Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (188)

Search Parameters:
Keywords = biomimetic mineralization

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 1216 KB  
Review
Bioactive Hydroxyapatite–Collagen Composite Dressings for Wound Regeneration: Advances in Fabrication, Functionalization and Antimicrobial Strategies
by Bogdan Radu Dragomir, Alina Robu, Ana-Iulia Bita and Daniel Sipu
Appl. Sci. 2026, 16(2), 576; https://doi.org/10.3390/app16020576 - 6 Jan 2026
Viewed by 402
Abstract
Chronic and complex wounds, including diabetic foot ulcers, venous leg ulcers, burns and post-surgical defects, remain difficult to manage due to persistent inflammation, impaired angiogenesis, microbial colonization and insufficient extracellular matrix (ECM) remodeling. Conventional dressings provide protection, but they do not supply the [...] Read more.
Chronic and complex wounds, including diabetic foot ulcers, venous leg ulcers, burns and post-surgical defects, remain difficult to manage due to persistent inflammation, impaired angiogenesis, microbial colonization and insufficient extracellular matrix (ECM) remodeling. Conventional dressings provide protection, but they do not supply the necessary biochemical and structural signals for effective tissue repair. This review examines recent advances in hydroxyapatite–collagen (HAp–Col) composite dressings, which combine the architecture of collagen with the mechanical reinforcement and ionic bioactivity of hydroxyapatite. Analysis of the literature indicates that in situ and biomimetic mineralization, freeze-drying, electrospinning, hydrogel and film processing, and emerging 3D printing approaches enable precise control of pore structure, mineral dispersion, and degradation behavior. Antimicrobial functionalization remains critical: metallic ions and locally delivered antibiotics offer robust early antibacterial activity, while plant-derived essential oils (EOs) provide broad-spectrum antimicrobial, antioxidant and anti-inflammatory effects with reduced risk of resistance. Preclinical studies consistently report enhanced epithelialization, improved collagen deposition and reduced bacterial burden in HAp–Col systems; however, translation is limited by formulation variability, sterilization sensitivity and the lack of standardized clinical trials. Overall, HAp–Col composites represent a versatile framework for next-generation wound dressings that can address both regenerative and antimicrobial requirements. Full article
Show Figures

Figure 1

13 pages, 4263 KB  
Article
Biomacromolecule-Regulated Biomimetic Mineralization for Efficiently Immobilizing Cells to Enhance Thermal Stability
by Shuyi Yao, Haichang Xu, Yankun Jin, Jinjing Zhang, Yaru Zhao, Yilin Kang, Haoyue Wang and Hao Liang
Catalysts 2026, 16(1), 46; https://doi.org/10.3390/catal16010046 - 2 Jan 2026
Viewed by 284
Abstract
The industrial application of free sucrose phosphorylase (SPase) is significantly limited due to cost, stability issues, and poor reusability. In this study, we employed organic–inorganic hybrid nanoflowers to achieve cell immobilization by co-assembling metal ions with cells. The surface of cells was coated [...] Read more.
The industrial application of free sucrose phosphorylase (SPase) is significantly limited due to cost, stability issues, and poor reusability. In this study, we employed organic–inorganic hybrid nanoflowers to achieve cell immobilization by co-assembling metal ions with cells. The surface of cells was coated with nanoflowers via chitosan-regulated biomimetic mineralization, thereby enhancing the activity of immobilized cells while providing a protective structure to improve stability. The relative activity of the immobilized cells was 30% higher than that of the free cells. After placing at 4 °C in 15 days, the relative activity of immobilized cells (80%) was substantially higher than that of free cells (40%). Moreover, the immobilized cells retained approximately 85% of their relative activity after 10 cycles. In summary, the novel biocatalysts developed in this study combine high catalytic performance with excellent reusability, demonstrating significant advantages in E. coli cell immobilization and providing a solid foundation for their application in industrial biocatalysis and related fields. Full article
(This article belongs to the Special Issue (Bio)nanomaterials in Catalysis)
Show Figures

