Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (187)

Search Parameters:
Keywords = biopolymer production technologies

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 4467 KiB  
Review
Structuring the Future of Cultured Meat: Hybrid Gel-Based Scaffolds for Edibility and Functionality
by Sun Mi Zo, Ankur Sood, So Yeon Won, Soon Mo Choi and Sung Soo Han
Gels 2025, 11(8), 610; https://doi.org/10.3390/gels11080610 - 3 Aug 2025
Viewed by 304
Abstract
Cultured meat is emerging as a sustainable alternative to conventional animal agriculture, with scaffolds playing a central role in supporting cellular attachment, growth, and tissue maturation. This review focuses on the development of gel-based hybrid biomaterials that meet the dual requirements of biocompatibility [...] Read more.
Cultured meat is emerging as a sustainable alternative to conventional animal agriculture, with scaffolds playing a central role in supporting cellular attachment, growth, and tissue maturation. This review focuses on the development of gel-based hybrid biomaterials that meet the dual requirements of biocompatibility and food safety. We explore recent advances in the use of naturally derived gel-forming polymers such as gelatin, chitosan, cellulose, alginate, and plant-based proteins as the structural backbone for edible scaffolds. Particular attention is given to the integration of food-grade functional additives into hydrogel-based scaffolds. These include nanocellulose, dietary fibers, modified starches, polyphenols, and enzymatic crosslinkers such as transglutaminase, which enhance mechanical stability, rheological properties, and cell-guidance capabilities. Rather than focusing on fabrication methods or individual case studies, this review emphasizes the material-centric design strategies for building scalable, printable, and digestible gel scaffolds suitable for cultured meat production. By systemically evaluating the role of each component in structural reinforcement and biological interaction, this work provides a comprehensive frame work for designing next-generation edible scaffold systems. Nonetheless, the field continues to face challenges, including structural optimization, regulatory validation, and scale-up, which are critical for future implementation. Ultimately, hybrid gel-based scaffolds are positioned as a foundational technology for advancing the functionality, manufacturability, and consumer readiness of cultured meat products, distinguishing this work from previous reviews. Unlike previous reviews that have focused primarily on fabrication techniques or tissue engineering applications, this review provides a uniquely food-centric perspective by systematically evaluating the compositional design of hybrid hydrogel-based scaffolds with edibility, scalability, and consumer acceptance in mind. Through a comparative analysis of food-safe additives and naturally derived biopolymers, this review establishes a framework that bridges biomaterials science and food engineering to advance the practical realization of cultured meat products. Full article
(This article belongs to the Special Issue Food Hydrocolloids and Hydrogels: Rheology and Texture Analysis)
Show Figures

Figure 1

25 pages, 2805 KiB  
Review
Cascade Processing of Agricultural, Forest, and Marine Waste Biomass for Sustainable Production of Food, Feed, Biopolymers, and Bioenergy
by Swarnima Agnihotri, Ellinor B. Heggset, Juliana Aristéia de Lima, Ilona Sárvári Horváth and Mihaela Tanase-Opedal
Energies 2025, 18(15), 4093; https://doi.org/10.3390/en18154093 - 1 Aug 2025
Viewed by 402
Abstract
An increasing global population, rising energy demands, and the shift toward a circular bioeconomy are driving the need for more resource-efficient waste management. The increase in the world population—now exceeding 8 billion as of 2024—results in an increased need for alternative proteins, both [...] Read more.
An increasing global population, rising energy demands, and the shift toward a circular bioeconomy are driving the need for more resource-efficient waste management. The increase in the world population—now exceeding 8 billion as of 2024—results in an increased need for alternative proteins, both human and feed grade proteins, as well as for biopolymers and bioenergy. As such, agricultural, forest, and marine waste biomass represent a valuable feedstock for production of food and feed ingredients, biopolymers, and bioenergy. However, the lack of integrated and efficient valorization strategies for these diverse biomass sources remains a major challenge. This literature review aims to give a systematic approach on the recent research status of agricultural, forest, and marine waste biomass valorization, focusing on cascade processing (a sequential combination of processes such as pretreatment, extraction, and conversion methods). Potential products will be identified that create the most economic value over multiple lifetimes, to maximize resource efficiency. It highlights the challenges associated with cascade processing of waste biomass and proposes technological synergies for waste biomass valorization. Moreover, this review will provide a comprehensive understanding of the potential of waste biomass valorization in the context of sustainable and circular bioeconomy. Full article
(This article belongs to the Special Issue Emerging Technologies for Waste Biomass to Green Energy and Materials)
Show Figures

