Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (93)

Search Parameters:
Keywords = bioremediation of oil-contaminated soil

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1794 KiB  
Article
Biodegradability of Heavy Oil Using Soil and Water Microbial Consortia Under Aerobic and Anaerobic Conditions
by Shakir Ali, Isha and Young-Cheol Chang
Processes 2025, 13(7), 2057; https://doi.org/10.3390/pr13072057 - 28 Jun 2025
Viewed by 460
Abstract
Heavy oil, due to its complex hydrocarbon structure and resistance to degradation, poses significant environmental challenges. There is a lack of knowledge about the biodegradability of heavy oil in the natural environment under aerobic and anaerobic conditions. In this study, we used microbial [...] Read more.
Heavy oil, due to its complex hydrocarbon structure and resistance to degradation, poses significant environmental challenges. There is a lack of knowledge about the biodegradability of heavy oil in the natural environment under aerobic and anaerobic conditions. In this study, we used microbial communities of water and soil samples to investigate the biodegradation of heavy oil. Gas chromatography (GC) analysis was used to measure residual oil. Under aerobic conditions, soil-derived microorganisms demonstrated significantly higher degradation efficiency—achieving up to 80.3% removal—compared to water-derived samples, which showed a maximum degradation of 52.1%. Anaerobic conditions, on the other hand, clearly slowed down degradation; the maximum degradation rates in water and soil samples were 43.7% and 11.1%, respectively. Although no clear linear relationship was found, the correlation between initial microbial populations and degradation performance revealed that higher counts of heterotrophic and oil-degrading bacteria generally enhanced biodegradation. Under anaerobic conditions, especially, persistent hydrocarbon peaks in both environments suggest the presence of recalcitrant heavy oil fractions such as polycyclic aromatic hydrocarbons. In conclusion, this study emphasizes the crucial roles microbial sources and oxygen availability play in maximizing bioremediation techniques for environments contaminated with heavy oil. Full article
Show Figures

Graphical abstract

18 pages, 2435 KiB  
Article
Sustainable Remediation Using Hydrocarbonoclastic Bacteria for Diesel-Range Hydrocarbon Contamination in Soil: Experimental and In Silico Evaluation
by Fernanda Espinosa-López, Karen Pelcastre-Guzmán, Anabelle Cerón-Nava, Alicia Rivera-Noriega, Marco A. Loza-Mejía and Alejandro Islas-García
Sustainability 2025, 17(12), 5535; https://doi.org/10.3390/su17125535 - 16 Jun 2025
Viewed by 617
Abstract
The increasing global oil consumption has led to significant soil contamination by hydrocarbons, notably diesel-range hydrocarbons. Soil bioremediation through bacterial bioaugmentation is an alternative to increase the degradation of organic pollutants such as petroleum products. Bioremediation is a sustainable practice that contributes to [...] Read more.
The increasing global oil consumption has led to significant soil contamination by hydrocarbons, notably diesel-range hydrocarbons. Soil bioremediation through bacterial bioaugmentation is an alternative to increase the degradation of organic pollutants such as petroleum products. Bioremediation is a sustainable practice that contributes to the Sustainable Development Goals (SDGs) because it is environmentally friendly, reduces the impact of human activities, and avoids the use of invasive and destructive methods in soil restoration. This study examines the bioremediation potential of hydrocarbonoclastic bacteria isolated from soil close to areas with a risk of spills due to pipelines carrying hydrocarbons. Among the isolated strains, Arthrobacter globiformis, Pantoea agglomerans, and Nitratireductor soli exhibited hydrocarbonoclast activity, achieving diesel removal of up to 90% in short-chain alkanes and up to 60% in long-chain hydrocarbons. The results from in silico studies, which included molecular docking and molecular dynamics simulations, suggest that the diesel removal activity can be explained by the bioavailability of the linear alkanes and their affinity for alkane monooxygenase AlkB present in the studied microorganisms, since long-chain hydrocarbons had lower enzyme affinity and lower aqueous solubility. The correlation of the experimental results with the computational analysis allows for greater insight into the processes involved in the microbial degradation of hydrocarbons with varying chain lengths. Furthermore, this methodology establishes a cost-effective approximation tool for the evaluation of the feasibility of using different microorganisms in bioremediation processes. Full article
Show Figures