Graphical abstract

34 pages, 8655 KB  
Article
Walnut Protein Peptide Nanoparticles with Protective Mineralization: Resveratrol Encapsulation, Intestinal-Targeted Delivery and Synergistic Antioxidant Activity
by Jingwen Hou, Chao Liu, Chaoting Wen, Min Liu, Chunyan Xiang, Mengxue Fang, Liangxiao Zhang and Peiwu Li
Foods 2025, 14(24), 4310; https://doi.org/10.3390/foods14244310 - 14 Dec 2025
Cited by 1 | Viewed by 371
Abstract
Resveratrol (RES) suffers from low bioavailability and poor gastrointestinal stability, limiting its health benefits. To overcome these challenges, we developed biomimetic mineralized nanoparticles based on walnut protein peptides (WPP-RES@CaP) for intestinal-targeted RES delivery. WPP with a 31.83% degree of hydrolysis was optimal for [...] Read more.
Resveratrol (RES) suffers from low bioavailability and poor gastrointestinal stability, limiting its health benefits. To overcome these challenges, we developed biomimetic mineralized nanoparticles based on walnut protein peptides (WPP-RES@CaP) for intestinal-targeted RES delivery. WPP with a 31.83% degree of hydrolysis was optimal for RES encapsulation. Subsequent mineralization with 5 mM Ca2+ significantly enhanced the encapsulation efficiency (EE) to 95.86%, compared to 73.69% for non-mineralized WPP-RES nanoparticles. The particle size and zeta potential of WPP-RES@CaP were 795 ± 16 nm and −27 ± 1 mV, respectively. Beyond the initial hydrophobic and π-π interactions, mineralization introduced additional stabilizing forces, including metal–ligand coordination, salt bridges, and electrostatic interactions, which collectively enhanced the structural integrity and RES retention of WPP-RES@CaP. During in vitro gastrointestinal digestion, the formation of a CaP shell protected RES and WPP from excessive degradation in the gastric phase. The 77.57% RES in WPP-RES@CaP was continuously released in the intestinal phase, which was higher than that of WPP-RES (49.73%). Meanwhile, the introduction of Ca2+ promoted the antioxidant activity of WPP-RES@CaP, which demonstrated higher DPPH and ABTS radical-scavenging activity assays than WPP-RES both before and after digestion. It was probably due to the synergistic effect of more released RES, antioxidant-free amino acids, and peptides. This mineralized peptide-based system provided a strategy for improving the delivery of hydrophobic bioactive compounds in functional foods. Full article
Show Figures

Figure 1

14 pages, 2766 KB  
Article
Encapsulation of Snail Slime in Metal–Organic Framework ZIF-8
by Maria Cristina Cassani, Francesca Bonvicini, Maria Francesca Di Filippo, Barbara Ballarin, Silvia Panzavolta and Valentina Di Matteo
J. Funct. Biomater. 2025, 16(12), 443; https://doi.org/10.3390/jfb16120443 - 28 Nov 2025
Viewed by 1176
Abstract
The literature consistently identifies Zeolitic Imidazolate Framework-8 (ZIF-8) as an excellent material for on-demand drug delivery. Its appeal results from its superior loading capacity, inherent stability within physiological environments, and the ability to fine-tune its drug release kinetics. In this work, we investigated [...] Read more.
The literature consistently identifies Zeolitic Imidazolate Framework-8 (ZIF-8) as an excellent material for on-demand drug delivery. Its appeal results from its superior loading capacity, inherent stability within physiological environments, and the ability to fine-tune its drug release kinetics. In this work, we investigated the encapsulation of snail slime extracted from Cornu aspersum mucus into ZIF-8. PXRD, SEM microscopy, ATR-FTIR spectroscopy, and fluorescence microscopy were used for a detailed characterization of the nanoparticles. The antibacterial potential of the ZIF-8-based biocomposite was assayed in vitro against Staphylococcus epidermidis. Overall, the results indicate that encapsulating the snail slime within ZIF-8 enhances its antibacterial activity, yielding a potent antimicrobial material. Full article
(This article belongs to the Section Bone Biomaterials)
Show Figures

