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Abstract: This paper presents a new method for separating the mixed audio signals of simultaneous
speakers using Blind Source Separation (BSS). The separation of mixed signals is an important issue
today. In order to obtain more efficient and superior source estimation performance, a new algorithm
that solves the BSS problem with Multi-Objective Optimization (MOO) methods was developed in
this study. In this direction, we tested the application of two methods. Firstly, the Discrete Wavelet
Transform (DWT) was used to eliminate the limited aspects of the traditional methods used in
BSS and the small coefficients in the signals. Afterwards, the BSS process was optimized with the
multi-purpose Strength Pareto Evolutionary Algorithm 2 (SPEA2). Secondly, the Minkowski distance
method was proposed for distance measurement by using density information in the discrimination
of individuals with raw fitness values for the concept of Pareto dominance. With this proposed
method, the originals (original source signals) were estimated by separating the randomly mixed
male and two female speech signals. Simulation and experimental results proved that the efficiency
and performance of the proposed method can effectively solve BSS problems. In addition, the Pareto
front approximation performance of this method also confirmed that it is superior in the Inverted
Generational Distance (IGD) indicator.

Keywords: blind source separation; Multi-Objective Optimization; SPEA2; DWT; Minkowski distance

1. Introduction

Blind Source Separation (BSS) has become an important analysis tool to differentiate
signals from each other in subjects such as biomedical signal processing, image analysis
and control systems [1]. BSS is the estimation of source signals from a set of mixed signals
without knowledge of the source signals and their mixtures that make up this mixture [2].
Although single-objective and Multi-Objective Optimization (MOO) methods are used in
this estimation process, the performance of single-objective optimization methods has not
reached the desired level [3]. In BSS, efforts have been made to develop algorithms that
perform well in different mixing models in order to obtain satisfactory separation perfor-
mance [4]. Especially if there is noise in the source signals, the BSS process becomes much
more difficult, so it has become compulsory to develop new techniques and algorithms [5].

In BSS, which is also a single-objective optimization method, the estimation of the
source signals is provided by using the non-Gaussianity, sparsity and temporality properties
of the signals. In single-objective optimization, while trying to reach a solution based on
one of these features, the performance is increased by examining more than one feature
with the use of Multi-Objective Optimization [6,7]. The performance of MOO methods used
to separate mixed signals is often vital. Especially in biomedical signals, the accuracy of the
signals separated using MOO methods is confirmed by at least two objective functions [8,9].
Many optimization algorithms have been proposed to separate the mixed signals with
the BSS method. The mixed signals have been separated using the BSS method based on

Electronics 2023, 12, 4383. https://doi.org/10.3390/electronics12214383 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12214383
https://doi.org/10.3390/electronics12214383
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-7662-0674
https://doi.org/10.3390/electronics12214383
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12214383?type=check_update&version=1


Electronics 2023, 12, 4383 2 of 13

particle swarm optimization, but the convergence rate could not be brought to the desired
level [10]. By basing the BSS method on the whale optimization algorithm, the complex
parameter and convergence speed problem have been improved [11]. The artificial bee
colony algorithm [12] and the hybrid invasive weed/biogeography-based optimization
algorithm [13] have been actively applied to BSS problems. With the Multi-Objective
BSS method (MO-BSS) [14], the ECG signal has been separated from the noise, and the
performance rate of the algorithm in this area has subsequently been increased with the
developed MO-BSS [15] by applying preprocessing. Shi et al. [16] have proposed an
MOO algorithm using independent component analysis, and a different MOO algorithm
technique using principal component analysis has been proposed by Xu et al. [17]. A new
MOO method has been proposed for heart rate estimation, which is widely used in the
biomedical field [18]. These are popular BSS methods, each based on a different MOO
strategy. In addition to these studies, the Ensemble Empirical Mode Decomposition (EEMD)
method has also been frequently used in signal separation in recent years [19].

