Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (55)

Search Parameters:
Keywords = biosafety risk assessment

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1644 KiB  
Brief Report
RNA-Seq Identification of Peanut Callus-Specific Promoters and Evaluation of Base-Editing Efficiency
by Lulu Xue, Han Liu, Huanhuan Zhao, Pengyu Qu, Xiaona Li, Xiaobo Wang, Bingyan Huang, Ziqi Sun, Suoyi Han, Xiaodong Dai, Wenzhao Dong, Lei Shi and Xinyou Zhang
Plants 2025, 14(15), 2290; https://doi.org/10.3390/plants14152290 - 25 Jul 2025
Viewed by 271
Abstract
Prolonged expression of gene-editing components in CRISPR-modified plants can interfere with phenotypic analysis of target traits, increase the risk of off-target mutations, and lead to unnecessary metabolic burden. To mitigate these issues in peanut (Arachis hypogaea L.), callus-specific promoters were screened to [...] Read more.
Prolonged expression of gene-editing components in CRISPR-modified plants can interfere with phenotypic analysis of target traits, increase the risk of off-target mutations, and lead to unnecessary metabolic burden. To mitigate these issues in peanut (Arachis hypogaea L.), callus-specific promoters were screened to restrict Cas9 expression to the callus stage, minimizing its activity in regenerated plants. In this study, six callus-specific genes in peanut were identified by mining RNA sequencing datasets and validating their expression profiles using quantitative reverse transcriptase PCR. The promoters of Arahy.H0FE8D, Arahy.WT3AEF, Arahy.I20Q6X, Arahy.ELJ55T, and Arahy.N9CMH4 were cloned and assessed for their expression activity. Beta-glucuronidase (GUS) histochemical staining confirmed that all five promoters were functional in peanut callus. Further investigation revealed their ability to drive cytosine base editing via a deaminase-nCas9 fusion protein, with all promoters successfully inducing precise base substitutions in peanut. Notably, PAh-H0FE8D, PAh-WT3AEF, PAh-ELJ55T, and PAh-N9CMH4 exhibited comparable or higher editing efficiencies than the commonly used cauliflower mosaic virus 35S promoter. These findings provide valuable tools for improving the biosafety of CRISPR-based genome editing in peanut breeding programs. Full article
(This article belongs to the Special Issue Advances in Oil Regulation in Seeds and Vegetative Tissues)
Show Figures

Figure 1

22 pages, 4591 KiB  
Article
Immunization with Inactivated Bacillus subtilis Spores Expressing TonB-Dependent Receptor (TBDR) Protects Against Multidrug-Resistant Acinetobacter baumannii Infection
by Amalia A. Saperi, Atiqah Hazan, Nurfatihah Zulkifli, Hai-Yen Lee, Nor-Aziyah MatRahim and Sazaly AbuBakar
Vaccines 2025, 13(6), 616; https://doi.org/10.3390/vaccines13060616 - 6 Jun 2025
Viewed by 644
Abstract
Background/Objectives: The emergence of multidrug-resistant Acinetobacter baumannii (MDR A. baumannii) as a leading cause of fatal hospital-acquired infections underscores the urgent need for effective vaccines. While oral vaccines using live Bacillus subtilis spores expressing A. baumannii TonB-dependent receptor (TBDR) show promise, biosafety [...] Read more.
Background/Objectives: The emergence of multidrug-resistant Acinetobacter baumannii (MDR A. baumannii) as a leading cause of fatal hospital-acquired infections underscores the urgent need for effective vaccines. While oral vaccines using live Bacillus subtilis spores expressing A. baumannii TonB-dependent receptor (TBDR) show promise, biosafety concerns regarding recombinant spore persistence necessitate alternative strategies. Here, we evaluated chemically inactivated B. subtilis spores displaying TBDR as a safer yet immunogenic vaccine candidate. Methods: Recombinant spores were inactivated using iron-ethanol sporicidal solution and administered to BALB/c mice (8–12 weeks old) to assess safety and immunogenicity. Toxicity was evaluated through clinical monitoring, serum biochemistry, and histopathology. Immune responses were characterized by T/B cell activation, IgG/IgA titers, and mucosal sIgA levels. Protective efficacy was determined by challenging immunized mice with MDR A. baumannii Ab35 and quantifying bacterial loads and examining tissue pathology. Results: The inactivated spores exhibited an excellent safety profile, with no adverse effects on clinical parameters, organ function, or tissue integrity. Immunization induced robust systemic and mucosal immunity, evidenced by elevated CD4+/CD8+ T cells, B cells, and antigen-specific IgG/IgA in serum and mucosal secretions. Following the challenge, vaccinated mice showed significantly reduced pulmonary bacterial burdens (>90% reduction), and preserved lung and spleen architecture compared to controls, which developed severe inflammation and tissue damage. Conclusions: These findings demonstrate that inactivated B. subtilis spores expressing TBDR are a safe, orally administrable vaccine platform that elicits protective immunity against MDR A. baumannii. By addressing biosafety concerns associated with live spores while maintaining efficacy, this approach represents a critical advance toward preventing high-risk nosocomial infections. Full article
(This article belongs to the Section Pathogens-Host Immune Boundaries)
Show Figures