Graphical abstract

39 pages, 2886 KB  
Review
Sand-Based Thermal Storage System for Human-Powered Energy Generation: A Review
by Qirui Ding, Lili Zeng, Ying Zeng, Changhui Song, Liang Lei and Weicheng Cui
Energies 2025, 18(22), 5869; https://doi.org/10.3390/en18225869 - 7 Nov 2025
Viewed by 1940
Abstract
Sand-based thermal energy storage systems represent a paradigm shift in sustainable energy solutions, leveraging Earth’s most abundant mineral resource through advanced nanocomposite engineering. This review examines sand-based phase change materials (PCM) systems with emphasis on integration with human-powered energy generation (HPEG). Silicon-based hierarchical [...] Read more.
Sand-based thermal energy storage systems represent a paradigm shift in sustainable energy solutions, leveraging Earth’s most abundant mineral resource through advanced nanocomposite engineering. This review examines sand-based phase change materials (PCM) systems with emphasis on integration with human-powered energy generation (HPEG). Silicon-based hierarchical pore structures provide multiscale thermal conduction pathways while achieving PCM loading capacities exceeding 90%. Carbon-based nanomaterial doping enhances thermal conductivity by up to 269%, reaching 3.1 W/m·K while maintaining phase change enthalpies above 130 J/g. This demonstrated cycling stability exceeds 1000 thermal cycles with <8% capacity degradation. Thermal energy storage costs reach ~$20 kWh−1—60% lower than lithium-ion systems when normalized by usable heat capacity. Integration with triboelectric nanogenerators achieves 55% peak mechanical-to-electrical conversion efficiency for direct pathways, while thermal-buffered systems provide 8–12% end-to-end efficiency with temporal decoupling between intermittent human power input and stable electrical output. Miniaturized systems target off-grid communities, offering 5–10× cost advantages over conventional batteries for resource-constrained deployments. Levelized storage costs remain competitive despite efficiency penalties versus lithium-ion alternatives. Critical challenges, including thermal cycling degradation, energy-power density trade-offs, and environmental adaptability, are systematically analyzed. Future directions explore biomimetic multi-level pore designs, intelligent responsive systems, and distributed microgrid implementations. Full article
Show Figures

Figure 1

14 pages, 4294 KB  
Article
Biomimetic Silk Fibroin Scaffolds Functionalized with Hydroxyapatite and Platelet Growth Factors for Bone Tissue Engineering
by Mauro Pollini, Carmen Lanzillotti, Maria Antonietta De Sangro, Maria Rosaria Cazzato, Luciano Abbruzzese and Federica Paladini
Biomimetics 2025, 10(10), 703; https://doi.org/10.3390/biomimetics10100703 - 17 Oct 2025
Cited by 1 | Viewed by 857
Abstract
Non-union fractures represent a significant clinical challenge requiring innovative therapeutic approaches. Silk fibroin (SF) scaffolds have gained recognition as advantageous biomaterials for bone tissue engineering due to their biocompatibility and mechanical characteristics. This study investigated the biocompatibility and osteoinductive potential of SF scaffolds [...] Read more.
Non-union fractures represent a significant clinical challenge requiring innovative therapeutic approaches. Silk fibroin (SF) scaffolds have gained recognition as advantageous biomaterials for bone tissue engineering due to their biocompatibility and mechanical characteristics. This study investigated the biocompatibility and osteoinductive potential of SF scaffolds functionalized with hydroxyapatite (HA) and loaded with platelet growth factors (PGFs) using hematopoietic stem cells (HSCs). SF scaffolds were prepared and functionalized with HA through methanol impregnation, while PGFs were obtained from platelet lysate via apheresis procedures. HSCs were cultured on different experimental groups, namely SF, SF-HA, PGF, SF-PGF, and SF-HA-PGF, assessing biocompatibility through 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, Live/Dead staining, and cytoskeleton analysis over 7 days. Osteoinductive properties were evaluated using Alizarin Red staining for mineral matrix deposition at 14 and 21 days. The MTT assay revealed the biocompatibility of all the experimental groups. The Live/Dead assay confirmed high cell viability, while the cytoskeleton analysis revealed well-organized actin filaments comparable to controls. Alizarin Red staining showed that PGF alone promoted early mineral matrix deposition at day 14, while SF-HA, SF-PGF, and SF-HA-PGF groups demonstrated significantly enhanced mineralization at day 21 compared with SF alone. The combination of silk fibroin scaffolds with platelet growth factors alone or with hydroxyapatite and platelet growth factors creates a biomimetic environment that supports cell viability and induces the osteogenic differentiation of hemopoietic stem cells. These findings suggest significant potential for clinical translation in treating non-union fractures and bone defects. Full article
(This article belongs to the Special Issue Biomimicry and Functional Materials: 5th Edition)
Show Figures