In this study, simultaneously mixed speech sounds were separated. These speech
sounds have been used as a guide in many areas that require analysis, such as communi-
cation, security, biomedical, control systems and intelligence. They are frequently used
in applications such as coding and decoding speech signals for communication, speech
sound recognition for security, disease diagnosis in biomedicine, speech disorders and
correction, sound command control systems in the field of control and word capture in the
field of intelligence. As a result of all these, we need to obtain the most original or closest-
to-the-original speech signals in order to make a correct analysis. During speech or sound
recording, noise interferes with signals due to many internal and external factors. Signals
need to be separated from noise or other sounds for necessary analysis studies [20]. Al-
though BSS operation is performed with SPEA2 in the method suggested by Pelegrina [14],
the contributions of the present work are as follows:

• Wavelet transform is applied to a Strength Pareto Evolutionary Algorithm 2 (SPEA2)-
based BSS algorithm. Signals are analyzed on the frequency axis and applied to MOO.
Thus, a performance increase was achieved in the separation of signals. With this
developed algorithm, Discrete Wavelet Transform (DWT) is applied to the signals,
and a suitable method for the analysis of non-stationary signals is obtained. Due to
these processes, although the data size is reduced, the calculation cost of the proposed
method also decreases [21].

• Contrary to the traditional method, the distance between the points is calculated by
the Minkowski distance in obtaining the Pareto curve. In the simulation results, it is
seen that the use of Minkowski distance has a positive effect on the results.

• The success rate has been proven with Inverted Generational Distance (IGD), Hy-
pervolume (HV) and Spread (∆ or SP) metrics, which are frequently used in the
performance measurement of optimization algorithms.

• Extensive simulations are performed to compare the proposed scheme with some re-
cent well-known BSS techniques in the literature, like EEMD. The proposed algorithm
is also compared with a classical MOO-BSS algorithm.

The remainder of this paper is organized as follows. In Section 2, an overview of
the BSS, MOO and SPEA2 algorithms is given. The proposed DWT approaches for BSS
with MOO are described in Section 3, and the performance is analyzed in Section 4. Some
concluding remarks are made in Section 5.

2. Materials and Methods
2.1. Blind Source Separation

BSS is defined as the estimation of each source signal by separating the mixed signals
from each other, without any information about either the source signals or how they are
mixed with each other. The aim here is to find statistically independent signals within
a given data set. In order to perform this operation, it is assumed that the sources are
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statistically independent of each other. According to these formulas, the mathematical
representation of the mixture of independent source signals is as follows [22,23].

x1
x2
...

xm

 =


a11
a21
...

am1

a12 . . .
a22 . . .

...
...

am2 . . .

a1n
a2n

...
amn




s1
s2
...

sn

 (1)

where x, a and s are the observed/mixed signal vectors, the mixing matrix and the source
signal vectors, respectively. Moreover, n and m indicate number of source signals and
number of observed signals, respectively. BSS algorithms aim to find source signals from
mixed signals. The BSS process is mathematically given by Equation (2) below:

y1
y2
...

yn

 =


w11
w21

...
wn1

w12 . . .
w22 . . .

...
...

wn2 . . .

w1m
w2m

...
wnm




x1
x2
...

xm

 (2)

where the vectors y and w are the estimated source signal vector and the mixing matrix,
respectively. It is generally assumed that the number of signals observed in BSS algorithms
is equal to the number of sources (m = n). In this case, w is approximately the inverse
of a [24].

2.2. Multi-Objective Optimization

Optimally designed MOO methods are used for successful separation of mixed signals.
By optimizing multiple objective functions at the same time, MOO generates solutions that
can improve one objective without worsening another. An MOO problem with k as the
number of objective functions can be expressed as follows:

min f (z) = [ f1(z), f2(z), . . . , fk(z)] (3)

subject to z ∈ Ω (4)

where k, Ω and z denote the number of objective functions, feasible solution space and
decision variables, respectively.