Figure 1

18 pages, 2938 KiB  
Article
Foot-and-Mouth Disease Virus-like Particles Produced in E. coli as Potential Antigens for a Novel Vaccine
by Sang-Cheol Yu, In-Kyu Lee, Hyun-Seok Kong, Sung-Ho Shin, Sung-Yoon Hwang, Yu-Jin Ahn, Jong-Hyeon Park, Bong-Yoon Kim and Young-Cheon Song
Vet. Sci. 2025, 12(6), 539; https://doi.org/10.3390/vetsci12060539 - 2 Jun 2025
Viewed by 668
Abstract
Foot-and-mouth disease virus (FMDV) continues to pose a significant threat to livestock health and the global agricultural economy, particularly in endemic regions of Asia, Africa, and the Middle East. Current vaccines based on chemically inactivated FMDV present several challenges, including biosafety risks, high [...] Read more.
Foot-and-mouth disease virus (FMDV) continues to pose a significant threat to livestock health and the global agricultural economy, particularly in endemic regions of Asia, Africa, and the Middle East. Current vaccines based on chemically inactivated FMDV present several challenges, including biosafety risks, high production costs, and limited effectiveness against emerging viral variants. To overcome these limitations, we developed virus-like particle (VLP) vaccines targeting FMDV serotypes O, A, and Asia1 using a recombinant Escherichia coli expression system. The resulting VLPs self-assembled into 25–30 nm particles with native-like morphology and antigenic properties, as confirmed by transmission electron microscopy, SDS-PAGE, and Western blot analysis. Immunogenicity was evaluated in mice and pigs using ELISA and virus neutralization tests (VNT), and protective efficacy was assessed through viral challenge studies. All VLPs induced strong serotype-specific antibody responses, with ELISA PI values exceeding 50% and significantly increased VNT titers after booster immunization. In mice, PD50 values were 73.5 (A-type), 32.0 (O-type), and 55.7 (Asia1-type); in pigs, PD50 values reached 10.6 (O-type) and 22.6 (Asia1-type). Notably, the vaccines induced robust immune responses even at lower antigen doses, suggesting the feasibility of dose-sparing formulations. These findings demonstrate that FMDV VLPs produced in E. coli are highly immunogenic and capable of eliciting protective immunity, highlighting their promise as safe, scalable, and cost-effective alternatives to conventional inactivated FMD vaccines. Full article
Show Figures