Figure 1

42 pages, 11753 KB  
Review
Integrating Additive and Traditional Manufacturing for Multiscale Bone Tissue Engineering Scaffolds
by Yixuan Zhu, Haotian Gao, Qingchen Qiao, Yafei Yuan, Dongyu Fang, Yuxing Bai and Qingsong Jiang
J. Funct. Biomater. 2025, 16(9), 349; https://doi.org/10.3390/jfb16090349 - 16 Sep 2025
Cited by 1 | Viewed by 1996
Abstract
Additive manufacturing (AM) has emerged as a cutting-edge technology for fabricating biomimetic scaffolds with controllable architectures and compositional diversity, showing great promise in the fields of bone tissue engineering (BTE) and regenerative medicine. However, due to limitations in printing resolution and single-process capabilities, [...] Read more.
Additive manufacturing (AM) has emerged as a cutting-edge technology for fabricating biomimetic scaffolds with controllable architectures and compositional diversity, showing great promise in the fields of bone tissue engineering (BTE) and regenerative medicine. However, due to limitations in printing resolution and single-process capabilities, AM alone struggles to replicate the complex multiscale hierarchical structures inherent in native bone. Traditional fabrication techniques provide valuable complementary strategies to address these limitations. This review systematically summarizes recent advances in the construction of heterogeneous scaffolds from a multiscale design perspective, encompassing macro-, meso-, and microscale approaches. Emphasis is placed on the integration of major AM techniques—such as extrusion-based and light-based printing—with conventional methods including freeze-drying, gas foaming, and electrospinning. Particular attention is given to emerging in situ fabrication strategies, such as in situ foaming and mineralization, which enable spatially resolved and functionally graded architectures. Furthermore, this review explores pathways for constructing multiscale-integrated scaffolds and examines the current challenges and opportunities in clinical translation. Collectively, this work provides a comprehensive framework to guide the development of next-generation bone tissue scaffolds with enhanced biological performance and translational potential. Full article
Show Figures

Figure 1

43 pages, 20891 KB  
Review
Recent Advances in Biomimetic Porous Materials for Real-World Applications
by Qunren Qiu, Yi Yang, Fanghua Liang, Gang Wang, Xuelong Han, Chuanfeng Zang and Mingzheng Ge
Biomimetics 2025, 10(8), 521; https://doi.org/10.3390/biomimetics10080521 - 8 Aug 2025
Cited by 2 | Viewed by 3001
Abstract
Bionic synthesis technology has made significant breakthroughs in porous functional materials by replicating and optimizing biological structures. For instance, biomimetic titanium dioxide-coated carbon multilayer materials, prepared via biological templating, exhibit a hierarchical structure, abundant nanopores, and synergistic effects. Bionic mineralization further enhances microcapsules [...] Read more.
Bionic synthesis technology has made significant breakthroughs in porous functional materials by replicating and optimizing biological structures. For instance, biomimetic titanium dioxide-coated carbon multilayer materials, prepared via biological templating, exhibit a hierarchical structure, abundant nanopores, and synergistic effects. Bionic mineralization further enhances microcapsules by forming a secondary inorganic wall, granting them superior impermeability, high elastic modulus, and hardness. Through techniques like molecular self-assembly, electrospinning, and pressure-driven fusion, researchers have successfully fabricated centimeter-scale artificial lamellar bones without synthetic polymers. In environmental applications, electrospun membranes inspired by lotus leaves and bird bones achieve 99.94% separation efficiency for n-hexane–water mixtures, retaining nearly 99% efficiency after 20 cycles. For energy applications, an all-ceramic silica nanofiber aerogel with a bionic blind bristle structure demonstrates ultralow thermal conductivity (0.0232–0.0643 W·m−1·K−1) across a broad temperature range (−50 to 800 °C). This review highlights the preparation methods and recent advances in biomimetic porous materials for practical applications. Full article
(This article belongs to the Section Biomimetic Surfaces and Interfaces)
Show Figures