Ω = {z: gL(z) ≤ 0, hC(z) = 0, L = 1, 2, . . . , v; C = 1, 2, . . . , u} (5)

where gL and hC are inequality and equality constraints, respectively, while v and u are the
number of inequality and equality constraints, respectively. When there are at least two
objectives, for two solutions p and q, p dominates q if and only if p is not worse than z in
all objectives and better than q in at least one objective, if and only if

∀i : fi(p) ≤ fi(q) ∧ ∃i : fi(p) < fi(q) (6)

A solution z∗ ∈ Ω is defined as a Pareto optimal solution if a solution z 6= z∗ ∈ Ω does
not exist that dominates z∗ [25–28].

2.3. SPEA2 and Minkowski Distance

The Strength Pareto Evolutionary Algorithm (SPEA) was developed by Zitzler et al. [29],
which was then proposed as SPEA2 with necessary updates. The block diagram of this
method is shown in Figure 1.
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Figure 1. Block diagram of SPEA2 algorithm.

In the SPEA2 algorithm, density information of individuals is needed to evaluate
only dominant and non-dominant individuals. In Equation (7), the fitness function F(i) of
individuals is

F(i) = R(i) + D(i) (7)

where R(i) and D(i) represent the original fitness of the i-th individual and the density of
the i-th individual, respectively. The original conformity is expressed as

R(i) = ∑j∈Pt∪P∗t ,i≺j S(j) (8)

where Pt, P*
t and S(j) are the evolutionary population, external population and j-th individ-

ual’s strength value, respectively. This expression is mathematically defined as follows:

S(i) =
∣∣∣{j
∣∣∣j ∈ Pt ∪ P*

t ∧ j ≺ i
}∣∣∣ (9)

where S(i) defines the number of dominated solutions. In Equation (7), the density function
of individuals is defined as follows:

D(i) =
1

σ
k(M,T)
i + 2

(10)

where σ
k(M,T)
i represents the Minkowski distance between two individuals [30,31]. It is

suggested that the k-nearest neighbor method expression, which should be found, is ob-
tained by the Minkowski distance method. It is widely used, especially for the classification
of signals or finding optimal correlation. For the solutions we found, the normalization
distance measurement expression with the Minkowski method is as follows:

k(M, T) =
(
∑j

i=1|mi − ti|ς
) 1

ς (11)

M =
(
m1, m2, . . . , mj

)
and T =

(
t1, t2, . . . , tj

)
∈ Rj (12)

where M and T are multidimensional points. ς is an integer and specifies the distance
between two points of order ς [32,33].
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After calculating the fitness of all solutions, the selection operator chooses an above-
average solution, and standard steps are followed [29].

2.4. Objective Function Used in SPEA2

With the SPEA2 method, both objective functions are optimized simultaneously. The
first of the two objective functions used in separating speech signals in SPEA2 is the
function that handles the time-correlation properties of the signals. Optimization is pro-
vided by adapting this function to the minimization method. The aim here is to find the
optimal solution by using the temporal feature of the resources with the first objective
function (autocorrelation).

The second objective function is the l1-norm minimization method. This function is
designed to consider the sparseness of resources. With sparseness, the goal is to deal with
vectors where many elements are close to zero [14].

2.5. Ensemble Empirical Mode Decomposition (EEMD)

EEMD is a signal processing technique that has gained popularity in recent years due
to its ability to decompose non-linear and non-stationary signals into their Intrinsic Mode
Functions (IMFs). The basic function of EEMD is to generate multiple realizations of the
signal by adding white noise to the original signal. Each realization is then decomposed
using Empirical Mode Decomposition (EMD), which is a technique that extracts IMFs from
a signal by iteratively sifting the signal and its envelopes. The IMFs are functions that have
well-defined frequency ranges and represent the different scales of the signal.

The EMD process can be affected by noise and other artifacts, which can result in
inaccurate decomposition. The addition of white noise in EEMD helps to overcome this
problem by ensuring that each realization is different from the others, thus reducing the
impact of noise and other artifacts on the decomposition.

A residue Y(η) signal and the finite number of IMFs are decomposed as follows:

Y(η) =
$

∑
i=1

ϑi + ξ$ (13)

where Y(η) is the final decomposed result, ϑi is the i-th IMF and ξ$ is the residual com-
ponent, which is the remaining item after the original signal has been reduced by the
IMF [19,34–36].