Figure 1

40 pages, 1915 KiB  
Review
Environmental Applications of GM Microorganisms: Tiny Critters Posing Huge Challenges for Risk Assessment and Governance
by Michael F. Eckerstorfer, Marion Dolezel, Marianne Miklau, Anita Greiter, Andreas Heissenberger, Karen Kastenhofer, Freya Schulz, Kristin Hagen, Mathias Otto and Margret Engelhard
Int. J. Mol. Sci. 2025, 26(7), 3174; https://doi.org/10.3390/ijms26073174 - 29 Mar 2025
Cited by 2 | Viewed by 1511
Abstract
In recent years, the interest in developing genetically modified microorganisms (GMMs), including GMMs developed by genome editing, for use in the environment has significantly increased. However, the scientific knowledge on the ecology of such GMMs is severely limited. There is also little experience [...] Read more.
In recent years, the interest in developing genetically modified microorganisms (GMMs), including GMMs developed by genome editing, for use in the environment has significantly increased. However, the scientific knowledge on the ecology of such GMMs is severely limited. There is also little experience at the hands of regulators on how to evaluate the environmental safety of GMMs and on how to assess whether they provide sustainable alternatives to current (agricultural) production systems. This review analyzes two different GMM applications, GM microalgae for biofuel production and nitrogen-fixing GM soil bacteria for use as biofertilizers. We assess the challenges posed by such GMMs for regulatory environmental risk assessment (ERA) against the background of the GMO legislation existing in the European Union (EU). Based on our analysis, we present recommendations for ERA and the monitoring of GMM applications, and in particular for the improvement of the existing EU guidance. We also explore whether existing approaches for technology assessment can provide a framework for the broader assessment of GMM applications. To this end, we recommend developing and implementing an evidence-based sustainability analysis and other methods of technology assessment to support decision making and to address broader societal concerns linked to the use of GMM applications in the environment. Full article
(This article belongs to the Collection Feature Papers in Molecular Microbiology)
Show Figures

Figure 1

18 pages, 4088 KiB  
Article
Magnetic Nanoparticles in Agriculture: Unraveling the Impact of Nickel Ferrite Nanoparticles on Peanut Growth and Seed Nutritional Quality
by Yuying Tang, Taiming Zhang, Yuanbo Li, Quanlong Wang, Weichen Zhao, Muhammed Nadeem, Peng Zhang and Yukui Rui
Plants 2025, 14(7), 1011; https://doi.org/10.3390/plants14071011 - 24 Mar 2025
Viewed by 782
Abstract
Nanotechnology has been a source of innovation in various fields in recent years, and its application in agriculture has attracted much attention, particularly for its potential to enhance crop growth and optimize nutritional quality. This study systematically investigated the effects of nickel ferrite [...] Read more.
Nanotechnology has been a source of innovation in various fields in recent years, and its application in agriculture has attracted much attention, particularly for its potential to enhance crop growth and optimize nutritional quality. This study systematically investigated the effects of nickel ferrite nanoparticles (NiFe2O4 NPs) on peanut (Arachis hypogaea L.) growth, nutrient dynamics, and biochemical responses, highlighting their potential as sustainable alternatives to conventional fertilizers. The results showed that an optimum concentration of 50 mg/kg soil significantly improved photosynthetic efficiency, biomass accumulation, seed yield, and nutritional quality, with 1000 seed weight and total yield increasing by 12.3% and 15.6%, respectively. In addition, we hypothesized that NiFe2O4 NPs would activate the antioxidant system and increase plant resistance. According to the risk assessment, the target hazard quotient (THQ = 0.081) is well below the safety threshold of 1. These findings provide strong evidence for the application of NiFe2O4 NPs as next-generation nano-fertilizers, offering a dual advantage of improved agronomic performance and biosafety. However, further research is needed to optimize their application strategies and assess potential long-term environmental impacts. Full article
(This article belongs to the Section Plant Response to Abiotic Stress and Climate Change)
Show Figures

