continuously increasing N0. Thus, we set N0 = 6 for MME, as a larger value of N0
leads to high computational complexity. Similar experiments were carried out to determine the
optimal threshold βhcp, as exhibited in Figure 5. It can be noted that the proposed HCP-SSP-
MME performs best when the value of βhcp equals 30. It was further verified that the above
settings are suitable for the cases involving different number of sources, e.g., N = 3 and N = 5.

Figure 4. NMSEs of estimated Â with M = 2, N = 4, and T0 = 0.2 under different SNR levels versus
different values of N0.



Electronics 2024, 13, 1227 14 of 19

Figure 5. NMSEs of estimated Â with M = 2, N = 4, and T0 = 0.2 under different SNR levels versus
different values of βhcp.

3.2. Evaluation of Mixing Matrix Estimation (MME)

We evaluated the estimation of the mixing matrix A generated using the approach from [18,21].
Each source was assigned a DOA randomly picked from the set {15◦, 30◦, 45◦, 60◦, 75◦}
over every trial. Table 2 shows the performance comparison of estimated Â in terms of
NMSE using ET-MME [18], ED-MME [21], and the proposed HCP-SSP-MME under differ-
ent noise scenarios. Clearly, the proposed HCP-SSP-MME method outperforms the others
within the SNR range from 0 dB to 20 dB. Compared with ET-MME, the superiority of our
method becomes more outstanding when SNR > 10 dB. This performance gain is attributed
to the detected HCP-SSP locations, which are more beneficial for clustering. Moreover,
ED-MME performs poorly, and its NMSE results fluctuate without regularity when SNR
changes. The reason for this lies in ED-MME requiring the number of sensors M > 2 at each
ASP in order to decompose the STFT energy into two parts. Hence, it is not suitable for
two-sensor arrays.

Table 2. Comparison of mixing matrix estimated via different methods.

N SNR (dB)
NMSEs of Â (dB)

ET-MME [18] ED-MME [21] HCP-SSP-MME

3
20 −34.6 −12.6 −44.9
10 −34.2 −13.6 −42.1
0 −32.5 −14.7 −34.5

4
20 −29.9 −10.3 −41.5
10 −29.2 −10.9 −38.9
0 −28.8 −11.0 −31.5

5
20 −21.2 −8.2 −37.4
10 −20.9 −9.1 −34.8
0 −20.6 −9.4 −28.7

The bold values indicate the best performance.

3.3. Evaluation of Source Separation

In this subsection, we evaluate the source recovery performance of the proposed
ASTFS-UBSS in Algorithm 2 in comparison to the UBSS algorithm in [18]. Similarly, we
separately analyze the separation of original sources utilizing the estimated mixing matrices.
The remaining parameters are set the same as in previous experiments.
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In addition to the gain obtained from the Â estimated by Algorithm 1, it is necessary
to validate the benefit from the proposed l1-norm sparse representation (L1-SR) in (26). To
achieve this, we only compare the second-stage source recovery performance of different al-
gorithms provided by the known ideal mixing matrix. The proposed L1-SR is implemented
in comparison with SP-SR [18] based on subspace projection. In Table 3, ‘SP-UBSSI ’ and
‘ASTFSI ’ mean that the SP-SR and L1-SR methods are respectively implemented to recover
sources with the known actual mixing matrix A. The results of ‘SP-UBSSI ’ and ‘ASTFSI ’
provide the performance comparison of the source recovery methods in terms of NMSE
and SDR. It can be clearly seen from Table 3 that ‘ASTFSI ’ outperforms ‘SP-UBSSI ’ under
different SNRs. Note that the performance of SP-SR is limited when N sources are highly
overlapped in the TF domain, which is due to the constraint that the number of active
sources at each ASP should be less than the number of sensors M. This sparse constraint is
relaxed by the sparse recovery model in (26); therefore, L1-SR has an obvious advantage
for separating sources when M = 2.

Table 3. Comparison of source separation via different methods.

N SNR (dB)
NMSE/SDR of ŝ (dB)

SP-UBSS [18] SP-UBSSI ASTFS ASTFSI

3
20 −5.8/4.2 −6.1/5.1 −8.1/7.8 −8.2/8.6
15 −5.6/3.8 −5.9/4.8 −7.9/7.6 −7.9/7.6
10 −5.6/4.2 −5.7/4.5 −7.4/7.0 −7.4/7.7

4
20 −4.5/1.9 −4.8/3.1 −5.9/5.0 6.0/5.0
15 −4.3/2.3 −4.6/2.9 −5.8/4.9 −5.8/4.9
10 −4.3/1.9 −4.5/2.6 −5.5/4.3 −5.6/4.4

5
20 −3.0/−1.9 −3.4/0.8 −4.3/2.1 −4.3/2.4
15 −2.9/−2.2 −3.1/0.6 −4.0/1.8 −4.1/2.2
10 −2.8/−2.2 −3.1/0.2 −3.8/1.3 −3.9/1.8

The bold values indicate the best performance.