2.6. Performance Metric

In order to quantitatively observe and evaluate the convergence of Multi-Objective
Optimization (MOO) algorithms, Inverted Generational Distance IGD, Hypervolume (HV)
and Spread (SP) methods are used as performance metrics [37]. Although each of the
indicators in these methods is different, they all meet at a common point for convergence,
spread and uniform distribution throughout the solution set [38].

2.6.1. Inverted Generational Distance

Let us assume that the IGD metric we use to measure the numerical performance of
the algorithm has a set of properly distributed solutions PT on the real Pareto front. PO is
the non-dominant set of solutions produced by the proposed method. The mean distance
from PT to PO in IGD is defined as follows [37,39]:

IGD(PT , PO) =
∑ν∈PT

dist(v, PO)

|PT |
(14)

where dist(v, PO) shows the minimum Euclidean distance between two points. The low
calculated IGD value indicates the closeness of the distance between PT and PO [40,41].
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2.6.2. Hypervolume

Hypervolume is one of the indicators that is frequently used in MOO algorithms and
has a high computational cost due to its complexity [38,42]. The hypervolume performance
metric is shown as follows:

HV = volume
(⋃|PO |

i=1
δi

)
(15)

where δi is termed the dominant hypervolume with respect to the reference point [40].

2.6.3. Spread

Spread measures the distribution and extent of the spread between solutions. Specif-
ically, it gives the average of the Euclidean distances of the neighboring Pareto optimal
solutions obtained as a result of the spread of solutions. When the distribution of Pareto op-
timal solutions is uniform, the spread is equal to zero. Spread is defined as follows [37,43]:

∆ =
∑M

m=1 de
m + ∑

|ϕ|
i=1

∣∣∣di − d
∣∣∣

∑M
m=1 de

m + |ϕ|d
(16)

where di, d and de
m denote the Euclidean distance between successive solutions, the mean

of the Euclidean distance (di) and the distance between the extreme solutions PO and PT ,
respectively [37].

3. Proposed Method

In signal separation applications, DWT can be used to separate features from time
series and create an appropriate classification model [44]. It is a powerful and widely used
signal processing tool for decomposing time-varying signals into frequency signals using
scaling factors [45–47]. In the proposed algorithm, the mixed signals are filtered with DWT,
and the Minkowski method is applied to measure the distance between two datasets on
the Pareto front in SPEA2.

If all scales of the signals and the entire time span are used, the calculated coefficients
will result in huge chunks of data. It becomes difficult to operate on all of these coefficients.
In order to overcome this difficulty, conversion is made with the DWT method at a certain
scale and position. The DWT method is expressed by Equation (17) [48] as follows:

DWT(b, c) = ∑
n∈Z

x[n]ψb,c[n] (17)

where x[n] DWT is the observed data, b is the scaling and c is the translation parameter. If
ψ is the main wavelet, it is defined as follows [49]:

ψb,c =
1√
b

ψ

(
n− c

b

)
(18)

In DWT, approximation
(

Aj
)

and detail
(

Dj
)

coefficients of the signals are obtained
with the help of low- and high-pass filters. The low- and high-pass filters are obtained with
the help of a filter array during the scaling and transformation of the wavelet function. By
increasing the conversion step, these processes continue until the desired separation level
and the frequency resolution is thus increased [50]. When signals are filtered, data are lost.
To minimize this loss, coefficients are determined to regain the original signal by using
low- and high-pass filters. The approximation coefficients at the j level Aj(n) and the detail
coefficients Dj(n) are defined as follows [49,51]:

Aj(n) = ∑
k

g(k− 2n)Aj−1(k), j = 1, 2, . . . , J (19)
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Dj(n) = ∑
k

h(k− 2n)Aj−1(k), j = 1, 2, . . . , J (20)

where g and h are low-pass and high-pass filters, respectively. In this study, the “db1”
wavelet type from Daubechies wavelets is used to decompose the mixed signals.