Figure 1

19 pages, 9007 KiB  
Article
Impact of Atmospheric Stability on Urban Bioaerosol Dispersion and Infection Risk: Insights from Coupled WRF–CFD Modeling
by Zhijian Liu, Chenglin Ye, Chenxing Hu, Zhijian Dong, Yuchen He, Li Chen, Zhixing Wang and Rui Rong
Sustainability 2025, 17(6), 2540; https://doi.org/10.3390/su17062540 - 13 Mar 2025
Viewed by 716
Abstract
The rapid pace of global urbanization has exacerbated the urban wind-heat environment, posing a severe threat to public health and sustainable urban development. This study explores the aerodynamic transport characteristics of bioaerosols in a local urban area of Beijing following an accidental bioaerosol [...] Read more.
The rapid pace of global urbanization has exacerbated the urban wind-heat environment, posing a severe threat to public health and sustainable urban development. This study explores the aerodynamic transport characteristics of bioaerosols in a local urban area of Beijing following an accidental bioaerosol release. By coupling the Weather Research and Forecasting (WRF) model with a Computational Fluid Dynamics (CFD) model, the research accounts for the temporality of urban airflow and atmospheric stability. A dose–response model was employed to assess the exposure risks to Beijing Institute of Technology personnel. The findings reveal substantial differences in flow fields and bioaerosol dispersion under varying atmospheric stability: the infection area ratio was 42.19% under unstable conditions and 37.5% under stable conditions. Infection risk was highest near the release source, decreasing with distance. Under the three stability conditions, the probability of infection is highest near the release source and decreases with increasing distance. Contaminants propagate more rapidly under unstable conditions, while stable conditions have a higher concentration of high-risk areas. Gender-based analysis indicated a higher infection probability for males due to elevated inhalation rates. This study elucidates the critical role of atmospheric stability in bioaerosol dispersion and provides a robust scientific foundation for biosafety planning, including early warning, mitigation, and emergency evacuation strategies. Full article
Show Figures

Figure 1

33 pages, 8711 KiB  
Review
A Comparison of Conserved Features in the Human Coronavirus Family Shows That Studies of Viruses Less Pathogenic than SARS-CoV-2, Such as HCoV-OC43, Are Good Model Systems for Elucidating Basic Mechanisms of Infection and Replication in Standard Laboratories
by Audrey L. Heffner and Tracey A. Rouault
Viruses 2025, 17(2), 256; https://doi.org/10.3390/v17020256 - 13 Feb 2025
Cited by 2 | Viewed by 1526
Abstract
In 2021, at the height of the COVID-19 pandemic, coronavirus research spiked, with over 83,000 original research articles related to the word “coronavirus” added to the online resource PubMed. Just 2 years later, in 2023, only 30,900 original research articles related to [...] Read more.
In 2021, at the height of the COVID-19 pandemic, coronavirus research spiked, with over 83,000 original research articles related to the word “coronavirus” added to the online resource PubMed. Just 2 years later, in 2023, only 30,900 original research articles related to the word “coronavirus” were added. While, irrefutably, the funding of coronavirus research drastically decreased, a possible explanation for the decrease in interest in coronavirus research is that projects on SARS-CoV-2, the causative agent of COVID-19, halted due to the challenge of establishing a good cellular or animal model system. Most laboratories do not have the capabilities to culture SARS-CoV-2 ‘in house’ as this requires a Biosafety Level (BSL) 3 laboratory. Until recently, BSL 2 laboratory research on endemic coronaviruses was arduous due to the low cytopathic effect in isolated cell culture infection models and the lack of means to quantify viral loads. The purpose of this review article is to compare the human coronaviruses and provide an assessment of the latest techniques that use the endemic coronaviruses—HCoV-229E, HCoV-OC43, HCoV-NL63, and HCoV-HKU1—as lower-biosafety-risk models for the more pathogenic coronaviruses—SARS-CoV-2, SARS-CoV, and MERS-CoV. Full article
Show Figures