Graphical abstract

15 pages, 1588 KiB  
Article
Bacterial Community Dynamics in Oil-Contaminated Soils in the Hyper-Arid Arava Valley
by Varsik Martirosyan, Ilan Stavi, Tirza Doniger, Itaii Applebaum, Chen Sherman, May Levi and Yosef Steinberger
Agronomy 2025, 15(5), 1198; https://doi.org/10.3390/agronomy15051198 - 15 May 2025
Cited by 1 | Viewed by 535
Abstract
Petroleum pollution has become a substantial challenge in soil ecology. The soil bacterial consortia play a major role in the biodegradation of petroleum hydrocarbons. The main objective of this study was to assess changes in bacterial composition and diversity in oil-contaminated dryland soils. [...] Read more.
Petroleum pollution has become a substantial challenge in soil ecology. The soil bacterial consortia play a major role in the biodegradation of petroleum hydrocarbons. The main objective of this study was to assess changes in bacterial composition and diversity in oil-contaminated dryland soils. The Illumina MiSeq high-throughput sequencing technique was used to study the bacterial diversity and structural change in hyper-arid oil-contaminated soil in the Arava Valley of Israel. The diversity and abundance of soil bacteria declined significantly following oil pollution. The dominant phyla in the petroleum-contaminated soils were Proteobacteria (~33% higher vs. control soil) and Patescibacteria (~2.5% higher vs. control soil), which are oil-associated and hydrocarbon-degrading bacteria. An opposite trend was found for the Actinobacteria (~8%), Chloroflexi (12%), Gemmatimonadetes (3%), and Planctomycetes (2%) phyla, with the lower abundances in contaminated soil vs. control soil. Investigation of long-term contaminated sites revealed significant genus-level taxonomic restructuring in soil bacterial communities. The most evident changes were observed in Mycobacterium, Alkanindiges, and uncultured bacterium-145, which showed marked abundance shifts between spill and control soils across decades. Particularly, hydrocarbon-degrading genera such as Pseudoxanthomonas demonstrated persistent dominance in contaminated sites. While some genera (e.g., Frigoribacterium, Leifsonia) declined over time, others—particularly Nocardioides and Streptomyces—exhibited substantial increases by 2014, suggesting potential ecological succession or adaptive selection. Minor but consistent changes were also detected in stress-tolerant genera like Blastococcus and Quadrisphaera. The effect of oil contamination on species diversity was greater at the 1975 site compared to the 2014 site. These patterns highlight the dynamic response of bacterial communities to chronic contamination, with implications for bioremediation and ecosystem recovery. The study results provide new insights into oil contamination-induced changes in soil bacterial community and may assist in designing appropriate biodegradation strategies to alleviate the impacts of oil contamination in drylands. Full article
Show Figures

Figure 1

24 pages, 1419 KiB  
Review
Soil Remediation: Current Approaches and Emerging Bio-Based Trends
by Micaela Santos, Sofia Rebola and Dmitry V. Evtuguin
Soil Syst. 2025, 9(2), 35; https://doi.org/10.3390/soilsystems9020035 - 17 Apr 2025
Cited by 1 | Viewed by 2625
Abstract
Currently, increasing anthropogenic pressure and overexploitation expose soils to various forms of degradation, including contamination, erosion, and sealing. Soil contamination, primarily caused by industrial processes, agricultural practices (such as the use of pesticides and fertilizers), and improper waste disposal, poses significant risks to [...] Read more.
Currently, increasing anthropogenic pressure and overexploitation expose soils to various forms of degradation, including contamination, erosion, and sealing. Soil contamination, primarily caused by industrial processes, agricultural practices (such as the use of pesticides and fertilizers), and improper waste disposal, poses significant risks to human health, biodiversity, and the environment. Common contaminants include heavy metals, mineral oils, petroleum-based hydrocarbons, aromatic hydrocarbons, chlorinated hydrocarbons, and polycyclic aromatic hydrocarbons. Remediation methods for contaminated soils include physical, physicochemical, chemical or biological approaches. This review aims to specify these methods while comparing their effectiveness and applicability in different contamination scenarios. Biochemical methods, particularly phytoremediation, are emphasized for their sustainability, effectiveness, and suitability in arid and semiarid regions. These methods preserve soil quality and promote resource efficiency, waste reduction, and bioenergy production, aligning with sustainability principles and contributing to a circular economy. The integrated phytoremediation–bioenergy approaches reviewed provide sustainable and cost-efficient strategies for environmental decontamination and green development. Special attention is given to the use of lignin in bioremediation. This work contributes to the existing knowledge by outlining priorities for the selection of the most appropriate remediation techniques under diverse environmental conditions, providing a comprehensive overview for future developments. Full article
(This article belongs to the Special Issue Soil Bioremediation)
Show Figures