4. Experimental Results

In this study, the DWT-MO-BSS method, which we proposed for the separation of
mixed signals using the SPEA2 method, and the MO-BSS method have been compared
(both methods are evolutionary algorithms). As a result of examining the signals in the
frequency domain with the proposed method while they are in the time domain in MO-BSS,
the comparison of the method in terms of performance and working time has been reported.
In this study, male and female speech signals were randomly mixed and applied to the
DWT-MOBSS algorithm, and its performance was tested. For this purpose, to measure
the stability of the proposed algorithm, 50 Monte Carlo experiments were carried out by
changing the random mixing matrix at each signal separation step. Parameter values used
in the proposed SPEA2 simulation were population size 100, external set size 50, crossover
rate 50 and maximum number of iterations 60.

Figure 2 shows the original male and two female speech signals used, randomly
mixed forms of these three signals, and sample sizes of 4000 for the estimated source
signals separated as a result of the MO-BSS algorithm. The original sounds used are taken
from [52].

Electronics 2023, 12, x FOR PEER REVIEW 7 of 13 
 

 

𝐷 (𝑛) = ℎ(𝑘 − 2𝑛)𝐴 (𝑘), 𝑗 = 1,2, … , 𝐽 (20) 

where 𝑔 and ℎ are low-pass and high-pass filters, respectively. In this study, the “db1” 
wavelet type from Daubechies wavelets is used to decompose the mixed signals. 

4. Experimental Results 
In this study, the DWT-MO-BSS method, which we proposed for the separation of 

mixed signals using the SPEA2 method, and the MO-BSS method have been compared 
(both methods are evolutionary algorithms). As a result of examining the signals in the 
frequency domain with the proposed method while they are in the time domain in MO-
BSS, the comparison of the method in terms of performance and working time has been 
reported. In this study, male and female speech signals were randomly mixed and applied 
to the DWT-MOBSS algorithm, and its performance was tested. For this purpose, to meas-
ure the stability of the proposed algorithm, 50 Monte Carlo experiments were carried out 
by changing the random mixing matrix at each signal separation step. Parameter values 
used in the proposed SPEA2 simulation were population size 100, external set size 50, 
crossover rate 50 and maximum number of iterations 60. 

Figure 2 shows the original male and two female speech signals used, randomly 
mixed forms of these three signals, and sample sizes of 4000 for the estimated source sig-
nals separated as a result of the MO-BSS algorithm. The original sounds used are taken 
from [52]. 

 
Figure 2. Time-domain waveform of separated signals: (a) original signals, (b) mixture signals, and 
(c) estimated source signals. 

Figure 3 shows the spectrogram of the estimated source signals as a result of separa-
tion with the original, mixed and proposed DWT-MOBSS method in the frequency space 
of the signals. 

In this study, feature reduction was obtained by applying the DWT method, and an 
appropriate classification model was created. Signals subjected to the DWT method were 
decomposed into their components by multiplying with the main wavelet, and as a result, 
no loss was experienced in the signals. As a result, significant gains in computational cost 
were achieved. As a result of the application of DWT in the male and two female speech 
signals we used, since the approaches give the original signal and the details give low-
scale information, the approaches were separated into frequency coefficients with a low-
pass filter up to the desired level. BSS was performed by applying the new signals ob-
tained to the SPEA2 method. 

Am
pl

itu
de

Am
pl

itu
de

Am
pl

itu
de

Am
pl

itu
de

Am
pl

itu
de

Am
pl

itu
de

Am
pl

itu
de

Am
pl

itu
de

Am
pl

itu
de

Figure 2. Time-domain waveform of separated signals: (a) original signals, (b) mixture signals, and
(c) estimated source signals.

Figure 3 shows the spectrogram of the estimated source signals as a result of separation
with the original, mixed and proposed DWT-MOBSS method in the frequency space of
the signals.