Figure 1

20 pages, 9007 KiB  
Review
Marine-Derived Collagen and Chitosan: Perspectives on Applications Using the Lens of UN SDGs and Blue Bioeconomy Strategies
by Mariana Almeida and Helena Vieira
Mar. Drugs 2025, 23(8), 318; https://doi.org/10.3390/md23080318 - 1 Aug 2025
Viewed by 446
Abstract
Marine biomass, particularly from waste streams, by-products, underutilized, invasive, or potential cultivable marine species, offers a sustainable source of high-value biopolymers such as collagen and chitin. These macromolecules have gained significant attention due to their biocompatibility, biodegradability, functional versatility, and broad applicability across [...] Read more.
Marine biomass, particularly from waste streams, by-products, underutilized, invasive, or potential cultivable marine species, offers a sustainable source of high-value biopolymers such as collagen and chitin. These macromolecules have gained significant attention due to their biocompatibility, biodegradability, functional versatility, and broad applicability across health, food, wellness, and environmental fields. This review highlights recent advances in the uses of marine-derived collagen and chitin/chitosan. In alignment with the United Nations Sustainable Development Goals (SDGs), we analyze how these applications contribute to sustainability, particularly in SDGs related to responsible consumption and production, good health and well-being, and life below water. Furthermore, we contextualize the advancement of product development using marine collagen and chitin/chitosan within the European Union’s Blue bioeconomy strategies, highlighting trends in scientific research and technological innovation through bibliometric and patent data. Finally, the review addresses challenges facing the development of robust value chains for these marine biopolymers, including collaboration, regulatory hurdles, supply-chain constraints, policy and financial support, education and training, and the need for integrated marine resource management. The paper concludes with recommendations for fostering innovation and sustainability in the valorization of these marine resources. Full article
Show Figures

Graphical abstract

27 pages, 940 KiB  
Review
Characteristics of Food Industry Wastewaters and Their Potential Application in Biotechnological Production
by Ivana Nikolić, Kosta Mijić and Ivana Mitrović
Processes 2025, 13(8), 2401; https://doi.org/10.3390/pr13082401 - 28 Jul 2025
Viewed by 735
Abstract
The food industry consumes large amounts of water across various processes, and generates wastewater characterized by parameters like biochemical oxygen demand, chemical oxygen demand, pH, suspended solids, and nutrients. To meet environmental standards and enable reuse or valorization, treatment methods such as physicochemical, [...] Read more.
The food industry consumes large amounts of water across various processes, and generates wastewater characterized by parameters like biochemical oxygen demand, chemical oxygen demand, pH, suspended solids, and nutrients. To meet environmental standards and enable reuse or valorization, treatment methods such as physicochemical, biological, and membrane-based processes are applied. This review focuses on the valorization of food industry wastewater in the biotechnological production of high-value products, with an emphasis on starch-rich wastewater, wineries and confectionery industry wastewater, and with a focus on new technologies for reduces environmental burden but also supports circular economy principles. Starch-rich wastewaters, particularly those generated by the potato processing industry, offer considerable potential for biotechnological valorization due to their high content of soluble starch, proteins, organic acids, minerals, and lipids. These effluents can be efficiently converted by various fungi (e.g., Aspergillus, Trichoderma) and yeasts (e.g., Rhodotorula, Candida) into value-added products such as lipids for biodiesel, organic acids, microbial proteins, carotenoids, and biofungicides. Similarly, winery wastewaters, characterized by elevated concentrations of sugars and polyphenols, have been successfully utilized as medium for microbial cultivation and product synthesis. Microorganisms belonging to the genera Aspergillus, Trichoderma, Chlorella, Klebsiella, and Xanthomonas have demonstrated the ability to transform these effluents into biofuels, microbial biomass, biopolymers, and proteins, contributing to sustainable bioprocess development. Additionally, wastewater from the confectionery industry, rich in sugars, proteins, and lipids, serves as a favorable fermentation medium for the production of xanthan gum, bioethanol, biopesticides, and bioplastics (e.g., PHA and PHB). Microorganisms of the genera Xanthomonas, Bacillus, Zymomonas, and Cupriavidus are commonly employed in these processes. Although there are still certain regulatory issues, research gaps, and the need for more detailed economic analysis and kinetics of such production, we can conclude that this type of biotechnological production on waste streams has great potential, contributing to environmental sustainability and advancing the principles of the circular economy. Full article
(This article belongs to the Special Issue 1st SUSTENS Meeting: Advances in Sustainable Engineering Systems)
Show Figures