Figure 1

25 pages, 5341 KiB  
Article
Natural Hydrocarbon-Contaminated Springs as a Reservoir of Microorganisms Useful for Bioremediation: Isolation and Multilevel Analysis of Hydrocarbonoclastic Bacteria from the Agri Valley (Southern Italy)
by Cristina Cavone, Pamela Monaco, Francesca Fantasma, Pietro Rizzo, Chiara Tarracchini, Silvia Petraro, Marco Ventura, Christian Milani, Fulvio Celico, Gino Naclerio and Antonio Bucci
Sustainability 2025, 17(7), 3083; https://doi.org/10.3390/su17073083 - 31 Mar 2025
Viewed by 572
Abstract
This research aimed to characterise hydrocarbonoclastic bacteria isolated from naturally hydrocarbon-contaminated springs and the surrounding soils in the Agri Valley (Southern Italy) and to assess the effectiveness of bioaugmentation using a four-strain microbial consortium for removing hydrocarbons from artificially diesel-contaminated lake waters in [...] Read more.
This research aimed to characterise hydrocarbonoclastic bacteria isolated from naturally hydrocarbon-contaminated springs and the surrounding soils in the Agri Valley (Southern Italy) and to assess the effectiveness of bioaugmentation using a four-strain microbial consortium for removing hydrocarbons from artificially diesel-contaminated lake waters in mesocosm experiments. Four novel bacterial strains were selected for the experimentation: Gordonia amicalis S2S5, Rhodococcus erythropolis S2W2, Acinetobacter tibetensis S2S8, and Acinetobacter puyangensis S1W1. The four isolates can use diesel oil as their sole carbon source, and some exhibited a relatively high emulsifying capacity and ability to adhere to hydrocarbons. Furthermore, genome analyses revealed the presence of genes associated with the degradation, detoxification, and transport of various contaminants. Mesocosm experiments demonstrated that the bioaugmentation enhanced the capacities of the native lake microbial communities to remove hydrocarbons, although drastic changes in their composition (analysed through Next-Generation Sequencing—NGS) were observed. Taken together, these results suggest that naturally contaminated environments can serve as a valuable reservoir of microorganisms with significant biotechnological potential, particularly in the field of bioremediation. However, a complete understanding of the ability of the isolated bacterial strains to efficiently degrade contaminants requires further research to fully assess their capabilities and limitations across different settings. Full article
(This article belongs to the Section Pollution Prevention, Mitigation and Sustainability)
Show Figures

Figure 1

18 pages, 1445 KiB  
Article
Antibiotic Resistance and Virulence Determinants of Pseudomonas aeruginosa Isolates Cultured from Hydrocarbon-Contaminated Environmental Samples
by Chioma Lilian Ozoaduche, Balázs Libisch, Daniel Itoro, Iyore Blessing Idemudia, Katalin Posta and Ferenc Olasz
Microorganisms 2025, 13(3), 688; https://doi.org/10.3390/microorganisms13030688 - 19 Mar 2025
Cited by 2 | Viewed by 943
Abstract
Crude oil and its derivates are among the most important environmental pollutants, where P. aeruginosa strains producing AlkB1 and AlkB2 alkane hydroxylases are often involved in their biodegradation. The aim of this study was to analyze antibiotic resistance and virulence determinants of a [...] Read more.
Crude oil and its derivates are among the most important environmental pollutants, where P. aeruginosa strains producing AlkB1 and AlkB2 alkane hydroxylases are often involved in their biodegradation. The aim of this study was to analyze antibiotic resistance and virulence determinants of a P. aeruginosa isolate cultured from a hydrocarbon-contaminated soil sample from Ogoniland, Nigeria, and to compare its characteristics with P. aeruginosa isolates cultured worldwide from hydrocarbon-contaminated environments or from clinical samples. Using the ResFinder reference database, a catB7 chloramphenicol acetyltransferase gene, an ampC-type PDC β-lactamase gene, and an OXA-50 type β-lactamase gene were identified in all P. aeruginosa strains analyzed in this study. In some of these P. aeruginosa strains, loss-of-function mutations were detected in the regulatory genes mexR, nalC, or nalD, predicting an efflux-mediated acquired antibiotic-resistance mechanism. Several P. aeruginosa sequence types that were associated with oil-contaminated environments have also been cultured from human clinical samples worldwide, including sequence types ST532, ST267, ST244, and ST1503. Our findings also indicate that environmental P. aeruginosa may serve as the source of human infections, warranting further studies from a One Health perspective about the application of P. aeruginosa for the in situ bioremediation of hydrocarbon-contaminated sites. Full article
(This article belongs to the Special Issue Bacterial Antibiotic Resistance, Second Edition)
Show Figures

