Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,004)

Search Parameters:
Keywords = biometric

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
2 pages, 145 KiB  
Editorial
Editorial: Biometric Recognition—Latest Advances and Prospects
by Yunlong Wang, Zhaofeng He, Caiyong Wang, Jianze Wei and Min Ren
Electronics 2025, 14(15), 3108; https://doi.org/10.3390/electronics14153108 - 5 Aug 2025
Abstract
We are pleased to present this Special Issue of Electronics, dedicated to exploring cutting-edge advancements in Biometric Recognition [...] Full article
(This article belongs to the Special Issue Biometric Recognition: Latest Advances and Prospects)
28 pages, 6199 KiB  
Article
Dual Chaotic Diffusion Framework for Multimodal Biometric Security Using Qi Hyperchaotic System
by Tresor Lisungu Oteko and Kingsley A. Ogudo
Symmetry 2025, 17(8), 1231; https://doi.org/10.3390/sym17081231 - 4 Aug 2025
Abstract
The proliferation of biometric technology across various domains including user identification, financial services, healthcare, security, law enforcement, and border control introduces convenience in user identity verification while necessitating robust protection mechanisms for sensitive biometric data. While chaos-based encryption systems offer promising solutions, many [...] Read more.
The proliferation of biometric technology across various domains including user identification, financial services, healthcare, security, law enforcement, and border control introduces convenience in user identity verification while necessitating robust protection mechanisms for sensitive biometric data. While chaos-based encryption systems offer promising solutions, many existing chaos-based encryption schemes exhibit inherent shortcomings including deterministic randomness and constrained key spaces, often failing to balance security robustness with computational efficiency. To address this, we propose a novel dual-layer cryptographic framework leveraging a four-dimensional (4D) Qi hyperchaotic system for protecting biometric templates and facilitating secure feature matching operations. The framework implements a two-tier encryption mechanism where each layer independently utilizes a Qi hyperchaotic system to generate unique encryption parameters, ensuring template-specific encryption patterns that enhance resistance against chosen-plaintext attacks. The framework performs dimensional normalization of input biometric templates, followed by image pixel shuffling to permutate pixel positions before applying dual-key encryption using the Qi hyperchaotic system and XOR diffusion operations. Templates remain encrypted in storage, with decryption occurring only during authentication processes, ensuring continuous security while enabling biometric verification. The proposed system’s framework demonstrates exceptional randomness properties, validated through comprehensive NIST Statistical Test Suite analysis, achieving statistical significance across all 15 tests with p-values consistently above 0.01 threshold. Comprehensive security analysis reveals outstanding metrics: entropy values exceeding 7.99 bits, a key space of 10320, negligible correlation coefficients (<102), and robust differential attack resistance with an NPCR of 99.60% and a UACI of 33.45%. Empirical evaluation, on standard CASIA Face and Iris databases, demonstrates practical computational efficiency, achieving average encryption times of 0.50913s per user template for 256 × 256 images. Comparative analysis against other state-of-the-art encryption schemes verifies the effectiveness and reliability of the proposed scheme and demonstrates our framework’s superior performance in both security metrics and computational efficiency. Our findings contribute to the advancement of biometric template protection methodologies, offering a balanced performance between security robustness and operational efficiency required in real-world deployment scenarios. Full article
(This article belongs to the Special Issue New Advances in Symmetric Cryptography)
Show Figures