Figure 1

10 pages, 194 KiB  
Article
Enhancing Healthcare Preparedness: Lessons from a Tabletop Exercise on Highly Pathogenic Avian Influenza (HPAI)
by Priya Dhagat, Joshua Coan, Ayanava Ganguly, Cole Puetz, David Silvestri and Syra Madad
Trop. Med. Infect. Dis. 2025, 10(2), 47; https://doi.org/10.3390/tropicalmed10020047 - 6 Feb 2025
Viewed by 2258
Abstract
Tabletop exercises offer a structured opportunity to assess strengths and potential gaps in preparedness and response plans in a safe learning environment. The New York City Health + Hospitals System-Wide Special Pathogens Program conducted an innovative and multidisciplinary tabletop exercise involving escalating scenarios [...] Read more.
Tabletop exercises offer a structured opportunity to assess strengths and potential gaps in preparedness and response plans in a safe learning environment. The New York City Health + Hospitals System-Wide Special Pathogens Program conducted an innovative and multidisciplinary tabletop exercise involving escalating scenarios of highly pathogenic avian influenza (HPAI) H5N1 in 2023. The goals were to assess patient screening processes for infectious diseases within healthcare facilities, infection prevention and control strategies, risk communication, and notification and involvement of public health stakeholders. Participants reflected on previous outbreak responses, discussed the importance of risk communication, and shared insights on tools and resources that would better support healthcare professionals in identifying and managing patients with HPAI/H5N1 infection. Key takeaways included establishing clear protocols for HPAI/H5N1 management, providing timely education to healthcare professionals, and assessing useful communication modalities. Methods: The exercise included escalating scenarios involving a single case of HPAI/H5N1 advancing to community transmission. Key participants spanned clinical departments, infection prevention and control, emergency management, and local public health stakeholders. Structured discussions targeted triggers for escalation, infection prevention strategies, and communication pathways. Results: Findings highlighted the need for tailored screening criteria, robust infection prevention protocols, clear communication strategies, and collaboration with public health authorities. Specific improvements included refining triage and isolation protocols, enhancing staff education, and leveraging syndromic surveillance systems. Conclusion: This exercise underscored the importance of proactive planning, multidisciplinary collaboration, and integration of biosafety measures to strengthen healthcare system resilience against HPAI/H5N1. Full article
(This article belongs to the Special Issue Emerging Viral Threats: Surveillance, Impact, and Mitigation)
15 pages, 2037 KiB  
Article
A Universal Multi-Epitope Vaccine Design Against Porcine Reproductive and Respiratory Syndrome Virus via Bioinformatics and Immunoinformatics Approaches
by Xinnuo Lei, Zhi Wu, Qi Feng, Wenfeng Jia, Jun Xie, Qingkang Zhou, Jinzhao Ban and Shanyuan Zhu
Vet. Sci. 2024, 11(12), 659; https://doi.org/10.3390/vetsci11120659 - 16 Dec 2024
Viewed by 2300
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) causes reproductive disorders in sows and severe pneumonia in piglets, alongside immunosuppressive effects on the host. It poses a significant global threat to the swine industry, with no effective control measures currently available due to its [...] Read more.
Porcine reproductive and respiratory syndrome virus (PRRSV) causes reproductive disorders in sows and severe pneumonia in piglets, alongside immunosuppressive effects on the host. It poses a significant global threat to the swine industry, with no effective control measures currently available due to its complex pathogenesis and high variability. Conventional inactivated and attenuated vaccines provide inadequate protection and carry biosafety risks. In this study, we designed a universal multi-epitope peptide vaccine against PRRSV using bioinformatics and immunoinformatics approaches to address these limitations. By selecting sequences from seven representative PRRSV strains, we predicted highly conserved and immunogenic T cell (Th and CTL) epitopes across all encoded proteins. These were rationally concatenated with reported B cell neutralizing epitopes into a multi-epitope vaccine construct. We performed comprehensive assessments of the construct’s physicochemical and biochemical properties, along with predictions and refinements of its secondary and tertiary structures. Molecular docking simulations with TLR2 and TLR4 revealed strong potential binding interactions. Immune simulations indicated that the multi-epitope vaccine could induce robust humoral and cellular immune responses. This study provides a scientific foundation for the development of safe and effective PRRSV subunit vaccines and offers new perspectives for designing vaccines against other viral diseases. Full article
(This article belongs to the Section Veterinary Microbiology, Parasitology and Immunology)
Show Figures