Figure 1

15 pages, 2606 KB  
Article
A Collagen Membrane Pretreated with Citrate Promotes Collagen Mineralization and Bone Regeneration
by Qi Zhang, Yewen Zhong, Xinlin He and Sui Mai
J. Funct. Biomater. 2025, 16(7), 261; https://doi.org/10.3390/jfb16070261 - 15 Jul 2025
Cited by 2 | Viewed by 1633
Abstract
Purpose: Collagen membranes with biomimetic mineralization are emerging as promising materials for bone regeneration, owing to their high biocompatibility. In this study, we developed a biogenic collagen membrane by combining citrate (C) pretreatment and carboxymethyl chitosan (CMC)-mediated mineralization and further evaluated its bone [...] Read more.
Purpose: Collagen membranes with biomimetic mineralization are emerging as promising materials for bone regeneration, owing to their high biocompatibility. In this study, we developed a biogenic collagen membrane by combining citrate (C) pretreatment and carboxymethyl chitosan (CMC)-mediated mineralization and further evaluated its bone healing potential. Methods: C-CMC collagen membranes were prepared by lyophilization. The mineral composition and content were tested through X-ray diffraction (XRD), Fourier transform infrared (FTIR), and thermogravimetric analysis (TGA). The micromorphology was observed using transmission electron microscopy (TEM), scanning electron microscopy (SEM), and scanning probe microscopy (SPM). Physical and mechanical properties, including the swelling rate, porosity, hydrophilicity, tensile strength, Young’s modulus, degradation, and barrier function, were also evaluated. Bone mesenchymal stem cells (BMSCs) were cultured in vitro to observe their behavior. An in vivo critical-size rat calvarial defect model was used to validate the effects of the membrane on bone regeneration. Results: The C-CMC collagen membrane was successfully synthesized as a collagen–hydroxyapatite complex with intrafibrillar mineralization, exhibiting improved mechanical properties and an optimal swelling rate, porosity, hydrophilicity, and degradation rate. Additionally, the C-CMC collagen membrane promoted BMSC proliferation, adhesion, and osteogenesis while preventing epithelial cell infiltration. In vivo experiments indicated that C-CMC collagen membranes significantly stimulated bone regeneration without causing systemic toxicity. Conclusions: Our findings suggest that the C-CMC collagen membrane possesses satisfactory physical and mechanical properties, along with good biocompatibility and efficacy in bone defect regeneration, making it a potential candidate for a bioactive guided bone regeneration membrane in clinical applications. Full article
Show Figures