Figure 1

15 pages, 5169 KiB  
Article
Phytoremediation of Oil-Contaminated Soil by Tagetes erecta L. Combined with Biochar and Microbial Agent
by Xin Fang, Pufan Zheng, Haomin Wang, Kefan Wang, Cong Shi and Fuchen Shi
Plants 2025, 14(2), 243; https://doi.org/10.3390/plants14020243 - 16 Jan 2025
Cited by 2 | Viewed by 1140
Abstract
Crude oil pollution of soil is an important issue that has serious effects on both the environment and human health. Phytoremediation is a promising approach to cleaning up oil-contaminated soil. In order to facilitate phytoremediation effects for oil-contaminated soil, this study set up [...] Read more.
Crude oil pollution of soil is an important issue that has serious effects on both the environment and human health. Phytoremediation is a promising approach to cleaning up oil-contaminated soil. In order to facilitate phytoremediation effects for oil-contaminated soil, this study set up a pot experiment to explore the co-application potentiality of Tagetes erecta L. with two other methods: microbial agent and biochar. Results showed that the greatest total petroleum hydrocarbon (TPH) biodegradation (76.60%) occurred in the soil treated with T. erecta, a microbial agent, and biochar; the highest biomass and root activity also occurred in this treatment.GC-MS analysis showed that petroleum hydrocarbon components in the range from C10 to C40 all reduced in different treatments, and intermediate-chain alkanes were preferred by our bioremediation methods. Compared with the treatments with biochar, the chlorophyll fluorescence parameter NPQ_Lss and plant antioxidant enzyme activities significantly decreased in the treatments applied with the microbial agent, while soil enzyme activities, especially oxidoreductase activities, significantly increased. Although the correlation between biochar and most plant growth and soil enzyme activity indicators was not significant in this study, the interaction effect analysis found a synergistic effect between microbial agents and biochar. Overall, this study suggests the co-addition of microbial agents and biochar as an excellent method to improve the phytoremediation effects of oil-contaminated soil and enhances our understanding of the inner mechanism. Full article
(This article belongs to the Section Plant–Soil Interactions)
Show Figures

Figure 1

23 pages, 2211 KiB  
Review
Bioremediation Potential of Sunflower-Derived Biosurfactants: A Bibliometric Description
by Wesley Araújo Passos, Meirielly Jesus, Fernando Mata, Millena Souza Menezes, Pablo Omar Lubarino dos Santos, Brenda Lohanny P. Santos, Hortência E. P. Santana, Denise Santos Ruzene and Daniel Pereira Silva
Sustainability 2025, 17(1), 330; https://doi.org/10.3390/su17010330 - 4 Jan 2025
Cited by 1 | Viewed by 1695
Abstract
Biosurfactants are amphiphilic molecules capable of reducing the surface tension of water and forming emulsions between immiscible liquids. These versatile molecules find applications in different industrial sectors, standing out in environmental applications, such as the bioremediation agents of contaminated environments. Bioremediation is an [...] Read more.
Biosurfactants are amphiphilic molecules capable of reducing the surface tension of water and forming emulsions between immiscible liquids. These versatile molecules find applications in different industrial sectors, standing out in environmental applications, such as the bioremediation agents of contaminated environments. Bioremediation is an emerging sustainable method of controlling the degradation of waste. The present study carried out a bibliometric analysis, reviewing all research published in the SCOPUS database up to 2023, focused on producing biosurfactants from sunflowers with applications in this sustainable method of waste degradation. Using sunflowers to produce biosurfactants proved an ecological, sustainable, and economical alternative to conventional substrates. The results showed that only the seed husks, the oil derived from the seed, and the sunflower stems were used to produce biosurfactants, emphasizing oil as the most used raw material, probably due to its rich linoleic acid content. The preliminary selection detected only 12 articles that addressed the subject under analysis. According to these studies, the tested biosurfactants showed high potential for application in sustainable environmental bioremediation processes and were able to decontaminate soil, water, and liquid effluents. The bibliometric analysis was performed with the VOSviewer software to evaluate the quality of the publications and, above all, to show a more comprehensive scenario of the subject based on the following bibliometric indicators: the most productive journals, publications by country, the most cited articles, the most recurrent keywords, and most productive institutions. These insights will undoubtedly help scientists to develop new and sustainable practices of waste degradation and contribute to bioremediation research using biosurfactants from sunflowers. By showcasing the environmental benefits and practicality of sunflower-derived biosurfactants, this study contributes to the broader discourse on sustainable bioremediation, fostering innovative and eco-friendly waste management solutions. Full article
Show Figures