Figure 1

36 pages, 1010 KiB  
Article
SIBERIA: A Self-Sovereign Identity and Multi-Factor Authentication Framework for Industrial Access
by Daniel Paredes-García, José Álvaro Fernández-Carrasco, Jon Ander Medina López, Juan Camilo Vasquez-Correa, Imanol Jericó Yoldi, Santiago Andrés Moreno-Acevedo, Ander González-Docasal, Haritz Arzelus Irazusta, Aitor Álvarez Muniain and Yeray de Diego Loinaz
Appl. Sci. 2025, 15(15), 8589; https://doi.org/10.3390/app15158589 (registering DOI) - 2 Aug 2025
Viewed by 167
Abstract
The growing need for secure and privacy-preserving identity management in industrial environments has exposed the limitations of traditional, centralized authentication systems. In this context, SIBERIA was developed as a modular solution that empowers users to control their own digital identities, while ensuring robust [...] Read more.
The growing need for secure and privacy-preserving identity management in industrial environments has exposed the limitations of traditional, centralized authentication systems. In this context, SIBERIA was developed as a modular solution that empowers users to control their own digital identities, while ensuring robust protection of critical services. The system is designed in alignment with European standards and regulations, including EBSI, eIDAS 2.0, and the GDPR. SIBERIA integrates a Self-Sovereign Identity (SSI) framework with a decentralized blockchain-based infrastructure for the issuance and verification of Verifiable Credentials (VCs). It incorporates multi-factor authentication by combining a voice biometric module, enhanced with spoofing-aware techniques to detect synthetic or replayed audio, and a behavioral biometrics module that provides continuous authentication by monitoring user interaction patterns. The system enables secure and user-centric identity management in industrial contexts, ensuring high resistance to impersonation and credential theft while maintaining regulatory compliance. SIBERIA demonstrates that it is possible to achieve both strong security and user autonomy in digital identity systems by leveraging decentralized technologies and advanced biometric verification methods. Full article
(This article belongs to the Special Issue Blockchain and Distributed Systems)
Show Figures

Figure 1

20 pages, 1379 KiB  
Article
Combined Effects of Polyethylene and Bordeaux Mixture on the Soil–Plant System: Phytotoxicity, Copper Accumulation and Changes in Microbial Abundance
by Silvia Romeo-Río, Huguette Meta Foguieng, Antía Gómez-Armesto, Manuel Conde-Cid, David Fernández-Calviño and Andrés Rodríguez-Seijo
Agriculture 2025, 15(15), 1657; https://doi.org/10.3390/agriculture15151657 - 1 Aug 2025
Viewed by 271
Abstract
Greenhouses have positively impacted plant production by allowing the cultivation of different crops per year. However, the accumulation of agricultural plastics, potentially contaminated with agrochemicals, raises environmental concerns. This work evaluates the combined effect of Bordeaux mixture and low-density polyethylene (LDPE) microplastics (<5 [...] Read more.
Greenhouses have positively impacted plant production by allowing the cultivation of different crops per year. However, the accumulation of agricultural plastics, potentially contaminated with agrochemicals, raises environmental concerns. This work evaluates the combined effect of Bordeaux mixture and low-density polyethylene (LDPE) microplastics (<5 mm) on the growth of lettuce (Lactuca sativa L.) and soil microbial communities. Different levels of Bordeaux mixture (0, 100 and 500 mg kg−1), equivalent to Cu(II) concentrations (0, 17 and 83 mg kg−1), LDPE microplastics (0, 1% and 5%) and their combination were selected. After 28 days of growth, biometric and photosynthetic parameters, Cu uptake, and soil microbial responses were evaluated. Plant germination and growth were not significantly affected by the combination of Cu and plastics. However, individual Cu treatments influenced root and shoot length and biomass. Chlorophyll and carotenoid concentrations increased with Cu addition, although the differences were not statistically significant. Phospholipid fatty acid (PLFA) analysis revealed a reduction in microbial biomass at the highest Cu dose, whereas LDPE alone showed limited effects and may reduce Cu bioavailability. These results suggest that even at the highest concentration added, Cu can act as a plant nutrient, while the combination of Cu–plastics showed varying effects on plant growth and soil microbial communities. Full article
(This article belongs to the Special Issue Impacts of Emerging Agricultural Pollutants on Environmental Health)
Show Figures