Figure 1

30 pages, 742 KB  
Review
Biomimetic Three-Dimensional (3D) Scaffolds from Sustainable Biomaterials: Innovative Green Medicine Approach to Bone Regeneration
by Yashaswini Premjit, Merin Lawrence, Abhishek Goyal, Célia Ferreira, Elena A. Jones and Payal Ganguly
J. Funct. Biomater. 2025, 16(7), 238; https://doi.org/10.3390/jfb16070238 - 29 Jun 2025
Cited by 3 | Viewed by 2613
Abstract
Bone repair and regeneration following an injury still present challenges worldwide. Three-dimensional (3D) scaffolds made from various materials are used for bone tissue engineering (BTE) applications. Polymers, minerals and nanotechnology are now being used in combination to achieve specific goals for BTE, including [...] Read more.
Bone repair and regeneration following an injury still present challenges worldwide. Three-dimensional (3D) scaffolds made from various materials are used for bone tissue engineering (BTE) applications. Polymers, minerals and nanotechnology are now being used in combination to achieve specific goals for BTE, including the delivery of antimicrobials through the scaffolds to prevent post-surgical infection. While several materials are utilised for BTE, natural polymers present a unique set of materials that can be manipulated to formulate scaffolds for BTE applications. They have been found to demonstrate higher biocompatibility, biodegradability and lower toxicity. Some even naturally mimic the bone microarchitecture, providing inherent structural support for BTE. Natural polymers may be simply classified as those from plant and animal sources. From both sources, there are different types of proteins, polysaccharides and other specialised materials that are already in use for research in BTE. Interestingly, these have the potential to revolutionise the field of BTE with a sustainable approach. In this review, we first discuss the different natural polymers used in BTE from plant sources, followed by animal sources. We then explore novel materials that are aimed at sustainable approaches, focusing on innovation from the last decade. In these sections, we outline studies of these materials with different types of bone cells, including bone marrow mesenchymal stromal cells (MSCs), which are the progenitors of bone. We finally outline the limitations, conclusions and future directions from our perspective in this dynamic field of polymers in BTE. With this review, we hope to bring together the updated existing knowledge and the potential future of innovation and sustainability in natural polymers for biomimetic BTE applications for fellow scientists, researchers and surgeons in the field. Full article
(This article belongs to the Special Issue Novel Biomaterials for Tissue Engineering)
Show Figures

Figure 1

16 pages, 2641 KB  
Article
Biomimetic Construction of Enteromorpha prolifera-Based Composite Membranes for Synergistic Purification of Fluoride Ions, Bacteria, and Dye with High Sustainability
by Wanying Li, Yu Lei, Xiaoxuan Fan, Gang Wei and Lei Guo
Materials 2025, 18(10), 2356; https://doi.org/10.3390/ma18102356 - 19 May 2025
Cited by 1 | Viewed by 863
Abstract
As an essential trace element in the human body, fluoride is beneficial in appropriate amounts, but excessive intake can cause serious harm. Therefore, addressing the global water pollution caused by fluoride is an urgent issue. In this study, a functional composite membrane is [...] Read more.
As an essential trace element in the human body, fluoride is beneficial in appropriate amounts, but excessive intake can cause serious harm. Therefore, addressing the global water pollution caused by fluoride is an urgent issue. In this study, a functional composite membrane is successfully prepared using Enteromorpha prolifera (EP) as the raw material, cinnamaldehyde (CIN) as a functional modifier, and EP-bioinduced ZrO2 nanoparticles (NPs) as the loading material via biomimetic mineralization technology. The experimental results demonstrate that the composite membrane removes fluoride ions (F) with an efficiency of over 99.9% within the concentration range of 100–400 mg/L. This excellent F removal performance is attributed to the ability of the hydroxyl groups on the surface of ZrO2 to exchange and bind with F. The formed CIN/EP-ZrO2 composite membrane also reveals significant antibacterial activity against E. coli. In addition, the adsorption rate for methylene blue at the concentration of 5–300 mg/L reaches 99.99%, which is due to the synergistic interaction of functional groups such as hydroxyl (-OH), carboxyl (-COOH), and amino groups (-NH2) in EP. The overall sustainability footprint (OSF) assessment exhibits that the CIN/EP-ZrO2 composite membrane has comprehensive advantages, including a simple preparation process, low cost, high performance, and environmental friendliness. This study provides an innovative solution for the sustainable treatment of F, bacteria, and dye pollution in water, showcasing significant potential for applications in environmental science. Full article
Show Figures