Figure 1

18 pages, 3661 KiB  
Article
Isolation and Characterization of a Bacteriophage with Potential for the Control of Multidrug-Resistant Salmonella Strains Encoding Virulence Factors Associated with the Promotion of Precancerous Lesions
by Luis Amarillas, Fedra Padilla-Lafarga, Rubén Gerardo León Chan, Jorge Padilla, Yadira Lugo-Melchor, Jesús Enrique López Avendaño, Luis Lightbourn-Rojas and Mitzi Estrada-Acosta
Viruses 2024, 16(11), 1711; https://doi.org/10.3390/v16111711 - 31 Oct 2024
Cited by 1 | Viewed by 2466
Abstract
Background: Antimicrobial-resistant bacteria represent a serious threat to public health. Among these bacteria, Salmonella is of high priority because of its morbidity levels and its ability to induce different types of cancer. Aim: This study aimed to identify Salmonella strains encoding genes linked [...] Read more.
Background: Antimicrobial-resistant bacteria represent a serious threat to public health. Among these bacteria, Salmonella is of high priority because of its morbidity levels and its ability to induce different types of cancer. Aim: This study aimed to identify Salmonella strains encoding genes linked to the promotion of precancerous lesions and to isolate a bacteriophage to evaluate its preclinical potential against these bacteria. Methodology: An epidemiological approach based on wastewater analysis was employed to isolate Salmonella strains and detect genes associated with the induction of precancerous lesions. Antimicrobial susceptibility was assessed by the disk diffusion method. A bacteriophage was isolated via the double agar technique, and its morphological characteristics, stability, host range, replication dynamics, and ability to control Salmonella under different conditions were evaluated. The bacteriophage genome was sequenced and analyzed using bioinformatics tools. Results: Thirty-seven Salmonella strains were isolated, seventeen of which contained the five genes associated with precancerous lesions’ induction. These strains exhibited resistance to multiple antimicrobials, including fluoroquinolones. A bacteriophage from the Autographiviridae family with lytic activity against 21 bacterial strains was isolated. This phage exhibited a 20 min replication cycle, releasing 52 ± 3 virions per infected cell. It demonstrated stability and efficacy in reducing the Salmonella concentration in simulated gastrointestinal conditions, and its genome lacked genes that represent a biosafety risk. Conclusion: This bacteriophage shows promising preclinical potential as a biotherapeutic agent against Salmonella. Full article
(This article belongs to the Section Bacterial Viruses)
Show Figures

Graphical abstract

12 pages, 983 KiB  
Article
The Incidence of Clinical Injuries among Undergraduate Dental Students: A Prevention Protocol
by Maria Antoniadou, Maria Chanioti, Asteropi Pantelaki, Antonios Parasyris, Evangelia Piperi and Christos Rahiotis
Hygiene 2024, 4(4), 423-434; https://doi.org/10.3390/hygiene4040031 - 2 Oct 2024
Cited by 1 | Viewed by 1767
Abstract
Dental students are frequently exposed to percutaneous injuries (PCIs) due to the nature of their clinical work, which involves sharp instruments and close patient contact. The COVID-19 pandemic further emphasized the need for stringent biosafety measures and the use of personal protective equipment [...] Read more.
Dental students are frequently exposed to percutaneous injuries (PCIs) due to the nature of their clinical work, which involves sharp instruments and close patient contact. The COVID-19 pandemic further emphasized the need for stringent biosafety measures and the use of personal protective equipment (PPE). Despite these precautions, injuries remain prevalent, highlighting the need for comprehensive education and training in biosafety and infection control. This study investigates the incidence and causes of injuries among undergraduate dental students during clinical sessions. This study was conducted at the Department of Dentistry, National and Kapodistrian University of Athens, focusing on injuries reported from 2021 to 2024. Data were collected through self-reported clinical records. The primary variables assessed included the type of injury, the instrument involved, the clinical procedure performed, and the immediate actions taken post-injury. Serological testing was conducted on students and patients to assess the risk of the transmission of bloodborne pathogens. The findings reveal a high prevalence of injuries, with needles being the most common cause (51.4%), followed by other tools such as dental probes (25.7%) and burs (8.6%). The most frequent injury type is piercing (74.2%), primarily affecting the fingers (88.6%). Periodontal treatments, restorative procedures, and endodontic treatments are the main activities leading to injuries, with 17.1% of injuries being caused by each. No statistically significant results are recorded. Despite regular medical records for most patients treated by injured students, serological testing shows significant positivity rates for HCV and HBV. Notably, most injured students demonstrate their commitment to safety by adhering to recommended post-exposure protocols, including wound cleaning, disinfecting, and serological testing. Furthermore, the impact of COVID-19 heightened the importance of personal protective equipment (PPE) and reinforced occupational health standards. Our study highlights the critical need for enhanced biosafety awareness and training among undergraduate dental students to reduce injury risks. Full article
Show Figures