Figure 1

30 pages, 3888 KiB  
Review
Advances in Nanotechnology Research in Food Production, Nutrition, and Health
by Kangran Han, Haixia Yang, Daidi Fan and Jianjun Deng
Nutrients 2025, 17(15), 2443; https://doi.org/10.3390/nu17152443 - 26 Jul 2025
Viewed by 849
Abstract
Nanotechnology, as a burgeoning interdisciplinary field, has a significant application potential in food nutrition and human health due to its distinctive structural characteristics and surface effects. This paper methodically examines the recent advancements in nanotechnology pertaining to food production, functional nutrition delivery, and [...] Read more.
Nanotechnology, as a burgeoning interdisciplinary field, has a significant application potential in food nutrition and human health due to its distinctive structural characteristics and surface effects. This paper methodically examines the recent advancements in nanotechnology pertaining to food production, functional nutrition delivery, and health intervention. In food manufacturing, nanoparticles have markedly enhanced food safety and quality stability via technologies such as antimicrobial packaging, intelligent sensing, and processing optimization. Nutritional science has used nanocarrier-based delivery systems, like liposomes, nanoemulsions, and biopolymer particles, to make active substances easier for the body to access and target. Nanotechnology offers innovative approaches for chronic illness prevention and individualized treatment in health interventions by enabling accurate nutritional delivery and functional regulation. Nonetheless, the use of nanotechnology encounters hurdles, including safety evaluations and regulatory concerns that require additional investigation. Future research should concentrate on refining the preparation process of nanomaterials, conducting comprehensive examinations of their metabolic mechanisms within the human body, and enhancing pertinent safety standards to facilitate the sustainable advancement of nanotechnology in food production, nutrition, and health. Full article
Show Figures

Figure 1

23 pages, 1012 KiB  
Review
Prospects of Gels for Food Applications from Marine Sources: Exploring Microalgae
by Antonia Terpou, Divakar Dahiya and Poonam Singh Nigam
Gels 2025, 11(8), 569; https://doi.org/10.3390/gels11080569 - 23 Jul 2025
Viewed by 460
Abstract
The growing demand for sustainable, functional ingredients in the food industry has driven interest in marine-derived biopolymers. Among marine sources, microalgae represent a promising yet underexplored reservoir of bioactive gel-forming compounds, particularly extracellular polysaccharides (EPSs), both sulfated and non-sulfated, as well as proteins [...] Read more.
The growing demand for sustainable, functional ingredients in the food industry has driven interest in marine-derived biopolymers. Among marine sources, microalgae represent a promising yet underexplored reservoir of bioactive gel-forming compounds, particularly extracellular polysaccharides (EPSs), both sulfated and non-sulfated, as well as proteins that exhibit unique gelling, emulsifying, and stabilizing properties. This study focuses on microalgal species with demonstrated potential to produce viscoelastic, shear-thinning gels, making them suitable for applications in food stabilization, texture modification, and nutraceutical delivery. Recent advances in biotechnology and cultivation methods have improved access to high-value strains, which exhibit promising physicochemical properties for the development of novel food textures, structured formulations, and sustainable food packaging materials. Furthermore, these microalgae-derived gels offer additional health benefits, such as antioxidant and prebiotic activities, aligning with current trends toward functional foods containing prebiotic materials. Key challenges in large-scale production, including low EPS productivity, high processing costs, and lack of regulatory frameworks, are critically discussed. Despite these barriers, advances in cultivation technologies and biorefinery approaches offer new avenues for commercial application. Overall, microalgal gels hold significant promise as sustainable, multifunctional ingredients for clean-label food formulations. Full article
(This article belongs to the Special Issue Recent Advances in Food Gels (2nd Edition))
Show Figures