Figure 1

21 pages, 4883 KB  
Article
Osteogenic and Antibacterial Response of Levofloxacin-Loaded Mesoporous Nanoparticles Functionalized with N-Acetylcysteine
by Alberto Polo-Montalvo, Natividad Gómez-Cerezo, Mónica Cicuéndez, Blanca González, Isabel Izquierdo-Barba and Daniel Arcos
Pharmaceutics 2025, 17(4), 519; https://doi.org/10.3390/pharmaceutics17040519 - 15 Apr 2025
Viewed by 1407
Abstract
Background/Objectives: Bone infection is one of the most prevalent complications in orthopedic surgery. This pathology is mostly due to bacterial pathogens, among which S. aureus stands out. The formation of a bacterial biofilm makes systemic treatment with antibiotics ineffective. Herein we propose [...] Read more.
Background/Objectives: Bone infection is one of the most prevalent complications in orthopedic surgery. This pathology is mostly due to bacterial pathogens, among which S. aureus stands out. The formation of a bacterial biofilm makes systemic treatment with antibiotics ineffective. Herein we propose a nanosystem composed of mesoporous bioactive glass nanoparticles (MBGN) loaded with levofloxacin and functionalized with N-acetylcysteine (NAC), aiming to offer an alternative to current treatments. These nanoparticles would present antibacterial activity able to disintegrate the biofilm and regenerate the peri-implantar osseous tissue. Methods: MBGN of composition 82.5 SiO2—17.5 CaO have been synthesized, loaded with levofloxacin, and functionalized with NAC (MBGN-L-NAC). The antimicrobial activity against mature S. aureus biofilms and bioactivity of the nanosystem have been evaluated, as well as its biocompatibility and ability to promote murine pre-osteoblastic MC3T3-E1 differentiation. Results: MBGNs exhibited high surface areas and radial mesoporosity, allowing up to 23.1% (% w/w) of levofloxacin loading. NAC was covalently bound keeping the mucolytic thiol group, SH, available. NAC and levofloxacin combination enhances the activity against S. aureus by disrupting mature biofilm integrity. This nanosystem was biocompatible with pre-osteoblasts, enhanced their differentiation towards a mature osteoblast phenotype, and promoted bio-mimetic mineralization under in vitro conditions. MBGN-L-NAC nanoparticles induced greater osteogenic response of osteoprogenitor cells through increased alkaline phosphatase expression, increased mineralization, and stimulation of pre-osteoblast nodule formation. Conclusions: MBGN-L-NAC exhibits a more efficient antibacterial activity due to the biofilm disaggregation exerted by NAC, which also contributes to enhance the osteoinductive properties of MBGNs, providing a potential alternative to conventional strategies for the management of bone infections. Full article
(This article belongs to the Section Nanomedicine and Nanotechnology)
Show Figures

Graphical abstract

16 pages, 2552 KB  
Article
Development of a Photocrosslinkable Collagen–Bone Matrix Hydrogel for Bone Tissue Engineering
by Po-Hsun Chen and Wei-Bor Tsai
Polymers 2025, 17(7), 935; https://doi.org/10.3390/polym17070935 - 29 Mar 2025
Cited by 1 | Viewed by 1663
Abstract
Bone tissue engineering aims to restore lost bone and create an environment conducive to new bone formation. To address this challenge, we developed a novel biomimetic hydrogel that combines maleic anhydride–modified type I collagen (ColME) with maleic anhydride–modified demineralized and decellularized porcine bone [...] Read more.
Bone tissue engineering aims to restore lost bone and create an environment conducive to new bone formation. To address this challenge, we developed a novel biomimetic hydrogel that combines maleic anhydride–modified type I collagen (ColME) with maleic anhydride–modified demineralized and decellularized porcine bone matrix particles (mDBMp), forming a composite ColME–mDBMp (CMB) hydrogel. Chemical modification of collagen resulted in a high degree of substitution, thereby enhancing its photocrosslinkability. Integration of mDBMp into the ColME hydrogel via photocrosslinking resulted in enhanced physiological stability, reduced shrinkage, and improved mechanical strength compared to gelatin methacrylate (GelMA)-based hydrogels. Moreover, mineralization of the CMB hydrogel promoted the formation of pure hydroxyapatite (HAp) crystals, providing superior stiffness while maintaining ductility relative to GelMA-based hydrogels. In vitro, human bone marrow mesenchymal stem cells (hBMSCs) encapsulated in CMB hydrogels exhibited enhanced proliferation, cell–matrix interactions, and osteogenic differentiation, as evidenced by increased calcium deposition and histological analysis. These results demonstrate that the CMB hydrogel, enriched with extracellular matrix (ECM) components, shows considerable promise over current GelMA-based hydrogels for bone tissue engineering. Full article
(This article belongs to the Special Issue Synthesis and Applications of Bio-Based Polymers)
Show Figures