Figure 1

17 pages, 3930 KiB  
Article
Impact of Soil Type and Moisture Content on Microwave-Assisted Remediation of Hydrocarbon-Contaminated Soil
by Jun Xu, Songtao Liu and Chuanmin Chen
Sustainability 2025, 17(1), 101; https://doi.org/10.3390/su17010101 - 27 Dec 2024
Cited by 1 | Viewed by 1016
Abstract
Volatile and semi-volatile compounds, such as petroleum hydrocarbons and equipment lubricating oils, often contaminate soil due to accidents, posing significant ecological and health risks. Traditional soil remediation methods, such as thermal desorption and bioremediation, are time-consuming and resource-intensive, prompting researchers to explore more [...] Read more.
Volatile and semi-volatile compounds, such as petroleum hydrocarbons and equipment lubricating oils, often contaminate soil due to accidents, posing significant ecological and health risks. Traditional soil remediation methods, such as thermal desorption and bioremediation, are time-consuming and resource-intensive, prompting researchers to explore more efficient alternatives. This study investigates the effectiveness of an in situ reactor for microwave-assisted soil remediation, specifically focusing on the impact of soil type and moisture content on pollutant removal efficiency. The reactor, designed to operate within a modified household microwave oven, provides direct microwave irradiation to the soil surface, enabling precise control of heating conditions. Experiments were conducted using soil samples of varying particle sizes and moisture levels under standardized conditions (1000 W microwave power, 2.45 GHz frequency). The results show that moisture content plays a critical role in pollutant removal efficiency, with an optimal moisture content of 10 wt % enhancing microwave absorption and energy transfer, thus improving pollutant recovery. In comparison with traditional resistive heating, microwave heating achieved a faster temperature rise and higher final temperatures, significantly improving pollutant removal efficiency in a shorter time frame. This study highlights the advantages of microwave heating, including its superior energy efficiency, faster pollutant volatilization, and the potential for optimized soil remediation in real-world applications. These findings provide valuable insights for the development of more sustainable and efficient soil remediation technologies. Full article
Show Figures

Figure 1

25 pages, 2187 KiB  
Article
Effect of Herbicide-Resistant Oil-Degrading Bacteria on Plants in Soil Contaminated with Oil and Herbicides
by Tatyana Korshunova, Elena Kuzina, Svetlana Mukhamatdyarova, Milyausha Iskuzhina, Liliya Kulbaeva and Svetlana Petrova
Plants 2024, 13(24), 3560; https://doi.org/10.3390/plants13243560 - 20 Dec 2024
Cited by 1 | Viewed by 891
Abstract
Biological remediation of agricultural soils contaminated with oil is complicated by the presence of residual amounts of chemical plant protection products, in particular, herbicides, which, like oil, negatively affect the soil microbiome and plants. In this work, we studied five strains of bacteria [...] Read more.
Biological remediation of agricultural soils contaminated with oil is complicated by the presence of residual amounts of chemical plant protection products, in particular, herbicides, which, like oil, negatively affect the soil microbiome and plants. In this work, we studied five strains of bacteria of the genera Pseudomonas and Acinetobacter, which exhibited a high degree of oil biodegradation (72–96%). All strains showed resistance to herbicides based on 2,4-D, imazethapyr and tribenuron-methyl, the ability to fix nitrogen, phosphate mobilization, and production of indole-3-acetic acid. The presence of pollutants affected the growth-stimulating properties of bacteria in different ways. The most promising strain P. citronellolis N2 was used alone and together with oat and lupine plants for soil remediation of oil, including herbicide-treated oil-contaminated soil. Combined contamination was more toxic to plants and soil microorganisms. Bacterization stimulated the formation of chlorophyll and suppressed the synthesis of abscisic acid and malonic dialdehyde in plant tissues. The combined use of bacteria and oat plants most effectively reduced the content of hydrocarbons in the soil (including in the presence of herbicides). The results obtained can be used to develop new methods for bioremediation of soils with polychemical pollution. Full article
(This article belongs to the Special Issue Role of Microbial Plant Biostimulants in Abiotic Stress Mitigation)
Show Figures