We now evaluate the total separation performance of the proposed ASTFS-UBSS in
Algorithm 2 compared with SP-UBSS [18] in terms of NMSE and SDR. Table 3 shows the
overall separation performance of the above algorithms with different numbers of sources
under various levels of SNR by exploiting the mixing matrix. It can be seen intuitively that
all of the algorithms show a declining trend with the increase in the number of sources and
the decrease in SNR, as expected. The results show that the proposed ASTFS-UBSS achieves
superior performance over the others across different SNRs. In addition, the performance of
the proposed ASTFS-UBSS is close to that of the ideal ASTFSI , which verifies the accuracy
of mixing matrix estimation utilizing the proposed HCP-SSP-MME method. As analyzed
before, the overall performance improvement of our algorithm stems from the accurate
estimation of A as well as from the model proposed in (26), which can be seen from the
comparison among ASTFSI and SP-UBSSI .

3.4. Experiments with Real-Valued Mixing Matrices

The experiments above were all based on complex-valued mixing matrices. To further
demonstrate the effectiveness of the proposed algorithm, we conducted source recovery
experiments using real-valued mixing matrices and compared them with baseline models.
The real-valued mixing matrix is provided by [31]

A =

[
0.2588 0.8192 0.9962 0.7071 0.9962
-0.9659 -0.5736 0.0872 0.7071 0.0872

]
. (27)

The experimental results are presented in Table 4. Comparing the results presented in
Table 4 with those in Table 3 reveals a clear trend: the separation performance achieved
with real-valued mixing matrices consistently surpasses that attained with complex-valued
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mixing matrices across various scenarios involving different numbers of sources and differ-
ent signal-to-noise ratios. Notably, our proposed algorithm consistently outperforms the
baseline models under the settings involving real-valued mixing matrices. This observation
is in line with the trends observed in the experiments conducted with complex-valued
mixing matrices.

Table 4. Source separation with real-valued mixing matrices.

N SNR (dB)
NMSE/SDR of ŝ (dB)

SP-UBSS [18] SP-UBSSI ASTFS ASTFSI

3
20 −5.8/4.2 −6.8/6.0 −9.1/8.7 −9.1/8.8
15 −5.8/4.0 −6.7/5.9 −9.0/8.7 −9.0/8.7
10 −5.6/3.7 −6.7/5.8 −8.7/8.3 −8.8/8.4

4
20 −5.5/4.1 −5.6/4.2 −7.4/6.6 −7.4/6.6
15 −5.5/4.1 −5.6/4.2 −7.4/6.5 −7.4/6.6
10 −5.4/4.0 −5.5/4.1 −7.2/6.4 −7.2/6.4

5
20 −4.1/2.0 −4.1/2.0 −5.6/4.2 −5.6/4.4
15 −4.1/1.9 −4.1/2.0 −5.6/4.2 −5.6/4.4
10 −4.0/1.6 −4.0/1.8 −5.5/4.1 −5.5/4.1

The bold values indicate the best performance.

4. Conclusions

In this paper, the UBSS problem is addressed with a low-cost dual-sensor array under
the framework of sparse recovery. The contribution of the proposed ASTFS-UBSS algorithm
is twofold. First, an efficient MME method is designed to accurately locate HCP-SSPs,
which a have better clustering property, thereby significantly improving the mixing matrix
estimation accuracy. From the view of practical applications, the proposed HCP-SSP-MME
is verified to be effective for mixing matrices. Second, we build a novel sparse recovery
model by exploiting the TF sparsity of ASPs. Currently available sparse recovery tools can
be applied to obtain the sparse solution. More importantly, the sparse constraint is greatly
relaxed for active sources at ASPs, allowing more robust separation of N > 2 sources
when M = 2. Comparative results with state-of-the-art algorithms validate the above
contribution of the proposed ASTFS-UBSS algorithm and show its obvious advantage when
the number of sources increases. Notably, our proposed ASTFS-UBSS remains based on
the assumption of linear mixing of signals; however, various scenarios such as convolutive
mixing, nonlinear mixing, and similar instances present heightened complexities in blind
source separation tasks. Consequently, we will consider separation under more complex
scenarios in future work to enhance the applicability of our algorithm.
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Abbreviations
The following abbreviations are used in this manuscript:

BSS blind source separation
UBSS underdetermined blind source separation
TF time–frequency
ASP auto-source time–frequency point
SSP single-source time–frequency point
MSP multi-source time–frequency point
HCP-SSP high clustering property SSP
LCP-SSP low clustering property SSP
SEP strong energy TF point
MP matching pursuit
OMP orthogonal matching pursuit
MME mixing matrix estimation
CS compressed sensing
ICA independent component analysis
SCA sparse component analysis
SBCA sparse bounded component analysis
NME non-negative matrix estimation
ASTFS-UBSS auto-source TF sparsity-based UBSS algorithm
HCP-SSP-MME high clustering property SSP-based MME
STFT short-time Fourier transform
ISTFT inverse short-time Fourier transform
ULA uniform linear array
NMSE normalized mean square error
SDR signal-to-distortion ratio
DOA direction of arrival
L1-SR l1-norm sparse representation
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