Graphical abstract

21 pages, 1816 KiB  
Review
Lignin Waste Valorization in the Bioeconomy Era: Toward Sustainable Innovation and Climate Resilience
by Alfonso Trezza, Linta Mahboob, Anna Visibelli, Michela Geminiani and Annalisa Santucci
Appl. Sci. 2025, 15(14), 8038; https://doi.org/10.3390/app15148038 - 18 Jul 2025
Viewed by 524
Abstract
Lignin, the most abundant renewable aromatic biopolymer on Earth, is rapidly emerging as a powerful enabler of next-generation sustainable technologies. This review shifts the focus to the latest industrial breakthroughs that exploit lignin’s multifunctional properties across energy, agriculture, healthcare, and environmental sectors. Lignin-derived [...] Read more.
Lignin, the most abundant renewable aromatic biopolymer on Earth, is rapidly emerging as a powerful enabler of next-generation sustainable technologies. This review shifts the focus to the latest industrial breakthroughs that exploit lignin’s multifunctional properties across energy, agriculture, healthcare, and environmental sectors. Lignin-derived carbon materials are offering scalable, low-cost alternatives to critical raw materials in batteries and supercapacitors. In agriculture, lignin-based biostimulants and controlled-release fertilizers support resilient, low-impact food systems. Cosmetic and pharmaceutical industries are leveraging lignin’s antioxidant, UV-protective, and antimicrobial properties to create bio-based, clean-label products. In water purification, lignin-based adsorbents are enabling efficient and biodegradable solutions for persistent pollutants. These technological leaps are not merely incremental, they represent a paradigm shift toward a materials economy powered by renewable carbon. Backed by global sustainability roadmaps like the European Green Deal and China’s 14th Five-Year Plan, lignin is moving from industrial residue to strategic asset, driven by unprecedented investment and cross-sector collaboration. Breakthroughs in lignin upgrading, smart formulation, and application-driven design are dismantling long-standing barriers to scale, performance, and standardization. As showcased in this review, lignin is no longer just a promising biopolymer, it is a catalytic force accelerating the global transition toward circularity, climate resilience, and green industrial transformation. The future of sustainable innovation is lignin-enabled. Full article
(This article belongs to the Special Issue Biosynthesis and Applications of Natural Products)
Show Figures