Figure 1

15 pages, 1531 KiB  
Article
Towards a Circular Economy: Unlocking the Potentials of Cigarette Butt Recycling as a Resource for Seashore Paspalum Growth
by Thais Huarancca Reyes, Marco Volterrani, Lorenzo Guglielminetti and Andrea Scartazza
Sustainability 2025, 17(15), 6976; https://doi.org/10.3390/su17156976 - 31 Jul 2025
Viewed by 145
Abstract
The cigarette butt (CB) recycling process yields several byproducts, including cleaned filters, solid debris (mainly paper and tobacco), and wastewater. This study aimed to assess, for the first time, the long-term suitability of these recycled byproducts for turfgrass cultivation. Under controlled conditions, Paspalum [...] Read more.
The cigarette butt (CB) recycling process yields several byproducts, including cleaned filters, solid debris (mainly paper and tobacco), and wastewater. This study aimed to assess, for the first time, the long-term suitability of these recycled byproducts for turfgrass cultivation. Under controlled conditions, Paspalum vaginatum Swartz was grown in sand–peat substrate, either unmodified (control) or amended with small pieces of uncleaned CBs or solid byproducts from CB recycling at concentrations of 25% or 50% (v/v). In additional tests, turfgrass grown in unmodified substrate received wastewater instead of tap water once or twice weekly. Over 7 weeks, physiological and biometric parameters were assessed. Plants grown with solid debris showed traits comparable to the control. Those grown with intact CBs or cleaned filters had similar biomass and coverage as the control but accumulated more carotenoids and antioxidants. Wastewater significantly enhanced plant growth when applied once weekly, while becoming toxic when applied twice, reducing biomass and coverage. After scalping, turfgrass recovered well across all treatments, and in some cases biomass improved. Overall, recycled CB byproducts, particularly wastewater used at optimal concentrations, can be a sustainable resource for promoting turfgrass growth. Full article
(This article belongs to the Section Waste and Recycling)
Show Figures

Figure 1

22 pages, 4399 KiB  
Article
Deep Learning-Based Fingerprint–Vein Biometric Fusion: A Systematic Review with Empirical Evaluation
by Sarah Almuwayziri, Abeer Al-Nafjan, Hessah Aljumah and Mashael Aldayel
Appl. Sci. 2025, 15(15), 8502; https://doi.org/10.3390/app15158502 (registering DOI) - 31 Jul 2025
Viewed by 104
Abstract
User authentication is crucial for safeguarding access to digital systems and services. Biometric authentication serves as a strong and user-friendly alternative to conventional security methods such as passwords and PINs, which are often susceptible to breaches. This study proposes a deep learning-based multimodal [...] Read more.
User authentication is crucial for safeguarding access to digital systems and services. Biometric authentication serves as a strong and user-friendly alternative to conventional security methods such as passwords and PINs, which are often susceptible to breaches. This study proposes a deep learning-based multimodal biometric system that combines fingerprint (FP) and finger vein (FV) modalities to improve accuracy and security. The system explores three fusion strategies: feature-level fusion (combining feature vectors from each modality), score-level fusion (integrating prediction scores from each modality), and a hybrid approach that leverages both feature and score information. The implementation involved five pretrained convolutional neural network (CNN) models: two unimodal (FP-only and FV-only) and three multimodal models corresponding to each fusion strategy. The models were assessed using the NUPT-FPV dataset, which consists of 33,600 images collected from 140 subjects with a dual-mode acquisition device in varied environmental conditions. The results indicate that the hybrid-level fusion with a dominant score weight (0.7 score, 0.3 feature) achieved the highest accuracy (99.79%) and the lowest equal error rate (EER = 0.0018), demonstrating superior robustness. Overall, the results demonstrate that integrating deep learning with multimodal fusion is highly effective for advancing scalable and accurate biometric authentication solutions suitable for real-world deployments. Full article
Show Figures