Figure 1

26 pages, 2267 KiB  
Article
Exploring Novel Fungal–Bacterial Consortia for Enhanced Petroleum Hydrocarbon Degradation
by João Paulo Silva Monteiro, André Felipe da Silva, Rubens Tadeu Delgado Duarte and Admir José Giachini
Toxics 2024, 12(12), 913; https://doi.org/10.3390/toxics12120913 - 17 Dec 2024
Cited by 2 | Viewed by 1931
Abstract
Bioremediation, involving the strategic use of microorganisms, has proven to be a cost-effective alternative for restoring areas impacted by persistent contaminants such as polycyclic aromatic hydrocarbons (PAHs). In this context, the aim of this study was to explore hydrocarbon-degrading microbial consortia by prospecting [...] Read more.
Bioremediation, involving the strategic use of microorganisms, has proven to be a cost-effective alternative for restoring areas impacted by persistent contaminants such as polycyclic aromatic hydrocarbons (PAHs). In this context, the aim of this study was to explore hydrocarbon-degrading microbial consortia by prospecting native species from soils contaminated with blends of diesel and biodiesel (20% biodiesel/80% diesel). After enrichment in a minimal medium containing diesel oil as the sole carbon source and based on 16S rRNA, Calmodulin and β-tubulin gene sequencing, seven fungi and 12 bacteria were identified. The drop collapse test indicated that all fungal and four bacterial strains were capable of producing biosurfactants with a surface tension reduction of ≥20%. Quantitative analysis of extracellular laccase production revealed superior enzyme activity among the bacterial strains, particularly for Stenotrophomonas maltophilia P05R11. Following antagonistic testing, four compatible consortia were formulated. The degradation analysis of PAHs and TPH (C5–C40) present in diesel oil revealed a significantly higher degradation capacity for the consortia compared to isolated strains. The best results were observed for a mixed bacterial-fungal consortium, composed of Trichoderma koningiopsis P05R2, Serratia marcescens P10R19 and Burkholderia cepacia P05R9, with a degradation spectrum of ≥91% for all eleven PAHs analyzed, removing 93.61% of total PAHs, and 93.52% of TPH (C5–C40). Furthermore, this study presents the first report of T. koningiopsis as a candidate for bioremediation of petroleum hydrocarbons. Full article
(This article belongs to the Section Toxicity Reduction and Environmental Remediation)
Show Figures