Figure 1

26 pages, 2000 KiB  
Review
Bionanocomposite Coating Film Technologies for Disease Management in Fruits and Vegetables
by Jonathan M. Sánchez-Silva, Ulises M. López-García, Porfirio Gutierrez-Martinez, Ana Yareli Flores-Ramírez, Surelys Ramos-Bell, Cristina Moreno-Hernández, Tomás Rivas-García and Ramsés Ramón González-Estrada
Horticulturae 2025, 11(7), 832; https://doi.org/10.3390/horticulturae11070832 - 14 Jul 2025
Viewed by 526
Abstract
Fruit and vegetable production is often impacted by microbial pathogens that compromise the quality of produce and lead to significant economic losses at the postharvest stages. Due to their efficacy, agrochemicals are widely applied in disease management; nevertheless, this practice has led to [...] Read more.
Fruit and vegetable production is often impacted by microbial pathogens that compromise the quality of produce and lead to significant economic losses at the postharvest stages. Due to their efficacy, agrochemicals are widely applied in disease management; nevertheless, this practice has led to the appearance of microbial strains resistant to these types of agrochemicals. Additionally, there is growing concern among consumers about the presence of these chemical residues in fruits and the negative impacts they cause on multiple ecosystems. In response, there is a growing need for safe, effective, green, and sustainable disease control technologies. Bionanocomposites, with their unique ability to combine nanomaterials and biopolymers that have attractive properties, represents a promising alternative for postharvest disease control. These technologies allow for the development of functional coatings and films with antimicrobial, antioxidant, and barrier properties, which are critical for extending shelf life and preserving fruit quality. Recent advances have demonstrated that integrating nanoparticles, such as ZnO, TiO2, Ag, and chitosan-based nanosystems, into biopolymeric matrices, like alginate, pectin, starch, or cellulose, can enhance mechanical strength, regulate gas exchange, and control the release of active agents. This review presents systematized information that is focused on the creation of coatings and films based on bionanocomposites for the management of disease in fruits and vegetables. It also discusses the use of diverse biopolymers and nanomaterials and their impact on the quality and shelf life of fruits and vegetables. Full article
(This article belongs to the Special Issue Postharvest Diseases in Horticultural Crops and Their Management)
Show Figures

Figure 1

22 pages, 2066 KiB  
Article
Evaluation of Oil Displacement by Polysaccharide Fermentation Broth of Athelia rolfsii Under Extreme Reservoir Conditions
by Haowei Fu, Jianlong Xiu, Lixin Huang, Lina Yi, Yuandong Ma and Sicai Wang
Molecules 2025, 30(13), 2861; https://doi.org/10.3390/molecules30132861 - 4 Jul 2025
Viewed by 279
Abstract
In the development of high-temperature and high-salinity oil fields, biopolymer scleroglucan flooding technology faces significant challenges. Traditional scleroglucan products exhibit poor injectability and high extraction costs. This study investigated the application potential of the original fermentation broth of exopolysaccharides (EPS) produced by microorganisms [...] Read more.
In the development of high-temperature and high-salinity oil fields, biopolymer scleroglucan flooding technology faces significant challenges. Traditional scleroglucan products exhibit poor injectability and high extraction costs. This study investigated the application potential of the original fermentation broth of exopolysaccharides (EPS) produced by microorganisms in a simulated high-temperature and high-salinity oil reservoir environment. The polysaccharide was identified as scleroglucan through IR and NMR analysis. Its stability and rheological properties were comprehensively evaluated under extreme conditions, including temperatures up to 150 °C, pH levels ranging from 1 to 13, and salinities up to 22 × 104 mg/L. The results demonstrated that EPS maintained excellent viscosity and stability, particularly at 76.6 °C and 22 × 104 mg/L salinity, where its viscosity remained above 80% for 35 days. This highlights its significant viscoelasticity and stability in high-temperature and high-salinity oil reservoirs. Additionally, this study, for the first time, examined the rheological properties of the original fermentation broth of scleroglucan, specifically assessing its injectability and enhanced oil recovery (EOR) performance in a simulated Middle Eastern high-temperature, high-salinity, medium-low permeability reservoir environment. The findings revealed an effective EOR exceeding 15%, confirming the feasibility of using the original fermentation broth as a biopolymer for enhancing oil recovery in extreme reservoir conditions. Based on these experimental results, it is concluded that the original fermentation broth of Athelia rolfsii exhibits superior performance under high-temperature and high-salinity conditions in medium–low permeability reservoirs, offering a promising strategy for future biopolymer flooding in oil field development. Full article
(This article belongs to the Section Macromolecular Chemistry)
Show Figures