Figure 1

24 pages, 624 KiB  
Systematic Review
Integrating Artificial Intelligence into Perinatal Care Pathways: A Scoping Review of Reviews of Applications, Outcomes, and Equity
by Rabie Adel El Arab, Omayma Abdulaziz Al Moosa, Zahraa Albahrani, Israa Alkhalil, Joel Somerville and Fuad Abuadas
Nurs. Rep. 2025, 15(8), 281; https://doi.org/10.3390/nursrep15080281 - 31 Jul 2025
Viewed by 126
Abstract
Background: Artificial intelligence (AI) and machine learning (ML) have been reshaping maternal, fetal, neonatal, and reproductive healthcare by enhancing risk prediction, diagnostic accuracy, and operational efficiency across the perinatal continuum. However, no comprehensive synthesis has yet been published. Objective: To conduct a scoping [...] Read more.
Background: Artificial intelligence (AI) and machine learning (ML) have been reshaping maternal, fetal, neonatal, and reproductive healthcare by enhancing risk prediction, diagnostic accuracy, and operational efficiency across the perinatal continuum. However, no comprehensive synthesis has yet been published. Objective: To conduct a scoping review of reviews of AI/ML applications spanning reproductive, prenatal, postpartum, neonatal, and early child-development care. Methods: We searched PubMed, Embase, the Cochrane Library, Web of Science, and Scopus through April 2025. Two reviewers independently screened records, extracted data, and assessed methodological quality using AMSTAR 2 for systematic reviews, ROBIS for bias assessment, SANRA for narrative reviews, and JBI guidance for scoping reviews. Results: Thirty-nine reviews met our inclusion criteria. In preconception and fertility treatment, convolutional neural network-based platforms can identify viable embryos and key sperm parameters with over 90 percent accuracy, and machine-learning models can personalize follicle-stimulating hormone regimens to boost mature oocyte yield while reducing overall medication use. Digital sexual-health chatbots have enhanced patient education, pre-exposure prophylaxis adherence, and safer sexual behaviors, although data-privacy safeguards and bias mitigation remain priorities. During pregnancy, advanced deep-learning models can segment fetal anatomy on ultrasound images with more than 90 percent overlap compared to expert annotations and can detect anomalies with sensitivity exceeding 93 percent. Predictive biometric tools can estimate gestational age within one week with accuracy and fetal weight within approximately 190 g. In the postpartum period, AI-driven decision-support systems and conversational agents can facilitate early screening for depression and can guide follow-up care. Wearable sensors enable remote monitoring of maternal blood pressure and heart rate to support timely clinical intervention. Within neonatal care, the Heart Rate Observation (HeRO) system has reduced mortality among very low-birth-weight infants by roughly 20 percent, and additional AI models can predict neonatal sepsis, retinopathy of prematurity, and necrotizing enterocolitis with area-under-the-curve values above 0.80. From an operational standpoint, automated ultrasound workflows deliver biometric measurements at about 14 milliseconds per frame, and dynamic scheduling in IVF laboratories lowers staff workload and per-cycle costs. Home-monitoring platforms for pregnant women are associated with 7–11 percent reductions in maternal mortality and preeclampsia incidence. Despite these advances, most evidence derives from retrospective, single-center studies with limited external validation. Low-resource settings, especially in Sub-Saharan Africa, remain under-represented, and few AI solutions are fully embedded in electronic health records. Conclusions: AI holds transformative promise for perinatal care but will require prospective multicenter validation, equity-centered design, robust governance, transparent fairness audits, and seamless electronic health record integration to translate these innovations into routine practice and improve maternal and neonatal outcomes. Full article
Show Figures

Figure 1

15 pages, 3532 KiB  
Article
Improving Motion Estimation Accuracy in Underdetermined Problems Using Physics-Informed Neural Networks with Inverse Kinematics and a Digital Human Model
by Yuya Hishikawa, Takashi Kusaka, Yoshifumi Tanaka, Yukiyasu Domae, Naoki Shirakura, Natsuki Yamanobe, Yui Endo, Mitsunori Tada, Natsuki Miyata and Takayuki Tanaka
Electronics 2025, 14(15), 3055; https://doi.org/10.3390/electronics14153055 - 30 Jul 2025
Viewed by 153
Abstract
With the rapid technological advancements in wearable devices, motion and health management have significantly improved, enabling the measurement of various biometric data with compact equipment. Our research focuses on motion measurement but, in general, full-body motion estimation requires motion capture systems or multiple [...] Read more.
With the rapid technological advancements in wearable devices, motion and health management have significantly improved, enabling the measurement of various biometric data with compact equipment. Our research focuses on motion measurement but, in general, full-body motion estimation requires motion capture systems or multiple inertial sensors, making it necessary to directly measure movement itself. In this study, we propose estimating full-body posture using inverse kinematics based on trunk posture and limb-end information collected through wearable devices. To enhance estimation accuracy in this underdetermined problem, we employ Physics-Informed Neural Networks (PINNs), which efficiently learn using physical laws as a loss function, along with a high-precision inverse kinematics model of a digital human. Through this approach, we enable high-accuracy full-body posture estimation even with wearable devices in underdetermined scenarios. Full article
(This article belongs to the Special Issue New Advances in Machine Learning and Its Applications)
Show Figures