Figure 1

16 pages, 1960 KiB  
Review
A Historical Study on the Scientific Attribution of Biosafety Risk Assessment in Real Cases of Laboratory-Acquired Infections
by Kunlan Zuo, Zongzhen Wu, Chihong Zhao and Huan Liu
Laboratories 2024, 1(2), 87-102; https://doi.org/10.3390/laboratories1020007 - 30 Jun 2024
Cited by 1 | Viewed by 4203
Abstract
This paper provides a comprehensive review of the history of laboratory-acquired infections (LAIs) from a scientific perspective on biosafety risks. It analyzes cases from the late 19th century to the 2020s, whereas the previous research on this topic has primarily focused on social [...] Read more.
This paper provides a comprehensive review of the history of laboratory-acquired infections (LAIs) from a scientific perspective on biosafety risks. It analyzes cases from the late 19th century to the 2020s, whereas the previous research on this topic has primarily focused on social factors. By combining real case studies, this study elucidates the mechanisms of LAI occurrence and development, compares the attribution of risks and mitigation measures, and establishes the scientific patterns of LAIs’ historical evolution. The details of LAI cases are compared to the biosafety risk assessment indices of the World Health Organization (WHO), the United States, and China. These real cases of LAI occurrence risks are now incorporated into biosafety standards and assessments in the modern era. Additionally, factors that pose potential risks of LAIs, even if they have not yet manifested, are also highlighted. Full article
Show Figures

Figure 1

15 pages, 3630 KiB  
Article
Copper-Nanoparticle-Induced Neurotoxic Effect and Oxidative Stress in the Early Developmental Stage of Zebrafish (Danio rerio)
by Na Liu, Luyao Tong, Kunjie Li, Qiuxia Dong and Jieying Jing
Molecules 2024, 29(11), 2414; https://doi.org/10.3390/molecules29112414 - 21 May 2024
Cited by 9 | Viewed by 2167
Abstract
Copper nanoparticles (CuNPs) are extensively used in electronics, cosmetics, fungicides, and various other fields due to their distinctive qualities. However, this widespread usage can contribute to environmental contamination and heightened health risks for living organisms. Despite their prevalent use, the ecological impacts and [...] Read more.
Copper nanoparticles (CuNPs) are extensively used in electronics, cosmetics, fungicides, and various other fields due to their distinctive qualities. However, this widespread usage can contribute to environmental contamination and heightened health risks for living organisms. Despite their prevalent use, the ecological impacts and biosafety of CuNPs remain inadequately understood. The present study aims to delve into the potential toxic effects of CuNPs on zebrafish (Danio rerio) embryos, focusing on multiple indexes such as embryonic development, neurotoxicity, oxidative stress, and inflammatory response. The results revealed a notable increase in the death rate and deformity rate, alongside varying degrees of decrease in hatching rate and heart rate following CuNPs exposure. Particularly, the frequency of spontaneous tail coiling significantly declined under exposure to CuNPs at concentrations of 500 µg/L. Furthermore, CuNPs exposure induced alterations in the transcriptional expression of GABA signaling pathway-related genes (gabra1, gad, abat, and gat1), indicating potential impacts on GABA synthesis, release, catabolism, recovery, and receptor binding. Additionally, CuNPs triggered oxidative stress, evidenced by disruption in superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) activities, along with elevated malondialdehyde (MDA) levels. This oxidative stress subsequently led to a proinflammatory cascade, as demonstrated by the increased transcriptional expression of inflammatory markers (il-1β, tnf-α, il-6, and il-8). Comparative analysis with copper ion (provided as CuCl2) exposure highlighted more significant changes in most indexes with CuCl2, indicating greater toxicity compared to CuNPs at equivalent concentrations. In conclusion, these findings provide valuable insights into the toxic effects of CuNPs on zebrafish embryo development and neurotransmitter conduction. Furthermore, they present technical methodologies for assessing environmental and health risks associated with CuNPs, contributing to a better understanding of their biosafety and ecological impact. Full article
Show Figures