Figure 1

38 pages, 5897 KiB  
Review
Future-Oriented Biomaterials Based on Natural Polymer Resources: Characteristics, Application Innovations, and Development Trends
by Oscar Amponsah, Prince Sungdewie Adama Nopuo, Felista Adrehem Manga, Nicole Bianca Catli and Karolina Labus
Int. J. Mol. Sci. 2025, 26(12), 5518; https://doi.org/10.3390/ijms26125518 - 9 Jun 2025
Cited by 1 | Viewed by 1267
Abstract
This review comprehensively explores natural polymer-based materials, focusing on their characteristics, applications, and innovations across different sectors, including medicine, the environment, energy, textiles, and construction. With increasing concern about resource depletion and pollution, biomaterials offer a sustainable alternative to fossil-derived products. The review [...] Read more.
This review comprehensively explores natural polymer-based materials, focusing on their characteristics, applications, and innovations across different sectors, including medicine, the environment, energy, textiles, and construction. With increasing concern about resource depletion and pollution, biomaterials offer a sustainable alternative to fossil-derived products. The review highlights polysaccharide-based and protein-based biomaterials, as well as others, such as polyisoprene, rosin, and hyaluronic acid. Emphasis is laid on their compositions and attractive characteristics, including biocompatibility, biodegradability, and functional versatility. Moreover, the review deeply discusses the ability of natural polymers to form hydrogels, aerogels, films, nanocomposites, etc., enhanced by additives for innovative applications. Future development trends of biomaterials in biomedicine, sustainable materials, environmental biotechnology, and advanced manufacturing are also explored. Their growing potential in these sectors is driven by research advances in emerging technologies such as 3D bioprinting, nanotechnology, and hybrid material innovation, which are proven to enhance the performance, functionality, and scalability of biopolymers. The review suggests several strategies, including improvement in processing techniques and material engineering to overcome limitations associated with biomaterials, thereby reinforcing their suitability and role in a circular and sustainable economy. Full article
(This article belongs to the Special Issue Recent Advances in Polymeric Biomaterials)
Show Figures

Graphical abstract

26 pages, 4803 KiB  
Article
Development of Magnetic Sponges Using Steel Melting on 3D Carbonized Spongin Scaffolds Under Extreme Biomimetics Conditions
by Bartosz Leśniewski, Martin Kopani, Anna Szczurek, Michał Matczak, Janusz Dubowik, Martyna Kotula, Anita Kubiak, Dmitry Tsurkan, Eliza Romańczuk-Ruszuk, Marek Nowicki, Krzysztof Nowacki, Iaroslav Petrenko and Hermann Ehrlich
Biomimetics 2025, 10(6), 350; https://doi.org/10.3390/biomimetics10060350 - 28 May 2025
Cited by 1 | Viewed by 659
Abstract
This study presents a novel approach to fabricating magnetic sponge-like composites by melting various types of steel onto three-dimensional (3D) carbonized spongin scaffolds under extreme biomimetic conditions. Spongin, a renewable marine biopolymer with high thermal stability, was carbonized at 1200 °C to form [...] Read more.
This study presents a novel approach to fabricating magnetic sponge-like composites by melting various types of steel onto three-dimensional (3D) carbonized spongin scaffolds under extreme biomimetic conditions. Spongin, a renewable marine biopolymer with high thermal stability, was carbonized at 1200 °C to form a turbostratic graphite matrix capable of withstanding the high-temperature steel melting process (1450–1600 °C). The interaction between molten steel vapors and the carbonized scaffolds resulted in the formation of nanostructured iron oxide (primarily hematite) coatings, which impart magnetic properties to the resulting composites. Detailed characterization using SEM-EDX, HRTEM, FT-IR, and XRD confirmed the homogeneous distribution of iron oxides on and within the carbonized fibrous matrix. Electrochemical measurements further demonstrated the electrocatalytic potential of the composite, particularly the sample modified with stainless steel 316L—for the hydrogen evolution reaction (HER), offering promising perspectives for green hydrogen production. This work highlights the potential of extreme biomimetics to create functional, scalable, and sustainable materials for applications in catalysis, environmental remediation, and energy technologies. Full article
Show Figures