Figure 1

13 pages, 751 KiB  
Article
Feline Testicular Biometry and Gonadosomatic Index: Associations Among Conventional Measurements, Mathematical Estimates, and Seminal Parameters
by Mónica Madrigal-Valverde, Rodrigo F. Bittencourt, Antonio Lisboa Ribeiro Filho, Thereza Cristina Calmon de Bittencourt, Isabella de Matos Brandão Carneiro, Luiz Di Paolo Maggitti, Gabriel Felipe Oliveira de Menezes, Carmo Emanuel de Almeida Biscarde, Gleice Mendes Xavier, Paola Pereira das Neves Snoeck and Larissa Pires Barbosa
Animals 2025, 15(15), 2191; https://doi.org/10.3390/ani15152191 - 25 Jul 2025
Viewed by 254
Abstract
The development of biometric techniques in domestic animals has greatly advanced scientific practices in wildlife research. The association between seminal characteristics and body and testicular biometry enables the selection of suitable breeders, though appropriate measurement techniques are required. The present study assessed differences [...] Read more.
The development of biometric techniques in domestic animals has greatly advanced scientific practices in wildlife research. The association between seminal characteristics and body and testicular biometry enables the selection of suitable breeders, though appropriate measurement techniques are required. The present study assessed differences among conventional methods and formulas for estimating testicular parameters. Testicular length, width, and thickness were measured using three methods in 13 adult male domestic cats. Testicular area, volume, and weight were estimated, from which the gonadosomatic index (GSI) was calculated. Sperm were collected using an alpha-2 adrenergic agonist and urethral catheterization, and characterized in terms of volume, vigor, total motility, progressive motility, concentration, plasma membrane integrity, and morphology. The three methods were consistent in terms of testicular area, volume, weight, and GSI. Moderate positive correlations were observed for testicular weight (r = 0.61, p < 0.05) and GSI (r = 0.58, p < 0.05). Testicular parameters showed strong positive correlations among each other (r > 0.80, p < 0.05). We observed a moderate positive correlation between head length and progressive motility (r = 0.65, p < 0.05). In conclusion, all testicular measurement and estimation techniques showed comparable performance. Therefore, testicular biometry is useful for selecting breeding males in feline conservation programs, wherein larger body biometrics are related to improved seminal and reproductive parameters. Full article
(This article belongs to the Section Animal Physiology)
Show Figures

Figure 1

12 pages, 1595 KiB  
Article
Vermicompost Tea in the Production, Gas Exchange and Quality of Strawberry Fruits
by Gabriel Lobo de Mendonça, Jader Galba Busato, Ernandes Rodrigues de Alencar and Alessandra Monteiro de Paula
Agriculture 2025, 15(15), 1607; https://doi.org/10.3390/agriculture15151607 - 25 Jul 2025
Viewed by 264
Abstract
The water-soluble extract from vermicompost, also known as vermicompost tea (VT), has attracted interest in sustainable production research due to its potential to increase crop yields. However, information regarding the influence of this bioinput on strawberry cultivation remains limited. This study aimed to [...] Read more.
The water-soluble extract from vermicompost, also known as vermicompost tea (VT), has attracted interest in sustainable production research due to its potential to increase crop yields. However, information regarding the influence of this bioinput on strawberry cultivation remains limited. This study aimed to evaluate the effects of different VT solution concentrations on the mass fruit, physiology, and fruit quality of the hybrid strawberry cultivar ‘Portola’. The experiment was conducted in a greenhouse, with foliar and substrate applications of VT solutions at varying concentrations (0%, 2%, 4%, 6% and 8%) over 150 days. Evaluations included the chemical composition of the VT, as well as the physiological and agronomic parameters of the strawberry plants, such as gas exchange, biometric data, the physicochemical quality of the fruit and the nutritional composition. Significant differences in gas exchange parameters, particularly intercellular CO2 concentration and stomatal conductance, were observed at the final growth stage. Of the quality and compositional parameters of the strawberries, only the soluble solids/titratable acidity (SS/TA) ratio was affected. The various VT dilutions induced physiological alterations in the strawberry plants, with energy being allocated towards mass fruit at the expense of fruit quality, specifically in terms of the SS/TA ratio. Full article
(This article belongs to the Special Issue Vermicompost in Sustainable Crop Production—2nd Edition)
Show Figures