Figure 1

14 pages, 252 KB  
Review
Applications of Platelet-Rich Fibrin (PRF) Membranes Alone or in Combination with Biomimetic Materials in Oral Regeneration: A Narrative Review
by Javier Valenzuela-Mencia and Francisco Javier Manzano-Moreno
Biomimetics 2025, 10(3), 172; https://doi.org/10.3390/biomimetics10030172 - 11 Mar 2025
Cited by 4 | Viewed by 3636
Abstract
Platelet-rich fibrin (PRF) membranes are a biomaterial derived from the patient’s own blood, used in different medical and dental areas for their ability to promote healing, tissue regeneration, and reduce inflammation. They are obtained by centrifuging the blood, which separates the components and [...] Read more.
Platelet-rich fibrin (PRF) membranes are a biomaterial derived from the patient’s own blood, used in different medical and dental areas for their ability to promote healing, tissue regeneration, and reduce inflammation. They are obtained by centrifuging the blood, which separates the components and concentrates the platelets and growth factors in a fibrin matrix. This material is then moulded into a membrane that can be applied directly to tissues. The use of these PRF membranes is often associated with the use of different biomimetic materials such as deproteinized bovine bone mineral (DBBM), β-tricalcium phosphate (β-TCP), enamel matrix derivative (EMD), and hydroxyapatite (HA). Different indications of PRF membranes have been proposed, like alveolar ridge preservation, alveolar ridge augmentation, guided tissue regeneration (GTR), and sinus floor augmentation. The aim of this narrative review is to check the state-of-the-art and to analyze the existing gaps in the use of PRF membranes in combination with biomimetic materials in alveolar ridge preservation, alveolar ridge augmentation, guided tissue regeneration (GTR), and sinus floor augmentation. Full article
(This article belongs to the Special Issue Bioinspired Materials for Tissue Engineering)
20 pages, 7295 KB  
Article
Treating White Spot Lesions and Non-Carious Cervical Lesions with Amelogenin Peptide-Based Hydrogel
by Erika Bauza Nowotny, Salony Jassar, Jin-Ho Phark and Janet Moradian-Oldak
Biomimetics 2025, 10(2), 120; https://doi.org/10.3390/biomimetics10020120 - 18 Feb 2025
Viewed by 1821
Abstract
Peptide-based biomimetic treatments have gained increased attention in the dental field due to their biocompatibility and minimally invasive qualities. These biomimetic approaches can replicate the native architecture of dental tissues, thus contributing to higher success rates and improved longevity of restorations. The aim [...] Read more.
Peptide-based biomimetic treatments have gained increased attention in the dental field due to their biocompatibility and minimally invasive qualities. These biomimetic approaches can replicate the native architecture of dental tissues, thus contributing to higher success rates and improved longevity of restorations. The aim of this study was first to examine the biocompatibility and stability of an amelogenin peptide-based chitosan hydrogel (P26-CS) against salivary enzymes. Second, we aimed to evaluate its efficacy in biomimetically repairing human dental lesions in situ. White spot lesions (WSLs) in enamel and non-carious cervical lesions (NCCLs) in dentin were artificially created. Chitosan (CS) improved peptide stability, while remineralization of enamel sections with P26-CS was not impeded by salivary enzymes. The peptide was not cytotoxic, irritating, or sensitizing. Fluorescently labeled P26-CS penetrated ~300 μm into the enamel of WSLs and ~100 μm into the dentin of NCCLs. After peptide treatment, quantitative light-induced fluorescence (QLF) and microcomputed tomography (μCT) indicated a gain in mineral density of WSLs. In NCCLs, scanning electron microscopy showed that the dentin was covered by a mineral layer of needle-shaped crystals. Our results show that the repair of artificial WSLs and NCCLs was achieved by P26 peptide-guided remineralization and demonstrate its potential to repair dental lesions. Full article
(This article belongs to the Special Issue Biomimetic Bonded Restorations for Dental Applications)
Show Figures

Figure 1

Back to TopTop