Figure 1

21 pages, 2238 KiB  
Systematic Review
In Vitro Toxicological Insights from the Biomedical Applications of Iron Carbide Nanoparticles in Tumor Theranostics: A Systematic Review and Meta-Analysis
by Maria Antoniou, Georgia Melagraki, Iseult Lynch and Antreas Afantitis
Nanomaterials 2024, 14(9), 734; https://doi.org/10.3390/nano14090734 - 23 Apr 2024
Cited by 3 | Viewed by 2669
Abstract
(1) Background: Despite the encouraging indications regarding the suitability (biocompatibility) of iron carbide nanoparticles (ICNPs) in various biomedical applications, the published evidence of their biosafety is dispersed and relatively sparse. The present review synthesizes the existing nanotoxicological data from in vitro studies relevant [...] Read more.
(1) Background: Despite the encouraging indications regarding the suitability (biocompatibility) of iron carbide nanoparticles (ICNPs) in various biomedical applications, the published evidence of their biosafety is dispersed and relatively sparse. The present review synthesizes the existing nanotoxicological data from in vitro studies relevant to the diagnosis and treatment of cancer. (2) Methods: A systematic review was performed in electronic databases (PubMed, Scopus, and Wiley Online Library) on December 2023, searching for toxicity assessments of ICNPs of different sizes, coatings, and surface modifications investigated in immortalized human and murine cell lines. The risk of bias in the studies was assessed using the ToxRTool for in vitro studies. (3) Results: Among the selected studies (n = 22), cell viability emerged as the most frequently assessed cellular-level toxicity endpoint. The results of the meta-analysis showed that cell models treated with ICNPs had a reduced cell viability (SMD = −2.531; 95% CI: −2.959 to −2.109) compared to untreated samples. A subgroup analysis was performed due to the high magnitude of heterogeneity (I2 = 77.1%), revealing that ICNP concentration and conjugated ligands are the factors that largely influence toxicity (p < 0.001). (4) Conclusions: A dose-dependent cytotoxicity of ICNP exposure was observed, regardless of the health status of the cell, tested organism, and NP size. Inconsistent reporting of ICNP physicochemical properties was noted, which hinders comparability among the studies. A comprehensive exploration of the available in vivo studies is required in future research to assess the safety of ICNPs’ use in bioimaging and cancer treatment. Full article
Show Figures

Figure 1

13 pages, 833 KiB  
Article
Bio-Risk Management Systems: Biosafety Assessment in COVID-19 Referral Hospitals in Indonesia
by Windri Handayani, Anom Bowolaksono, Fatma Lestari, Abdul Kadir, Saraswati Andani Satyawardhani, Duta Liana, Alyssa Zahwa Ananda and Saravanan Gunaratnam
Safety 2024, 10(2), 36; https://doi.org/10.3390/safety10020036 - 8 Apr 2024
Viewed by 2281
Abstract
Numerous hospital laboratories in Indonesia need to implement improved bio-risk management (BRM) systems. There are many potential biohazards in laboratory activities that can impact health and the environment, leading to laboratory incidents. To minimize the impact and occurrence of such incidents, it is [...] Read more.
Numerous hospital laboratories in Indonesia need to implement improved bio-risk management (BRM) systems. There are many potential biohazards in laboratory activities that can impact health and the environment, leading to laboratory incidents. To minimize the impact and occurrence of such incidents, it is necessary to evaluate the implementation of BRM in every hospital laboratory that uses biological agents. This study was conducted in eight COVID-19 reference hospitals in Indonesia in the regions of Sumatra, Kalimantan, and Java, which have committed to implementing BRM systems in their laboratory activities. This research employed a descriptive study design and quantitative methods, with the aim of analyzing and evaluating the implementation of BRM systems in laboratories by assessing the achievements and gap analysis obtained from each laboratory. This research utilized primary data in the form of checklist forms referencing ISO 35001:2019 for the laboratory BRM system. Then, the assessments were based on virtual interviews conducted by the researcher with laboratory personnel as the primary data. The evaluation conducted on gap analysis from the seven clauses in ISO 35001:2019 across all hospitals revealed large gaps, particularly in three clauses: leadership, support, and performance. However, the aspects concerning organization, improvement, and performance evaluation were relatively satisfactory. Hence, there is a need for further improvement in leadership, support, and performance evaluation clauses. Additionally, it is essential to highlight the importance of comprehensive performance assessment, including proactive audits and continuous enhancements to achieve optimal bio-risk management. Full article
Show Figures

Figure 1

Back to TopTop