Figure 1

17 pages, 2072 KiB  
Article
Barefoot Footprint Detection Algorithm Based on YOLOv8-StarNet
by Yujie Shen, Xuemei Jiang, Yabin Zhao and Wenxin Xie
Sensors 2025, 25(15), 4578; https://doi.org/10.3390/s25154578 - 24 Jul 2025
Viewed by 293
Abstract
This study proposes an optimized footprint recognition model based on an enhanced StarNet architecture for biometric identification in the security, medical, and criminal investigation fields. Conventional image recognition algorithms exhibit limitations in processing barefoot footprint images characterized by concentrated feature distributions and rich [...] Read more.
This study proposes an optimized footprint recognition model based on an enhanced StarNet architecture for biometric identification in the security, medical, and criminal investigation fields. Conventional image recognition algorithms exhibit limitations in processing barefoot footprint images characterized by concentrated feature distributions and rich texture patterns. To address this, our framework integrates an improved StarNet into the backbone of YOLOv8 architecture. Leveraging the unique advantages of element-wise multiplication, the redesigned backbone efficiently maps inputs to a high-dimensional nonlinear feature space without increasing channel dimensions, achieving enhanced representational capacity with low computational latency. Subsequently, an Encoder layer facilitates feature interaction within the backbone through multi-scale feature fusion and attention mechanisms, effectively extracting rich semantic information while maintaining computational efficiency. In the feature fusion part, a feature modulation block processes multi-scale features by synergistically combining global and local information, thereby reducing redundant computations and decreasing both parameter count and computational complexity to achieve model lightweighting. Experimental evaluations on a proprietary barefoot footprint dataset demonstrate that the proposed model exhibits significant advantages in terms of parameter efficiency, recognition accuracy, and computational complexity. The number of parameters has been reduced by 0.73 million, further improving the model’s speed. Gflops has been reduced by 1.5, lowering the performance requirements for computational hardware during model deployment. Recognition accuracy has reached 99.5%, with further improvements in model precision. Future research will explore how to capture shoeprint images with complex backgrounds from shoes worn at crime scenes, aiming to further enhance the model’s recognition capabilities in more forensic scenarios. Full article
(This article belongs to the Special Issue Transformer Applications in Target Tracking)
Show Figures