Graphical abstract

18 pages, 1659 KiB  
Article
Bioremediation of Oil-Contaminated Soils Using Biosurfactants Produced by Bacteria of the Genus Nocardiopsis sp.
by Liliya Biktasheva, Alexander Gordeev, Arina Usova, Anastasia Kirichenko, Polina Kuryntseva and Svetlana Selivanovskaya
Microbiol. Res. 2024, 15(4), 2575-2592; https://doi.org/10.3390/microbiolres15040171 - 9 Dec 2024
Cited by 3 | Viewed by 1818
Abstract
One of the effective and safe methods of soil cleanup from oil pollution is bioremediation by introducing microorganisms or their metabolites. In this study, the effect of biosurfactants produced by Nocardiopsis sp. 3mo on the rate of bioremediation of oil-contaminated soils was assessed. [...] Read more.
One of the effective and safe methods of soil cleanup from oil pollution is bioremediation by introducing microorganisms or their metabolites. In this study, the effect of biosurfactants produced by Nocardiopsis sp. 3mo on the rate of bioremediation of oil-contaminated soils was assessed. Biosurfactants were introduced into soils contaminated with 2% oil at a concentration of 0.05 and 0.1%, and the degree of hydrocarbon degradation was estimated within 63 days. It was found that the studied biosurfactant belonged to the glycopeptide type. The aeration and irrigation of oil-contaminated soil (PSA) resulted in a 5% decrease in the number of hydrocarbons. The introduction of biosurfactants into oil-contaminated soil at a concentration of 0.5 (BS(0.5)) and 1 g kg−1 (BS(1)) resulted in a 29 and 35% decrease in the content of hydrocarbons, respectively. The state of the soil microbiome was assessed by its metabolic activity. Thus, the respiratory activity of microorganisms on the first day after contamination increases by 5–7 times, and urease activity by 3–4 times. The introduction of oil into the soil during the first day reduces the activity of dehydrogenase by 2.3–1.6 times. In the process of bioremediation, the indicators of microbial activity returned to values close to the original. Thus, it was established that the use of biosurfactants produced by Nocardiopsis sp. 3mo increases the ability of the native soil community to degrade hydrocarbons. Full article
Show Figures

Figure 1

15 pages, 3085 KiB  
Article
Biodegradation of Crude Oil and Aniline by Heavy Metal-Tolerant Strain Rhodococcus sp. DH-2
by Zetian Luo, Jiajun Ma, Lei Huang, Dahui Li, Guohui Gao, Yihe Zhao, Agostinho Antunes and Meitong Li
Microorganisms 2024, 12(11), 2293; https://doi.org/10.3390/microorganisms12112293 - 12 Nov 2024
Viewed by 1275
Abstract
Aniline and crude oil are common environmental pollutants that present a significant risk to both the ecological and human health environments. The implementation of efficacious bioremediation strategies is imperative for the elimination of these contaminants. In this study, a bacterial strain designated DH-2 [...] Read more.
Aniline and crude oil are common environmental pollutants that present a significant risk to both the ecological and human health environments. The implementation of efficacious bioremediation strategies is imperative for the elimination of these contaminants. In this study, a bacterial strain designated DH-2 was isolated from soil contaminated with aniline. The strain was identified as belonging to the genus Rhodococcus. The optimal conditions for the growth and aniline degradation by strain DH-2 were determined to be pH 8.0 and 35 °C, respectively. Under these conditions, the degradation rate of aniline at a concentration of 1000 mg/L exceeded 90% within 36 h. Even in the presence of 4% NaCl, the degradation rate remained above 60%. HPLC–MS analysis revealed that the aniline degradation pathway of strain DH-2 follows the catechol pathway. Additionally, strain DH-2 is capable of utilizing crude oil as the sole carbon source, achieving a degradation rate of 91.0% for 2% crude oil concentration within 4 days. In soil modeling experiments, strain DH-2 was observed to degrade aniline and crude oil under triple stress conditions, including 1000 mg/L aniline, 2% crude oil, and 20 mg/L Fe(II) or Pb(II). Complete degradation of aniline and crude oil was achieved after 3 days and 12 days, respectively. The addition of Fe(II) or Pb(II) ions was found to enhance the degradation ability of DH-2. These results demonstrate that strain DH-2 is an extremely effective biodegradable strain, with potential applications in the remediation of environments contaminated with aniline and crude oil, even in the presence of heavy metals. Full article
Show Figures