Graphical abstract

38 pages, 11944 KiB  
Article
Sustainable Solutions for Producing Advanced Biopolymer Membranes—From Net-Zero Technology to Zero Waste
by Iva Rezić Meštrović, Maja Somogyi Škoc, Donna Danijela Dragun, Petra Glagolić and Ernest Meštrović
Polymers 2025, 17(11), 1432; https://doi.org/10.3390/polym17111432 - 22 May 2025
Viewed by 598
Abstract
The increasing accumulation of polymer waste presents a significant environmental challenge and a critical opportunity for the development of circular and sustainable membranes. The answer to this complex topic requires an integral approach covering different aspects of the problem. This paper, therefore, explores [...] Read more.
The increasing accumulation of polymer waste presents a significant environmental challenge and a critical opportunity for the development of circular and sustainable membranes. The answer to this complex topic requires an integral approach covering different aspects of the problem. This paper, therefore, explores innovative approaches for the chemical recycling of polymer waste into value-added products, with a specific emphasis on the production of advanced biopolymer membranes. By converting discarded materials into functional polymers through depolymerization and chemical modification processes, new pathways are emerging for the fabrication of high-performance membranes used in filtration, biomedical applications, and energy systems. Among these, electrospinning has gained prominence as a versatile and scalable technique for producing nanostructured membranes with tailored properties. As a key case study presented, the focus was on the optimization of electrospinning parameters, including solvents, polymer concentration, voltage, and flow rate, for the investigation of membranes derived from recycled materials to achieve net-zero technology. Moreover, the environmental benefits of this approach are discussed within a zero-waste and net-zero carbon framework, emphasizing the integration of life cycle assessment to evaluate sustainability metrics. This paper underscores the potential of polymer waste as a feedstock for circular membrane technologies and provides a roadmap for future innovations in waste-to-resource strategies. The results of the demonstrated case example clearly demonstrate how the effects of processing conditions on the production of fine-tuned biodegradable membranes with controlled porosity influenced membrane properties, including mechanical strength and surface functionality, for the desired suppression of the coffee-ring effect. Full article
(This article belongs to the Special Issue Polymer Innovations in Bioactive Coatings)
Show Figures

Figure 1

41 pages, 3996 KiB  
Review
Innovative Approaches and Evolving Strategies in Heavy Metal Bioremediation: Current Limitations and Future Opportunities
by Cristina Firincă, Lucian-Gabriel Zamfir, Mariana Constantin, Iuliana Răut, Maria-Luiza Jecu, Mihaela Doni, Ana-Maria Gurban and Tatiana Eugenia Șesan
J. Xenobiot. 2025, 15(3), 63; https://doi.org/10.3390/jox15030063 - 26 Apr 2025
Cited by 1 | Viewed by 1970
Abstract
Decades of technological advancements have led to major environmental concerns, particularly the bioaccumulation of heavy metals, which pose persistent risks to ecosystems and human health. Consequently, research has increasingly shifted from conventional remediation techniques toward more sustainable, environmentally friendly solutions. This review explores [...] Read more.
Decades of technological advancements have led to major environmental concerns, particularly the bioaccumulation of heavy metals, which pose persistent risks to ecosystems and human health. Consequently, research has increasingly shifted from conventional remediation techniques toward more sustainable, environmentally friendly solutions. This review explores recent advancements, ongoing challenges, and future perspectives in the field of bioremediation, emphasizing its potential as a green technology for heavy metal decontamination. Despite significant progress, key challenges remain, including scalability limitations and the management of bioremediation by-products, along with the influence of regulatory policies and public perception on its large-scale implementation. Emerging approaches such as genetic engineering and nanotechnology show promise in overcoming these limitations. Gene editing allows the tailoring of specific metabolic traits for bioprocesses targeted towards increased tolerance to pollutants and higher biodegradation efficiency, higher enzymatic specificity and affinity, and improved yield and fitness in plants. Nanotechnologies, particularly biogenic nanostructures, open up the possibility of repurposing waste materials as well as harnessing the advantages of the biosynthesis of NPs with higher stability, biocompatibility, and biostimulant capacities. Furthermore, biopolymers and bio-based nanocomposites can improve the efficiency and costs of bioremediation protocols. Even so, further research is essential to evaluate their long-term risks and feasibility. Full article
Show Figures