Figure 1

11 pages, 830 KiB  
Article
Machine Learning-Based Prediction of Shoulder Dystocia in Pregnancies Without Suspected Macrosomia Using Fetal Biometric Ratios
by Can Ozan Ulusoy, Ahmet Kurt, Ayşe Gizem Yıldız, Özgür Volkan Akbulut, Gonca Karataş Baran and Yaprak Engin Üstün
J. Clin. Med. 2025, 14(15), 5240; https://doi.org/10.3390/jcm14155240 - 24 Jul 2025
Viewed by 282
Abstract
Objective: Shoulder dystocia (ShD) is a rare but serious obstetric emergency associated with significant neonatal morbidity. This study aimed to evaluate the predictive performance of machine learning (ML) models based on fetal biometric ratios and clinical characteristics for the identification of ShD [...] Read more.
Objective: Shoulder dystocia (ShD) is a rare but serious obstetric emergency associated with significant neonatal morbidity. This study aimed to evaluate the predictive performance of machine learning (ML) models based on fetal biometric ratios and clinical characteristics for the identification of ShD in pregnancies without clinical suspicion of macrosomia. Methods: We conducted a retrospective case-control study including 284 women (84 ShD cases and 200 controls) who underwent spontaneous vaginal delivery between 37 and 42 weeks of gestation. All participants had an estimated fetal weight (EFW) below the 90th percentile according to Hadlock reference curves. Univariate and multivariate logistic regression analyses were performed on maternal and neonatal parameters, and statistically significant variables (p < 0.05) were used to construct adjusted odds ratio (aOR) models. Supervised ML models—Logistic Regression (LR), Random Forest (RF), and Extreme Gradient Boosting (XGB)—were trained and tested to assess predictive accuracy. Performance metrics included AUC-ROC, sensitivity, specificity, accuracy, and F1-score. Results: The BPD/AC ratio and AC/FL ratio markedly enhanced the prediction of ShD. When added to other features in RF models, the BPD/AC ratio got an AUC of 0.884 (95% CI: 0.802–0.957), a sensitivity of 68%, and a specificity of 83%. On the other hand, the AC/FL ratio, along with other factors, led to an AUC of 0.896 (95% CI: 0.805–0.972), 68% sensitivity, and 90% specificity. Conclusions: In pregnancies without clinical suspicion of macrosomia, ML models integrating fetal biometric ratios with maternal and labor-related factors significantly improved the prediction of ShD. These models may support clinical decision-making in low-risk deliveries where ShD is often unexpected. Full article
(This article belongs to the Section Obstetrics & Gynecology)
Show Figures

Figure 1

25 pages, 1072 KiB  
Review
EEG-Based Biometric Identification and Emotion Recognition: An Overview
by Miguel A. Becerra, Carolina Duque-Mejia, Andres Castro-Ospina, Leonardo Serna-Guarín, Cristian Mejía and Eduardo Duque-Grisales
Computers 2025, 14(8), 299; https://doi.org/10.3390/computers14080299 - 23 Jul 2025
Viewed by 431
Abstract
This overview examines recent advancements in EEG-based biometric identification, focusing on integrating emotional recognition to enhance the robustness and accuracy of biometric systems. By leveraging the unique physiological properties of EEG signals, biometric systems can identify individuals based on neural responses. The overview [...] Read more.
This overview examines recent advancements in EEG-based biometric identification, focusing on integrating emotional recognition to enhance the robustness and accuracy of biometric systems. By leveraging the unique physiological properties of EEG signals, biometric systems can identify individuals based on neural responses. The overview discusses the influence of emotional states on EEG signals and the consequent impact on biometric reliability. It also evaluates recent emotion recognition techniques, including machine learning methods such as support vector machines (SVMs), convolutional neural networks (CNNs), and long short-term memory networks (LSTMs). Additionally, the role of multimodal EEG datasets in enhancing emotion recognition accuracy is explored. Findings from key studies are synthesized to highlight the potential of EEG for secure, adaptive biometric systems that account for emotional variability. This overview emphasizes the need for future research on resilient biometric identification that integrates emotional context, aiming to establish EEG as a viable component of advanced biometric technologies. Full article
(This article belongs to the Special Issue Multimodal Pattern Recognition of Social Signals in HCI (2nd Edition))
Show Figures