In this study, feature reduction was obtained by applying the DWT method, and an
appropriate classification model was created. Signals subjected to the DWT method were
decomposed into their components by multiplying with the main wavelet, and as a result,
no loss was experienced in the signals. As a result, significant gains in computational cost
were achieved. As a result of the application of DWT in the male and two female speech
signals we used, since the approaches give the original signal and the details give low-scale
information, the approaches were separated into frequency coefficients with a low-pass
filter up to the desired level. BSS was performed by applying the new signals obtained to
the SPEA2 method.
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The SNR measure was used to evaluate the accuracy and success rates of the exper-
imental results, and analyses were made with IGD, HV and ∆ metrics to measure the
performance of the algorithm. The SNR measure is defined as follows:

SNRdB = 10log10

(
Ps

Pn

)
(21)

where Ps and Pn represent the signal and the noise, respectively [53].
Mixed speech signals were separated by the proposed method for sample sizes of 2000,

4000, 6000, 8000, 10,000, 12,000 and 14,000. Table 1 shows the SNR results of the proposed
method, EEMD with MO-BSS, for male and two female speech signals. As the table shows,
while increasing the sample size does not affect the separation performance in MO-BSS,
it increases the separation performance in EEMD and the proposed method. However, it
should not be forgotten that increasing the sample length increases the separation time.
Looking at the length of any sample in the table (8000), the proposed method separated all
sounds very successfully compared to other methods. Moreover, male voice separation
performance is the best of all three methods. This may be related to the frequency character-
istics and probability distributions of the male voice. According to the table, the proposed
method provided the best separation, followed by EEMD and MO-BSS. When the values in
the table are examined, it can be seen that the proposed method is highly successful in both
speech signals.

Table 1. SNR values of male and female voice signals according to different sample sizes.

Male First Female Second Female

Number of
Samples

MO-BSS
SNR (dB)

EEMD
SNR (dB)

Proposed
SNR (dB)

MO-BSS
SNR (dB)

EEMD
SNR (dB)

Proposed
SNR (dB)

MO-BSS
SNR (dB)

EEMD
SNR (dB)

Proposed
SNR (dB)

2000 26 32 46 21 26 42 22 27 40
4000 25 30 49 22 26 48 19 25 45
6000 22 31 52 20 28 48 20 30 44
8000 22 30 50 20 27 47 18 25 46

10,000 23 33 52 21 29 49 22 28 47
12,000 24 36 53 22 31 48 22 32 47
14,000 25 37 54 23 33 50 22 34 49

In addition, it is understood that the proposed method gives more stable results
compared to the sample sizes. As shown in Figure 4, the male voice is better separated
from the two female voice.
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It can be seen that the separated performance of MO-BSS is independent of the sample
length. Monte Carlo analysis was performed by running these graphical algorithms 50 times
with randomly selected mixing matrices [54]. Thus, the effect of different mixing matrices
can be seen more clearly.

Performance metrics for MO-BSS are given in Table 2, EEMD in Table 3 and the
proposed method in Table 4. The best, worst and average values of IGD, HV and SP
are provided in these tables. In both algorithms, metric values have been obtained by
running 50 times with sample sizes of 2000, 4000, 6000, 8000, 10,000, 12,000 and 14,000.
Minimizing the performance metric in IGD and SP and maximizing the performance metric
in HV shows the performance of the algorithm. According to the metrics, MO-BSS and
EEMD performed worse than the proposed method. When looking at the average IGD, it
increased with sample length. Similar rates can be seen in Tables 2–4. The different values
in some sample sizes are related to the mixture matrices. For the HV metric, an increase
was observed with sample length in all three tables. Increasing the sample length does not
cause a change in the SP metric.

Table 2. IGD, HV and SP metric values for the MO-BSS method.

IGD HV SP

Number of
Samples Best Worst Mean Best Worst Mean Best Worst Mean

2000 0.00018 0.02153 0.00745 0.81474 0.02654 0.24543 0.73533 1.53324 1.24331
4000 0.00010 0.05841 0.00728 0.79833 0.02454 0.25273 0.71847 1.39819 1.14876
6000 0.00011 0.06378 0.00815 0.71433 0.03145 0.23533 0.63436 1.77003 1.14249
8000 0.00012 0.03791 0.01286 0.83285 0.04756 0.36541 0.62858 1.37510 1.13523

10,000 0.00048 0.04254 0.01376 0.98453 0.02545 0.49364 0.73531 1.53716 1.16355
12,000 0.00569 0.04176 0.01586 0.92735 0.05837 0.55747 0.84896 1.54331 1.15968
14,000 0.00211 0.09356 0.01723 0.93527 0.05355 0.58373 0.84544 1.28489 1.16447
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Table 3. IGD, HV and SP metric values for the EEMD method.