Graphical abstract

25 pages, 2048 KiB  
Review
Integration of Emerging and Conventional Technologies for Obtaining By-Products from Cocoa Pod Husk and Their Application
by Alejandra Bugarin, Angela Iquise, Bianca Motta Dolianitis, Marcus Vinícius Tres, Giovani Leone Zabot and Luis Olivera-Montenegro
Processes 2025, 13(5), 1264; https://doi.org/10.3390/pr13051264 - 22 Apr 2025
Cited by 1 | Viewed by 1207
Abstract
This review discusses the potential of emerging technologies, as well as their integration with conventional methods, to optimize the extraction of lignocellulosic compounds from cocoa pod hull (CPH), an agro-industrial residue that represents approximately 76% of the total weight of the fruit. CPH [...] Read more.
This review discusses the potential of emerging technologies, as well as their integration with conventional methods, to optimize the extraction of lignocellulosic compounds from cocoa pod hull (CPH), an agro-industrial residue that represents approximately 76% of the total weight of the fruit. CPH is primarily composed of cellulose, hemicellulose, lignin, and pectin. Emerging technologies such as microwave-assisted extraction, hydrothermal treatment, subcritical water, ionic liquids, deep eutectic solvents, and ultrasound treatment have proven effective in recovering value-added compounds, especially when combined with conventional techniques to improve process efficiency. Furthermore, the use of technologies such as high-voltage electric discharge (HVED) is proposed to reduce inorganic contaminants, such as cadmium, ensuring the safety of by-products. The CPH compounds’ applications include use in the food, pharmaceutical, cosmetics, agricultural, biopolymer, and environmental industries. The conversion of CPH to biochar and biofuels via pyrolysis and supercritical extraction is also discussed. The integration of technologies presents an opportunity to valorize CPH and optimize by-product development; however, as research continues, process scalability and economic viability must be assessed. Full article
(This article belongs to the Special Issue The Recycling Process of Agro-Industrial Waste)
Show Figures

Graphical abstract

24 pages, 1225 KiB  
Review
Recent Biotechnological Applications of Whey: Review and Perspectives
by Raúl J. Delgado-Macuil, Beatriz Perez-Armendariz, Gabriel Abraham Cardoso-Ugarte, Shirlley E. Martinez Tolibia and Alfredo C. Benítez-Rojas
Fermentation 2025, 11(4), 217; https://doi.org/10.3390/fermentation11040217 - 15 Apr 2025
Cited by 1 | Viewed by 2061
Abstract
This paper comprehensively reviews whey, a by-product of cheese production, as a raw material for various biotechnological applications. It addresses its unique composition, the environmental impact of its inadequate disposal, and the opportunities it offers to develop high-value products in line with circular [...] Read more.
This paper comprehensively reviews whey, a by-product of cheese production, as a raw material for various biotechnological applications. It addresses its unique composition, the environmental impact of its inadequate disposal, and the opportunities it offers to develop high-value products in line with circular economy and sustainability principles. Using the PRISMA methodology, a systematic search was conducted in various databases (Science Direct, Scopus, and Google Scholar) with specific inclusion and exclusion criteria. Studies from the last five years were considered, focusing on food applications, the production of bioproducts (such as lactic acid, biopolymers, bioethanol, biomass, and enzymes), and the use of whey as a culture medium for the expression of recombinant proteins. It is concluded that the use of whey in biotechnological applications mitigates the environmental impact associated with its disposal and represents an economic and sustainable alternative for the industrial production of bioproducts. The integration of pretreatment technologies, experimental designs, and improvements in producing strains brings these processes closer to competitive conditions in the industry, opening new perspectives for innovation in the fermentation sector. Full article
Show Figures

Figure 1

Back to TopTop