Figure 1

18 pages, 3102 KiB  
Article
A Multicomponent Face Verification and Identification System
by Athanasios Douklias, Ioannis Zorzos, Evangelos Maltezos, Vasilis Nousis, Spyridon Nektarios Bolierakis, Lazaros Karagiannidis, Eleftherios Ouzounoglou and Angelos Amditis
Appl. Sci. 2025, 15(15), 8161; https://doi.org/10.3390/app15158161 - 22 Jul 2025
Viewed by 237
Abstract
Face recognition technology is a biometric technology, which is based on the identification or verification of facial features. Automatic face recognition is an active research field in the context of computer vision and artificial intelligence (AI) that is fundamental for a variety of [...] Read more.
Face recognition technology is a biometric technology, which is based on the identification or verification of facial features. Automatic face recognition is an active research field in the context of computer vision and artificial intelligence (AI) that is fundamental for a variety of real-time applications. In this research, the design and implementation of a face verification and identification system of a flexible, modular, secure, and scalable architecture is proposed. The proposed system incorporates several and various types of system components: (i) portable capabilities (mobile application and mixed reality [MR] glasses), (ii) enhanced monitoring and visualization via a user-friendly Web-based user interface (UI), and (iii) information sharing via middleware to other external systems. The experiments showed that such interconnected and complementary system components were able to perform robust and real-time results related to face identification and verification. Furthermore, to identify a proper model of high accuracy, robustness, and performance speed for face identification and verification tasks, a comprehensive evaluation of multiple face recognition pre-trained models (FaceNet, ArcFace, Dlib, and MobileNetV2) on a curated version of the ID vs. Spot dataset was performed. Among the models used, FaceNet emerged as a preferable choice for real-time tasks due to its balance between accuracy and inference speed for both face identification and verification tasks achieving AUC of 0.99, Rank-1 of 91.8%, Rank-5 of 95.8%, FNR of 2% and FAR of 0.1%, accuracy of 98.6%, and inference speed of 52 ms. Full article
(This article belongs to the Special Issue Application of Artificial Intelligence in Image Processing)
Show Figures

Figure 1

38 pages, 6851 KiB  
Article
FGFNet: Fourier Gated Feature-Fusion Network with Fractal Dimension Estimation for Robust Palm-Vein Spoof Detection
by Seung Gu Kim, Jung Soo Kim and Kang Ryoung Park
Fractal Fract. 2025, 9(8), 478; https://doi.org/10.3390/fractalfract9080478 - 22 Jul 2025
Viewed by 253
Abstract
The palm-vein recognition system has garnered attention as a biometric technology due to its resilience to external environmental factors, protection of personal privacy, and low risk of external exposure. However, with recent advancements in deep learning-based generative models for image synthesis, the quality [...] Read more.
The palm-vein recognition system has garnered attention as a biometric technology due to its resilience to external environmental factors, protection of personal privacy, and low risk of external exposure. However, with recent advancements in deep learning-based generative models for image synthesis, the quality and sophistication of fake images have improved, leading to an increased security threat from counterfeit images. In particular, palm-vein images acquired through near-infrared illumination exhibit low resolution and blurred characteristics, making it even more challenging to detect fake images. Furthermore, spoof detection specifically targeting palm-vein images has not been studied in detail. To address these challenges, this study proposes the Fourier-gated feature-fusion network (FGFNet) as a novel spoof detector for palm-vein recognition systems. The proposed network integrates masked fast Fourier transform, a map-based gated feature fusion block, and a fast Fourier convolution (FFC) attention block with global contrastive loss to effectively detect distortion patterns caused by generative models. These components enable the efficient extraction of critical information required to determine the authenticity of palm-vein images. In addition, fractal dimension estimation (FDE) was employed for two purposes in this study. In the spoof attack procedure, FDE was used to evaluate how closely the generated fake images approximate the structural complexity of real palm-vein images, confirming that the generative model produced highly realistic spoof samples. In the spoof detection procedure, the FDE results further demonstrated that the proposed FGFNet effectively distinguishes between real and fake images, validating its capability to capture subtle structural differences induced by generative manipulation. To evaluate the spoof detection performance of FGFNet, experiments were conducted using real palm-vein images from two publicly available palm-vein datasets—VERA Spoofing PalmVein (VERA dataset) and PLUSVein-contactless (PLUS dataset)—as well as fake palm-vein images generated based on these datasets using a cycle-consistent generative adversarial network. The results showed that, based on the average classification error rate, FGFNet achieved 0.3% and 0.3% on the VERA and PLUS datasets, respectively, demonstrating superior performance compared to existing state-of-the-art spoof detection methods. Full article
Show Figures

Figure 1

Back to TopTop