IGD HV SP

Number of
Samples Best Worst Mean Best Worst Mean Best Worst Mean

2000 0.00021 0.01954 0.00635 0.82567 0.02524 0.25754 0.71643 1.52633 1.23755
4000 0.00011 0.04231 0.00672 0.79935 0.02012 0.26976 0.70243 1.38355 1.13908
6000 0.00010 0.05343 0.00764 0.73867 0.03002 0.24765 0.61865 1.74976 1.13523
8000 0.00023 0.03187 0.01177 0.87355 0.03564 0.38122 0.61067 1.39366 1.12894

10,000 0.00039 0.03784 0.01112 0.99245 0.01855 0.51345 0.71964 1.51544 1.15743
12,000 0.00424 0.03294 0.01497 0.93867 0.04086 0.59446 0.82966 1.51754 1.14764
14,000 0.00121 0.07034 0.01618 0.94903 0.04176 0.59853 0.83760 1.31456 1.15345

Table 4. IGD, HV and SP metric values of the proposed method.

IGD HV SP

Number of
Samples Best Worst Mean Best Worst Mean Best Worst Mean

2000 0.00056 0.01744 0.00416 0.93453 0.01287 0.35743 0.61932 1.49473 1.00663
4000 0.00035 0.03643 0.00534 0.94143 0.01708 0.30262 0.62084 1.71843 1.01541
6000 0.00037 0.03648 0.00312 0.98119 0.01155 0.38449 0.79453 1.50024 1.00853
8000 0.00024 0.03154 0.00316 0.99109 0.01145 0.41036 0.70343 1.68433 1.09728

10,000 0.00078 0.03987 0.00382 0.83470 0.01158 0.49353 0.72184 1.71207 1.09935
12,000 0.00086 0.03521 0.00524 0.87123 0.01532 0.54103 0.68353 1.68124 1.02964
14,000 0.00075 0.03911 0.00623 0.89238 0.01213 0.56292 0.69357 1.30754 1.04277

In the proposed method, although the processing load increased, a slight decrease in
the calculation cost could be observed (Table 5). When these time values are interpreted with
the increase in SNRs, it is clear that even the calculation cost for the proposed method is very
advantageous. Table 5 shows that EEMD is quite advantageous in terms of computational
cost. This is because EEMD can be considered a single-purpose optimization. It can be seen
that the calculation times of MO-BSS and the proposed method are quite close to each other.
The high calculation times for these methods are due to Multi-Objective Optimization. All
these experiments were performed on MATLAB® R2021b.

Table 5. Running times of algorithms according to different sample sizes.

Number of
Samples

MO-BSS Avg,
Time (s)

EEMD Avg,
Time (s)

Proposed Avg,
Time (s)

2000 5.74 1.14 5.21
4000 7.57 1.46 7.04
6000 8.36 1.93 7.83
8000 9.13 2.35 8.12

10,000 10.88 2.94 9.48
12,000 11.68 3.47 10.32
14,000 13.05 3.38 11.69

5. Conclusions

Multi-Objective Optimization methods are used efficiently to increase the performance
of blind resource allocation algorithms. This paper proposes both the DWT and the
Minkowski distance method to separate mixed signals with the SPEA2 algorithm. At
the same time, the proposed algorithm provides signal decomposition with two objective
functions working simultaneously. The proposed DWT-MOBSS method has been found to
be more efficient and advantageous when compared to the MO-BSS and EEMD algorithms.
When the SNRs of the DWT-MOBSS algorithm are examined, its superiority is clearly
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revealed and the performance of the algorithm is supported by the performance metrics.
Therefore, it can be used efficiently in BSS problems.
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