Figure 1

18 pages, 3522 KiB  
Article
Crude Oil Biodegradation by a Biosurfactant-Producing Bacterial Consortium in High-Salinity Soil
by Weiwei Chen, Jiawei Sun, Renping Ji, Jun Min, Luyao Wang, Jiawen Zhang, Hongjin Qiao and Shiwei Cheng
J. Mar. Sci. Eng. 2024, 12(11), 2033; https://doi.org/10.3390/jmse12112033 - 10 Nov 2024
Cited by 1 | Viewed by 2314
Abstract
Bioremediation is a promising strategy to remove crude oil contaminants. However, limited studies explored the potential of bacterial consortia on crude oil biodegradation in high salinity soil. In this study, four halotolerant strains (Pseudoxanthomonas sp. S1-2, Bacillus sp. S2-A, Dietzia sp. CN-3, [...] Read more.
Bioremediation is a promising strategy to remove crude oil contaminants. However, limited studies explored the potential of bacterial consortia on crude oil biodegradation in high salinity soil. In this study, four halotolerant strains (Pseudoxanthomonas sp. S1-2, Bacillus sp. S2-A, Dietzia sp. CN-3, and Acinetobacter sp. HC8-3S), with strong environmental tolerance (temperature, pH, and salinity), distinctive crude oil degradation, and beneficial biosurfactant production, were combined to construct a bacterial consortium. The inoculation of the consortium successfully degraded 97.1% of total petroleum hydrocarbons in 10 days, with notable removal of alkanes, cycloalkanes, branched alkanes, and aromatic hydrocarbons. Functional optimization showed that this consortium degraded crude oil effectively in a broad range of temperature (20–37 °C), pH (6–9), and salinity (0–100 g/L). In salt-enriched crude-oil-contaminated soil microcosms, the simultaneous treatment of bioaugmentation and biostimulation achieved the highest crude oil degradation rate of 568.6 mg/kg/d, compared to treatments involving abiotic factors, natural attenuation, biostimulation, and bioaugmentation after 60 days. Real-time PCR targeting the 16S rRNA and alkB genes showed the good adaptability and stability of this consortium. The degradation property of the constructed bacterial consortium and the engineered consortium strategy may have potential use in the bioremediation of crude oil pollution in high-salinity soil. Full article
(This article belongs to the Section Marine Environmental Science)
Show Figures

Figure 1

27 pages, 2689 KiB  
Review
Novel Approach of Tackling Wax Deposition Problems in Pipeline Using Enzymatic Degradation Process: Challenges and Potential Solutions
by Shazleen Saadon, Raja Noor Zaliha Raja Abd Rahman, Nor Hafizah Ahmad Kamarudin, Sara Shahruddin, Siti Rohaida Mohd Shafian, Norhidayah Ahmad Wazir and Mohd Shukuri Mohamad Ali
Processes 2024, 12(10), 2074; https://doi.org/10.3390/pr12102074 - 25 Sep 2024
Cited by 2 | Viewed by 1926
Abstract
Anthropogenic activities have led to hydrocarbon spills, and while traditional bioremediation methods are costly and time-consuming, recent research has focused on engineered enzymes for managing pollutant. The potential of enzymes for resolving wax flow problems in the petroleum industry remains unexplored. This paper [...] Read more.
Anthropogenic activities have led to hydrocarbon spills, and while traditional bioremediation methods are costly and time-consuming, recent research has focused on engineered enzymes for managing pollutant. The potential of enzymes for resolving wax flow problems in the petroleum industry remains unexplored. This paper offers a comprehensive review of the current state of research activities related to the bioremediation of petroleum-polluted sites and the biodegradation of specific petroleum hydrocarbons. The assayed enzymes that took part in the degradation were discussed in detail. Lipase, laccase, alkane hydroxylase, alcohol dehydrogenase, esterase, AlkB homologs and cytochrome P450 monooxygenase are among the enzymes responsible for the degradation of more than 50% of the hydrocarbons in contaminated soil and wastewater and found to be active on carbon C8 to C40. The possible biodegradation mechanism of petroleum hydrocarbons was also elucidated. The enzymes’ primary metabolic pathways include terminal, subterminal, and ω-oxidation. Next, given the successful evidence of the hydrocarbon treatment efficiency, the authors analyzed the opportunity for the enzymatic degradation approach if it were to be applied to a different scenario: managing wax deposition in petroleum-production lines. With properties such as high transformation efficiency and high specificity, enzymes can be utilized for the treatment of viscous heavy oil for transportability, evidenced by the 20 to 99% removal of hydrocarbons. The challenges associated with the new approach are also discussed. The production cost of enzymes, the characteristics of hydrocarbons and the operating conditions of the production line may affect the biocatalysis reaction to some extent. However, the challenges can be overcome by the usage of extremophilic enzymes. The combination of technological advancement and deployment strategies such as the immobilization of a consortium of highly thermophilic and halotolerant enzymes is suggested. Recovering and reusing enzymes offers an excellent strategy to improve the economics of the technology. This paper provides insights into the opportunity for the enzymatic degradation approach to be expanded for wax deposition problems in pipelines. Full article
(This article belongs to the Special Issue Application of Enzymes in Sustainable Biocatalysis)
Show Figures

Figure 1

Back to TopTop